Di-oxime based selective fluorescent probe for arsenate and arsenite ions in purely aqueous medium with living cell imaging application and H-bonding induced microstructure formation

Abu Saleh Musha Islama, Rabiu IAlama, Atul Katarkarb, Keya Chaudhurib and Mahammad Alia,*

aDepartment of Chemistry, Jadavpur University, Kolkata 700 032, India, Fax: 91-33-2414-6223, E-mail: m.ali2062@yahoo.com and mali@chemistry.jdvu.ac.in

bMolecular& Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata-700032, India

Content:

<table>
<thead>
<tr>
<th>1. Characterization of ligand</th>
<th>Fig.S1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Change in absorption spectra of DFC-DO upon addition of AsO\textsubscript{2}- and H\textsubscript{2}AsO\textsubscript{4}-.</td>
<td>Fig.S2.</td>
</tr>
<tr>
<td>3. Change in florescence spectra of DFC-DO upon addition of H\textsubscript{2}AsO\textsubscript{4}-.</td>
<td>Fig.S3.</td>
</tr>
<tr>
<td>4. Calculation for LOD values of AsO\textsubscript{2}- and H\textsubscript{2}AsO\textsubscript{4}-.</td>
<td>Fig.S4.</td>
</tr>
<tr>
<td>5. JOB’s Plot of AsO\textsubscript{2}- and H\textsubscript{2}AsO\textsubscript{4}-.</td>
<td>Fig.S5.</td>
</tr>
<tr>
<td>6. Mass spectra of DFC-DO + NaAsO\textsubscript{2} - H+</td>
<td>Fig.S6(a).</td>
</tr>
<tr>
<td>7. Mass spectra of DFC-DO + NaH\textsubscript{2}AsO\textsubscript{4} - H+</td>
<td>Fig.S6(b).</td>
</tr>
<tr>
<td>8. Selectivity of DFC-DO for AsO\textsubscript{2}- and H\textsubscript{2}AsO\textsubscript{4}-.</td>
<td>Fig.S7(a).</td>
</tr>
<tr>
<td>9. Selectivity of DFC-DO for other cations.</td>
<td>Fig.S7(b).</td>
</tr>
<tr>
<td>10. Selectivity of DFC-DO for other arsenic species.</td>
<td>Fig.S7(c).</td>
</tr>
<tr>
<td>11. pH Study of AsO\textsubscript{2}- and H\textsubscript{2}AsO\textsubscript{4}- with DFC-DO.</td>
<td>Fig.S8</td>
</tr>
<tr>
<td>12. 1H-NMR for DFC-DO with AsO\textsubscript{2}- and H\textsubscript{2}AsO\textsubscript{4}-.</td>
<td>Fig.S9</td>
</tr>
<tr>
<td>13. MTT assay of ligand DFC-DO.</td>
<td>Fig.S10</td>
</tr>
<tr>
<td>14. Cell Imaging Study</td>
<td>Fig.S11</td>
</tr>
</tbody>
</table>
1H-NMR spectrum of DFC-DO:

![H-NMR spectrum of DFC-DO](image)

Fig. S1(a). Proton numbering scheme of ligand DFC-DO.

Table I: 1H NMR shifts for the free ligand DFC-DO:

<table>
<thead>
<tr>
<th>Ligand Name</th>
<th>δ in ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFC-DO in DMSO-d_6</td>
<td>7.35(2-H, s, aromatic protons), 8.35(2-H, s, CH),</td>
</tr>
<tr>
<td></td>
<td>2.24(3-H, s, CH$_3$), 10.57(1-H,s, aromatic OH),</td>
</tr>
<tr>
<td></td>
<td>11.46(1-H, s, oxime OH)</td>
</tr>
</tbody>
</table>
Mass spectrum of DFC-DO:

Fig.S1(b) Mass spectrum of DFC-DO in MeOH
Infra-red spectrum (DFC-DO):

![IR spectrum of ligand DFC-DO](image)

Fig.S1(c) IR spectrum of ligand DFC-DO
Experimental:

Instruments (Physical measurements):

The Fourier Transform Infrared spectra (4000 – 400 cm$^{-1}$) of the ligands were recorded on a Perkin-Elmer RX I FT-IR spectrophotometer system with solid KBr disc. Electronic spectra were recorded on an Agilent 8453 Diode-array UV-vis spectrophotometer using HPLC grade H$_2$O as solvent with 1 cm quartz cuvette in the range 200-900 nm. Fluorescence study was done in PTI (Model QM-50) spectrofluorimeter, 1H NMR spectrum was recorded on a BRUKER 300MHz FT-NMR spectrometer using trimethylsilane as an internal standard inDMSO (d$_6$).

Solution preparation for UV-Vis and fluorescence studies:

For both UV-Vis and fluorescence titrations, stock solutions of 1.0×10^{-3} M of the probe DFC-DO were prepared by dissolving the L in 0.5 ml MeOH and finally the volume is make up to 10 ml by de-ionised water. Similarly, another 1.0×10^{-2} M stock solutions of AsO$_2^-$ and H$_2$AsO$_4^-$were prepared in de-ionized H$_2$O. A solution of 10 mM HEPES buffer was prepared and pH was adjusted to 7.24 by using HCl and NaOH. 2.5 ml of this buffered solution was pipetted out into a cuvette to which 20 µM of the probe was added and AsO$_2^-$ or H$_2$AsO$_4^-$ ions were added incrementally starting from 0 to 560 µM and 0 to 1200 µM respectively in a regular interval of volume and UV-Vis and fluorescence spectra were recorded for each solution. Path length used of the cells for absorption and emission studies was 1 cm. Fluorescence measurements were performed using 5 nm x 3 nm slit width.
UV-Vis absorption studies:

The spectrophotometric titration for the interaction of DFC-DO (20 μM) with AsO$_2^-$ (560 μM) and H$_2$AsO$_4^-$ (1200 μM) at 25 °C in pure aqueous medium at pH 7.24 (10 mM HEPES buffer) reveals that there is small increase in absorption intensity of DFC-DO at 376 nm for AsO$_2^-$; additionally, there is a red shift with slight decrease in absorbance at 340 nm. For H$_2$AsO$_4^-$ there are slight increase absorbance at 340 and 376 nm with the increase in the concentration. (Fig.S2)

![Absorption Spectra](image)

(a) DFC – DO + As(III)
(b) DFC – DO + As(V)

Fig.S2. Change in absorption spectra of DFC-DO (20 μM) upon addition of **(a)** AsO$_2^-$ (0–560 μM) and **(b)** H$_2$AsO$_4^-$ (0–1200 μM). Conditions: DFC-DO (20 μM), HEPES buffer at pH 7.24 in H$_2$O at 25 °C.

Fluorescence titration of H$_2$AsO$_4^-$:

The fluorescence titration for the interaction of DFC-DO with H$_2$AsO$_4^-$ in the same solvent system as used in UV-Vis. titration reveals that the addition of H$_2$AsO$_4^-$ leads to an increase in fluorescence intensity at around 460 nm.
Fig.S3. Change in fluorescence spectra of DFC-DO (20 μM) upon addition of H₂AsO₄⁻ in HEPES buffer at pH 7.24 in H₂O at 25 °C, [H₂AsO₄⁻] = 0–1200 μM. (b) Plot of F.I. (at 460 nm) vs. [H₂AsO₄⁻]; (c) UV-exposed emission image of and DFC-DO–H₂AsO₄⁻.

