Supplementary Information

Electrochemical DNA sensor Based on Polyaniline/graphene:
High Sensitivity to DNA Sequences in a Wide Range

Qing Zheng†♀, Hao Wu†♀, Zongxu Shen†♀, Nan Wang†♀, Fang Qi†♀, Yuehui Ma♀,
Weijun Guang†, Rui Yan‡, Quangui Guo‡, Junzhong Wang‡*, Yu Yu†, Kejian Ding‡*

†College of Life sciences and Bioengineering, Beijing Jiaotong University, Beijing
100044, P R China

‡Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy
of Science, Taiyuan, 030001, P R China

§ Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing
100083, P R China

Fig. S1. XRD spectra of few-layer graphene.
Fig. S2. The morphology of the hybrid of polyaniline and graphene. The mass proportions of polyaniline and graphene are 1:2 (a), 1:10 (b), 1:20 (c) and 1:100 (d), respectively. The morphology image of ssDNA and BSA modified electrode on sample a (e).

Fig. S3. AFM image and height profile of G/P and G.
Fig. S4. (a) The UV-vis spectra of the hybrids of polyaniline/graphene at various ratios. The inset refers to the linear relationship of absorbance at the peak of 207 nm and 295 nm and the mass ratio of polyaniline/graphene. (b) The image of the samples before it was diluted.

Fig. S5. Scheme for the synthesis procedures of the electrode
Fig. S6. Nyquist plots for $P/G_{1:1}$, $P/G_{1:100}$

Fig. S7. The plot of $\log C$ against R_{ct} of the complementary DNA fragments (Without BSA self-assemble, PPGN$_{1:1}$ DNA sensor)
Fig. S8. The zeta potential of ss-DNA, BSA modified P/G composites. The mass proportions of polyaniline and graphene are, 1:100, 1:20, 1:10, 1:2 and 1:1, respectively.