## Plasmonic sensors for the competitive detection of testosterone

H. Yockell-Lelièvre,<sup>*a*</sup> N. Bukar<sup>*a*</sup>, K. S. McKeating<sup>*a*</sup>, M. Arnaud<sup>*b*</sup>, P. Cosin<sup>*b*</sup>, J. Dupret-Carruel<sup>*b*</sup>, B. Mougin<sup>*b*</sup>, and J.-F. Masson<sup>*a*,*c*\*</sup>

Electronic supporting information:

| Table S1. A | nalytical | parameters | for | different | testosterone | bios | ensing | technol | ogy  |
|-------------|-----------|------------|-----|-----------|--------------|------|--------|---------|------|
|             |           | F          |     |           |              |      | 0      |         | - 05 |

| Technique             | Assay format                    | LOD (pM)              | Dynamic range<br>(nM) *             | Ref.         |
|-----------------------|---------------------------------|-----------------------|-------------------------------------|--------------|
| Colorimetric          | Immunofiltration                | 346                   | 0.3 - 3.5                           | 1            |
| Electrochemical       | Direct with cobalt oxide        | 1.6 x 10 <sup>5</sup> | 330 - 2000                          | 2            |
| Electrochemical       | Inhibition competition assay    | 312                   | 1 - 139                             | 3            |
| Electrochemical       | Inhibition competition assay    | 90                    | 0.1 - 139                           | 4            |
| Electrochemical       | Immunoassay                     | 346                   | 4 - 289                             | 5            |
| Fluorescence          | Inhibition competition assay    | 0.7                   | 2 - 277                             | 6            |
| Interference spec.    | Inhibition competition assay    | 243                   | 1.1 - 12                            | 7            |
| Interference spec.    | MIP                             | N/A                   | high nanomolar                      | 8            |
| Radioassay            | MIP competition assay           |                       | 10 <sup>3</sup> - 10 <sup>5</sup>   | 9            |
| SPR                   | Inhibition competition assay    | 13                    | 0.1 - 1                             | 10           |
| SPR                   | MIP                             | 0.0035                | 10 <sup>-6</sup> - 10 <sup>2</sup>  | 11           |
| SPR                   | MIP                             | N/A                   | 10 <sup>-6</sup> - 0.1              | 12           |
| SPR                   | MIP                             | N/A                   | 100 - 5 x 10 <sup>5</sup>           | 13           |
| Stochastic            | Graphene with maltodextrin      | 0.0026                | 10 <sup>-5</sup> - 10 <sup>-2</sup> | 14           |
| Stochastic            | Diamond paste with maltodextrin | 0.001                 | 0.001 - 0.1                         | 15           |
| SPR Competition assay |                                 | 170                   | 0.17 - 34                           | This<br>work |





**Figure S1:** Extinction spectrum of the 15 nm citrate capped gold nanoparticle competitor with varying surface chemistries. A) The addition of an alkyl thiol and peptide SAM followed by the anti-biotin for testosterone binding. B) The addition of a MUAPEG SAM and anti-biotin for testosterone binding.

Figure S2: Optimization of the testosterone-biotin concentration. The LSPR response was measured by reacting 10 ng/mL testosterone with the LSPR sensor modified with anti-testosterone. Then, testosterone-biotin was reacted at different concentrations, followed by Au nanoparticles-MUPEGA-anti-biotin, and the shift was monitored over time for each concentration of testosterone-biotin.





**Figure S3:** Optimization of the concentration of the detection Au nanoparticles-MUPEGA-anti-biotin. The LSPR response was measured in absence of testosterone with the LSPR sensor modified with anti-testosterone. Then, testosterone-biotin was reacted at saturating concentration, followed by Au nanoparticles-MUPEGA-anti-biotin.

## References

- 1. A. V. Zherdev, N. A. Byzova, V. A. Izumrudov and B. B. Dzantiev, *Analyst*, 2003, **128**, 1275-1280.
- S. L. Moura, R. R. de Moraes, M. A. Pereira dos Santos, M. Isabel Pividori, J. A. Dantas Lopes, D. d. L. Moreira, V. Zucolotto and J. R. dos Santos Junior, *Sensors and Actuators B-Chemical*, 2014, 202, 469-474.
- 3. H. Lu, M. P. Kreuzer, K. Takkinen and G. G. Guilbault, *Biosensors & Bioelectronics*, 2007, 22, 1756-1763.
- 4. G. Conneely, M. Aherne, H. Lu and G. G. Guilbault, *Analytica Chimica Acta*, 2007, **583**, 153-160.
- 5. K.-Z. Liang, J.-S. Qi, W.-J. Mu and Z.-G. Chen, *Journal of Biochemical and Biophysical Methods*, 2008, **70**, 1156-1162.
- 6. J. Tschmelak, M. Kumpf, N. Kappel, G. Proll and G. Gauglitz, *Talanta*, 2006, **69**, 343-350.
- 7. S. Rau and G. Gauglitz, *Analytical and Bioanalytical Chemistry*, 2012, 402, 529-536.
- 8. Y. Fuchs, S. Kunath, O. Soppera, K. Haupt and A. G. Mayes, *Advanced Functional Materials*, 2014, **24**, 688-694.
- 9. B. T. S. Bui and K. Haupt, *Journal of Molecular Recognition*, 2011, 24, 1123-1129.
- 10. J. S. Mitchell and T. E. Lowe, *Biosensors & Bioelectronics*, 2009, 24, 2177-2183.
- 11. Q. Zhang, L. Jing, J. Zhang, Y. Ren, Y. Wang, Y. Wang, T. Wei and B. Liedberg, *Analytical Biochemistry*, 2014, **463**, 7-14.
- 12. Q. Wei, T. Wei and X. Wu, *Chemistry Letters*, 2011, **40**, 132-133.
- 13. S. C. Huang, G. B. Lee, F. C. Chien, S. J. Chen, W. J. Chen and M. C. Yang, *Journal of Micromechanics and Microengineering*, 2006, **16**, 1251-1257.
- 14. L. A. Gugoasa, R.-I. Stefan-van Staden, B. Calenic and J. Legler, *Journal of Molecular Recognition*, 2015, **28**, 10-19.
- 15. R.-I. Stefan-van Staden, L. A. Gugoasa, B. Calenic and J. Legler, *Scientific Reports*, 2014, 4.