Calculation for LOD value

To determine the detection limit, fluorescence titration of DFC-DO with AsO₂⁻ and H₂AsO₄⁻ was carried out by adding aliquots of micromolar concentration of AsO₂⁻ and H₂AsO₄⁻. However, the detection limits (LOD) of AsO₂⁻ and H₂AsO₄⁻ have been calculated by 3σ method.

\[
\text{LOD} = 3 \times \frac{S_d}{S}
\]

Where, \(S_d\) is the standard deviation of the intercept of the blank (DFC-DO) obtained from a plot of FI vs. [DFC-DO], and \(S\) is the slope obtained from linear part of the plot of FI vs. [AsO₂⁻] and [H₂AsO₄⁻] respectively.
Fig. S4(a). Determination of LOD of AsO$_2^-$

LOD = 3 x Standard deviation/Slope
= 3 x 831/1.08539 x 1010
= 2.29 x 10$^{-7}$ [M]

Slope = 1.08593 x 1010
The LOD value obtained for $[\text{AsO}_2^-]$ is 0.23 µM and for $[\text{H}_2\text{AsO}_4^-]$ becomes 1.32 µM.

JOB’s Plot

This method is based on the measurement of F.I. of a series of solutions in which molar concentrations of two reactants vary but their sum remains constant. The fluorescence intensity of each solution was measured at a suitable wavelength and plotted against the mole fraction of one reactant. A maximum in fluorescence intensity appeared at the mole ratio corresponding to the combining ratio of the reactants.

The composition of the complex was determined by JOB's method and found to be (1:1) with respect to ligand for both AsO_2^- and H_2AsO_4^-. Fig.S5(a) and Fig.S5(b), respectively.
Fig. S5. JOB’s plot for (a) AsO$_2^-$ and (b) H$_2$AsO$_4^-$.

Mass Spectroscopy:

Fig. S6(a) Mass spectra of DEC-DO + NaAsO$_2$ - H$^+$
Selectivity Study

The selective sensing of analyte is an important criterion for a successful sensor. In order to check the selectivity of the probe (DFC-DO) towards \(\text{AsO}_2^- \) and \(\text{H}_2\text{AsO}_4^- \) detection we carried fluorescence experiments with 20 \(\mu \text{M} \) DFC-DO and 600 equivalents of different anions. It was interesting to note that the detection of \(\text{AsO}_2^- \) and \(\text{H}_2\text{AsO}_4^- \) was not perturbed by biologically abundant Na\(^+\), K\(^+\), Ca\(^{2+}\) etc metal ions. Several transition metal ions, namely Cr\(^{3+}\), Mn\(^{2+}\), Fe\(^{2+}\), Fe\(^{3+}\), Co\(^{2+}\), Ni\(^{2+}\), Cu\(^{2+}\), and heavy metal ions like Cd\(^{2+}\), Pb\(^{2+}\), and Hg\(^{2+}\) also caused no interference (Fig. S7(a) and Fig. S7(b)). Also the other anions do not interfere in the detection of \(\text{AsO}_2^- \) and \(\text{H}_2\text{AsO}_4^- \).
Fig. S7(a). Selectivity of DFC-DO (20 μM) for AsO_2^- and H_2AsO_4^-. Fluorescence response of DFC-DO following the addition of 1200 μM of the different anions of interest in aqueous HEPES buffer solution (pH 7.24): where anions = Cl\(^-\), Br\(^-\), I\(^-\), F\(^-\), SCN\(^-\), NO\(_2^\), SO\(_4^{2-}\), H\(_2\text{PO}_4^-\), N\(_3^-\), CH\(_3\text{COO}^-\), S\(_2\text{O}_3^{2-}\), SO\(_3^{2-}\), AsO\(_2^-\), H\(_2\text{AsO}_4^-\), λ_{ex} = 340 nm.

Fig. S7(b) Selectivity of DFC-DO (20 μM) for AsO_2^- and H_2AsO_4^- fluorescence response of DFC-DO in pure water buffered with 10 mM HEPES at pH 7.24 following the addition of 1200 μM of the cations of interest. Where cations = Zn\(^{2+}\), Fe\(^{2+}\), Ca\(^{2+}\), Mg\(^{2+}\), Na\(^+\), K\(^+\), Mn\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\), Hg\(^{2+}\), Pb\(^{2+}\), Cu\(^{2+}\), AsO\(_2^-\), H\(_2\text{AsO}_4^-\), λ_{ex} = 340 nm.
pH Study:

