Electronic Supplementary Information

Masking agent-free and channel-switch-mode simultaneous sensing of \(\text{Fe}^{3+} \) and \(\text{Hg}^{2+} \) using dual-excitation graphene quantum dots

Fengzhou Xu,† Hui Shi,† Xiaoxiao He, Kemin Wang*, Dinggeng He, Lv’an Yan, Xiaosheng Ye, Jinlu Tang, Jingfang Shangguan and Lan Luo

EXPERIMENTAL SECTION

Materials and Reagents.

Citric acid and sodium hydrate were purchased from China Pharmaceutical (Group) Shanghai Chemical Reagent Company. Ferric chloride (FeCl\(_3\)), potassium chloride (KCl), magnesium chloride (MgCl\(_2\)·6H\(_2\)O), calcium chloride (CaCl\(_2\)), manganese chloride (MnCl\(_2\)·4H\(_2\)O), zinc acetate (ZnAc\(_2\)·2H\(_2\)O), cupric sulfate (CuSO\(_4\)·5H\(_2\)O), lead nitrate (Pb(NO\(_3\))\(_2\)), cadmium sulfate (CdSO\(_4\)·8H\(_2\)O), silver nitrate (AgNO\(_3\)), mercuric perchlorate (HgClO\(_4\)·3H\(_2\)O), and mercury nitrate (Hg(NO\(_3\))\(_2\)) were obtained from Sinopharm chemical reagent Co., Ltd. (Shanghai, China). All other chemicals were of the highest grade available. All stock and buffer solutions were prepared using ultrapure water (18.2 MΩ cm from Millpore purification system).

Synthesis of GQDs

GQDs were prepared using a modified citric acid pyrolysis method.\(^1\) Briefly, 2 g of citric acid (CA) was put into a 100 mL round-bottom flask, which was heated with an electric heating jacket. About 5 min later, the temperature reached to 200 °C and CA was liquated gradually. After about 25 min, the color of the liquid melt was changed from colorless to deep orange, and the liquid melt was...
transferred into a beaker containing 100 mL of 10 mg mL\(^{-1}\) NaOH aqueous solution with continuous stirring. With the completely dissolved, the above solution was neutralized to pH 7.0 with HCl. The orange GQDs solution was stored away from light at 4 °C for 3~4 days to age, and the color of GQD solution will be slip away to faint yellow. The stock solution without any further treatment was used for the following characterization and detection.

Characterization of GQDs.

Transmission electron microscopy (TEM) measurements were performed on a Tecnai G\(^2\) 20ST transmission electron microscope operated at 200 kV. TEM samples were prepared by spin coating 10 μL of GQDs onto carbon-coated copper grid substrates, which were then baked in an oven at 60 °C. UV-vis absorption spectra were recorded on a Beckman Coulter DU-800 UV-vis spectrophotometer. FTIR spectra were obtained with a Tensor 27 Fourier transform infrared spectrometer (Bruker, Germany).

GQDs-based fluorescent sensing.

Fluorescent measurements were performed on an F-7000 fluorescence spectrophotometer (Hitachi, Japan) with a 1 mm×10 mm quartz cuvette containing 50 μL of solution at room temperature (25 °C). The excitation wavelength was set at 310 nm and 420 nm in Channel-310 and Channel-420, respectively. Ex slit and Em slit width were 2.5 nm (950 V PMT).
Figure S1. Characterization of GQDs. (A) FTIR spectra of GQDs and purchased graphene oxide (GO). (B) TEM images of GQDs.
Figure S2. Fluorescence emission spectra of GQDs in the presence of different metal ions (500 μM), measured through Channel-310 and Channel-420 respectively.
Figure S3. Fluorescence responses of GQD/Fe\(^{3+}\) (A) and GQD/Hg\(^{2+}\) (B) in the absence and presence of NaOH (10 mM) or GSH (5 mM) respectively. (The concentration of Fe\(^{3+}\) and Hg\(^{2+}\) were 1 mM.)
<table>
<thead>
<tr>
<th>Target Ion(s)</th>
<th>Probe-Synthesis Method</th>
<th>Detection Limit</th>
<th>Selectivity (Interferent)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$^{3+}$</td>
<td>GQDs-Hydrothermal method (polycyclic aromatic hydrocarbon)</td>
<td>5 nM</td>
<td>Cu$^{2+}$, Fe$^{2+}$, Hg$^{2+}$</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>GQDs-Electrochemical etching 3D graphene</td>
<td>\approx7.22 μM</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>N-GQDs-Hydrothermal method (pyrolyzing citric acid+hydrazine)</td>
<td>90 nM</td>
<td>Cu$^{2+}$, Hg$^{2+}$</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>S-GQDs-Electrolysis of graphite in sodium p-toluenesulfonate</td>
<td>4.2 nM</td>
<td>Hg$^{2+}$</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CQDs-Electrochemical ablation of graphite electrodes</td>
<td>2 nM</td>
<td>Cu$^{2+}$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CDs-Hydrothermal method (grape peel)</td>
<td>1 μM</td>
<td>Hg$^{2+}$</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>CDs-Hydrothermal method (citric acid+ethylene diamine)</td>
<td>\approx18 μM</td>
<td>Fe$^{2+}$, Zn$^{2+}$, Cu$^{2+}$, Co$^{2+}$, Pb$^{2+}$, Hg$^{2+}$</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>CDs-Calcination β-cyclodextrin</td>
<td>0.8 μM</td>
<td>Oxidative ions</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>N-CDs-Hydrothermal method (PEG diamine+citric acid)</td>
<td>2.5 nM</td>
<td>Fe$^{2+}$</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>N-CDs-Microwave assisted hydrothermal method (histidine)</td>
<td>10 nM</td>
<td>Co$^{2+}$, Cu$^{2+}$, Ni$^{2+}$, Hg$^{2+}$, Zn$^{2+}$</td>
<td>11</td>
</tr>
<tr>
<td>Hg$^{2+}$</td>
<td>CNPs-Light induced glucose</td>
<td>\approx10 μM</td>
<td>Cu$^{2+}$</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>CNPs-Microwave assisted hydrothermal method (melamine and trisodium citrate dehydrate)</td>
<td>45 nM</td>
<td>—</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>GQDs-Pyrolyzing citric acid</td>
<td>3.36 μM</td>
<td>Fe$^{2+}$</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>CPs-Hydrothermal method (pomelo peel)</td>
<td>0.23 nM</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>Fe$^{3+}$ & Hg$^{2+}$</td>
<td>CNSs-Hydrothermal method (cocoon silk)</td>
<td>50 μM Hg$^{2+}$, 50 μM Fe$^{3+}$</td>
<td>Cu$^{2+}$</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>GQDs-Pyrolyzing citric acid</td>
<td>10 μM Hg$^{2+}$, 10 μM Fe$^{3+}$</td>
<td>Masking agent-free simultaneous detection</td>
<td>Cu$^{2+}$</td>
</tr>
</tbody>
</table>

a GQDs: graphene quantum dots; b CQDs: carbon quantum dots; c CDs: carbon dots; d CNPs: carbon nanoparticles; e CPs: carbon particles; f CNSs: carbon nanospheres.

Reference:

