Electronic Supplementary Information

A New Type of Biocompatible Fluorescent Probe AFN for Fixed and Live Cell Imaging of Intracellular Lipid Droplets

Ashutosh Sharma,^a Shahida Umar,^a Parmita Kar,^b Kavita Singh,^c

Monika Sachdev,^b and Atul Goel*a,d

^aFluorescent Chemistry Lab, Medicinal and Process Chemistry Division, ^bDivision of Endocrinology ^cElectron Microscopy Unit, CSIR-Central Drug Research Institute, Lucknow 226031, India; Fax: +91-522-2771941; Tel.: +91-522-2772450; e-mail: atul_goel@cdri.res.in ^dAcademy of Scientific and Innovative Research, New Delhi 110001, India

Table of Contents

Photophysical properties with absorption, excitation and emission Spectra of	S2-S3
synthesized azafluorenes and azafluorenone 8-10 in PBS	
Computed TDDFT data and cartesian coordinates of 9 (AFN)	S3-S5
Cell viability assessment of AFN in HeLa cells	S5
Cell viability assessment of AFN in 3T3-L1 adipocytes	S5
Copy of ¹ H and ¹³ C NMR of dyes 8-10	S6-S8

Photophysical properties of Synthesized azafluorenes and azafluorenone 8-10.

Analytical grade DMSO and Triple Distilled Water (TDW) was used for preparing all analytical samples and subsequent dilutions were made using PBS (pH=7.4) to prepare final concentration of 10⁻⁵ M. Absorption, Excitation and Emission spectra were recorded using UV-vis and fluorescence spectrophotometer with slit width of 1.5 nm.

1 able S1: Photophysical data of 8-10 in PBS ($pH=/.4$) and DNIS
--

entry	PBS (pH=7.4)				DMSO					
	$\lambda_{max; abs}$ (nm)	$\lambda_{\max; ex}$ (nm)	$\lambda_{\max; em}$ (nm)	Stokes Shift (nm)	$\Phi_{ m f}^{*}$ (%)	$\lambda_{max; abs}$ (nm)	$\lambda_{\max; ex}$ (nm)	$\lambda_{\max; em}$ (nm)	Stokes Shift (nm)	$\Phi_{ m f}^{*}$ (%)
8	385	382	478	93	2.6	375	380	479	104	31
9	430	429	575	145	2.1	432	428	592	160	17
10	352	351	465	113	1.4	352	356	477	125	18
*Fluorescence quantum yield in water relative to harmine in 0.1 M H ₂ SO ₄ as a standard ($\Phi_f = 45$ %)										

Figure S1. Absorbance spectra of AFN in different solvents.

Excitation spectra of AFN in different solvents.

Emission spectra of AFN in cyclohexane and water.

Cartesian coordinates (Å) of AFN optimized at the B3LYP/6-31G(d,p) using Gaussian 09 package

Energy: -1165.49077516 a.u.

Atom	Х	Y	Ζ
С	-1.47587900	0.27518700	0.00120700
С	-0.92055000	-1.01009100	0.00241400
С	1.29734500	-0.05085400	0.01226500
С	0.72032300	1.26981600	0.00515700
С	-0.67437000	1.43227500	0.00149200
Н	-1.57859800	-1.87189700	-0.00264700
С	2.75971400	0.06364500	0.01250000

С	3.03064500	1.50627600	0.01663100
С	4.27357500	3.41925000	0.00938100
С	3.12259200	4.23159400	-0.00247000
С	1.85997400	3.63646100	-0.00472000
С	1.80295400	2.23918000	0.00331600
Н	5.25773700	3.88387900	0.00818100
Н	3.22776700	5.31117800	-0.00867400
Н	0.96560400	4.24921200	-0.01149900
С	1.00158200	-2.59007600	0.00268700
С	1.31245700	-3.22999600	-1.20769000
С	1.15141400	-3.30022600	1.20402100
С	1.77483500	-4.54848900	-1.21517400
Н	1.19532400	-2.69171100	-2.14408100
С	1.61585100	-4.61805100	1.19643600
Н	0.90949600	-2.81695700	2.14651300
С	1.92985200	-5.24592200	-0.01306700
Н	2.01227900	-5.02921300	-2.15956800
Н	1.72944200	-5.15273800	2.13495700
Н	2.28927700	-6.27083500	-0.01900500
С	-3.62804100	0.48930700	1.26090400
С	-3.61510000	0.48047000	-1.27278500
С	-4.95702300	-0.28280900	1.24239800
Н	-3.81804200	1.56371800	1.41359700
Н	-2.95746500	0.15834800	2.05358300
С	-4.94440100	-0.29031700	-1.26538800
Н	-3.80202300	1.55499900	-1.43237000
Н	-2.93667900	0.14580600	-2.05701400
С	-5.77217300	0.02402200	-0.01657700
Н	-5.50246800	-0.01410100	2.15076200
Н	-4.73942500	-1.35513600	1.29830000
Н	-5.47994400	-0.02698400	-2.18114900
Н	-4.72625600	-1.36295900	-1.31235000
Н	-6.68756400	-0.57503100	-0.01911000
Н	-6.07662500	1.07821900	-0.02143700
Ν	-2.90351100	0.38610600	-0.00188300 S4

Ν	4.24954200	2.08190600	0.02214000
С	-1.28369900	2.72105400	-0.00144400
Ν	-1.81741600	3.75613600	-0.00450800
С	0.46835400	-1.19050700	0.00766000
0	3.61455900	-0.86675300	0.02223000

Figure S2: Cell viability assessment of AFN in HeLa cells

Cell viability assessment of AFN in 3T3-L1 adipocytes.