For biological applications, the appropriate pH condition for a successful probe is utmost importance. The probe **DFC-DO** fluoresces rather very weakly between pH 2 and 8 while DFC-DO–H₂AsO₄⁻ and DFC-DO–AsO₂⁻ complexes fluoresce extensively between pH 6 and 8 in 10mM HEPES buffer, clearly indicating that this pH range is suitable for fluorescence studies for the recognition of H₂AsO₄⁻ and AsO₂⁻. **Fig. S8.**
Fig.S8(a). pH dependence of fluorescence responses of DFC-DO and DFC-DO + \(\text{H}_2\text{AsO}_4^- \) in aqueous HEPES buffer solution (pH 7.24).

Fig.S8(b). pH dependence of fluorescence responses of DFC-DO and DFC-DO + \(\text{AsO}_2^- \) in pure water HEPES buffered solution (pH 7.24).
1H-NMR Titration:

The co-ordination modes were further supported by 1H-NMR studies (Fig. S9) which clearly showed the protons of the free ligand (oxime –OH) 11.46 ppm, (phenolic -OH) 10.57 ppm shifted to a up field (ppm) and broadened, in presence of slight excess of AsO$_2^−$ and H$_2$AsO$_4^−$ respectively. Azomethine proton remains unchanged due to non-participating behavior. However, 1H-NMR peaks corresponding to phenolic -OH and oxime –OH vanishes on adding excess ions, suggesting their involvement in bonding towards AsO$_2^−$ and H$_2$AsO$_4^−$.

Fig.S9(a). 1H-NMR for DFC-DO and AsO$_2^−$.
Calculation of Quantum Yield:

Fluorescence quantum yields (Φ) were estimated by integrating the area under the fluorescence curves using the equation,

\[Φ_{\text{sample}} = \frac{(OD_{\text{std}} \times A_{\text{sample}})}{(OD_{\text{sample}} \times A_{\text{std}})} \times Φ_{\text{std}} \]

Where, \(A_{\text{sample}}\) and \(A_{\text{std}}\) are the area under the fluorescence spectral curves and \(OD_{\text{sample}}, OD_{\text{std}}\) are the optical densities of the sample and standard, respectively at the excitation wavelength.

Quininesulphate has been used as the standard with \(Φ_{\text{std}} = 0.54\) in water for measuring the quantum yields of DFC-DO and DFC-DO–AsO\(_2^−\) and DFC-DO–H\(_2\)AsO\(_4^−\) systems.
Cell culture

Human hepatocellular liver carcinoma cells (HepG2) cell line (NCCS, Pune, India), were grown in DMEM supplemented with 10% FBS and antibiotics (penicillin-100 µg/ml; streptomycin-50 µg/ml). Cells were cultured at 37°C in 95% air, 5% CO2 incubator.

Cell Cytotoxicity Assay

To determine % cell viability of ligand (DFC-DO), MTT assay was performed on HepG2 cells (1×10^5 cells/well) which were cultured in a 96-well plate at 37°C. These were exposed to varying concentrations of L, 0.5, 1, 5, 10, 20, 40, 60, 80 and 100 µM respectively for 12h. 10 µl of MTT solution (5 mg/ml1X) in phosphate-buffered saline (PBS) was added to each well of a 96-well culture plate and again incubated continuously at 37°C for a period of 4 h. All media were removed from wells and 100µl of DMSO was added to each well and absorbance was measured at 550nm (EMax Precision MicroPlate Reader, Molecular Devices, USA). All experiments were performed in triplicate and the relative cell viability (%) was expressed as a percentage relative to the untreated control cells.

