Supporting Information for

Squaramide-based Tripodal Ionophores for Potentiometric Sulfate-selective Sensors with High
Selectivity

Yueling Liu¹, Yu Qin¹,*, Dechen Jiang¹,²*,

¹. State Key Laboratory of Analytical Chemistry for Life science, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing, China, 210093.
². State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese
Academy of Sciences.
Fax: +86-25-83592562 (Y.Q) and +86-25-83594846 (D.J);
Tel: +86-25-83592562 (Y.Q) and +86-25-83594846 (D.J);
E-mail: qinyu75@nju.edu.cn (Y.Q) and dechenjiang@nju.edu.cn (D.J)

1. Characterization of ionic sites

Figure S1: Sulfate responses of Ionophore III-based membranes in the presence and absence of
ionic sites (●, TDMACl; ▲, no ionic sites; ■, NaTFPB)
2. Experiential data for the detection of sulfate in cellular lysate and drinking water.

Table S1. Determination of Sulfate in Drinking Water and Cell Extracts by Ionophore III-based Electrodes (n=3)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Average found</th>
<th>Mean EMF value / mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell lysates</td>
<td>337.9 ±0.5 μM</td>
<td>216.02 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>3.51 ± 0.2 mM</td>
<td>192.49 ± 0.6</td>
</tr>
<tr>
<td>Drinking water</td>
<td>66.6±0.4 mg</td>
<td>129.75 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>266.3±0.9 mg</td>
<td>114.75 ± 0.4</td>
</tr>
</tbody>
</table>