Cell Imaging Study

HepG2 cells were culture and incubated in 35x10 mm culture dish over coverslip for 24 h at 37°C in conditioned media (DMEM, 10% FBS). The HepG2 cells were allowed to incubate separately with 10 µM H2AsO4− (in 2 culture dishes), 10µm AsO2− (in 2 culture dishes) and 10 µm DFC-DO for 2 h, 4 h and 6 h at 37°C. After incubation for 2 h, 4 h and 6 h, each medium were discarded from H2AsO4− (from 1st culture dish), AsO2− (from 1st culture dish) and DFC-DO treated culture dish and washed twice with 1X PBS. Now the coverslip containing HepG2 cells were mounted over the slide. Bright field and fluorescence images of HepG2 cells were taken by fluorescence microscope (Leica DM3000, Germany) with an objective lens of 40X magnification. Simultaneously, on the another culture dishes which were preincubated with 10µM H2AsO4− (2nd culture dish) and 10µM AsO4− (2nd culture dish) at 2h, 4h and 6h at 37°C, washed twice with 1X PBS to remove the medium containing extracellular H2AsO4− and AsO2− and, then incubated with 10µM of DFC-DO for 30 min at 370C, then further washed with 1X PBS for two times to remove the extraneous DFC-DO. HepG2 cells were mounted over the slide and bright field and fluorescence images were taken at 40X
magnification. The cell imaging studies were carried out three times (Fig.5 (Experimental set-I), Fig. S11 (Experimental set-II and III)).

Fig.S10. MTT assay of ligand DFC-DO

![MTT assay of ligand DFC-DO](image)

Experimental Set II

Experimental Set III

Fig.S11. The phase contrast and fluorescence images (40X) of HepG2 cells were taken after incubation with 10 µM H$_2$AsO$_4^-$, 10 µM AsO$_2^-$ and 10 µM DFC-DO for 2 h, 4 h and 6 h at 37°C followed by washing with 1X PBS for two times to remove the extraneous H$_2$AsO$_4^-$, AsO$_2^-$ and DFC-DO species (Column 1, 2 and 3). Concurrently, HepG2 cells were pre-incubated with 10 µM H$_2$AsO$_4^-$, 10 µM AsO$_2^-$ for 2 h, 4 h and 6 h at 37°C followed by washing with 1X PBS for two times to remove the extraneous H$_2$AsO$_4^-$ and AsO$_2^-$ species and, then incubated with 10µM DFC-DO for 30 minutes at 37°C, then further washed with 1X PBS for two times to remove the extraneous DFC-DO and observed under microscope (column 4 and 5) as mentioned previously. We have performed three parallel sets (Set I{Fig.5}, Set II and Set III).
Determination of H_2AsO_4^- in water at different places

Table S1. Determination of H_2AsO_4^- in water at different places.

<table>
<thead>
<tr>
<th>PLACE</th>
<th>H_2AsO_4^- added (μM)</th>
<th>H_2AsO_4^- found (μM) a</th>
<th>Recovery (%)</th>
<th>RSD(%) b,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baruipur (tube well water)</td>
<td>20</td>
<td>20.15</td>
<td>99.9</td>
<td>2.2</td>
</tr>
<tr>
<td>24 Parganas (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barasat (tube well water)</td>
<td>30</td>
<td>30.154</td>
<td>99.5</td>
<td>1.2</td>
</tr>
<tr>
<td>24 Parganas (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonarpur (tube well water)</td>
<td>40</td>
<td>40.474</td>
<td>100.1</td>
<td>1.9</td>
</tr>
<tr>
<td>24 Parganas (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damdam (tube well water)</td>
<td>60</td>
<td>60.554</td>
<td>100.2</td>
<td>1.96</td>
</tr>
<tr>
<td>24 Parganas (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a mean of five determination; b Relative standard deviation from five determinations.

DFT calculations

Ground state electronic structure calculations in gas phase of both the ligand and H-bonded adducts have been carried out using DFT2 method associated with the conductor-like polarizable continuum model (CPCM).$^{3-5}$ Becke’s hybrid function6 with the Lee-Yang-Parr (LYP) correlation function7 was used throughout the study. The geometry of the ligand and complex was fully optimized without any symmetry constraints.
All the calculations were performed with the Gaussian 09W software package. For geometry optimization of both the ligand and the complexes (AsO$_4^{2-}$ and AsO$_2^{-}$) in ground state we used 6-31G as basis set under B$_3$LYP for all the atoms (As, C, H, N and O).

References

