Electronic Supplementary Information

Nicking Endonuclease-assisted signal amplification of split molecular aptamer beacon for biomolecules detection using graphene oxide as sensing platform

Xiang Li,^a Xuelian Ding,^b and Jing Fan*a

^a School of Environment, Henan Key Laboratory for Environmental Pollution Control,
Key Laboratory for Yellow River and Huai River Water Environment and Pollution
Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007,
P. R. China

^b Department of Chemistry, Sanquan Medical College, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China

*Address correspondence to Jing Fan, School of Environment, Henan Normal University, Xinxiang, Henan 453007, P. R. China

Tel: +86-373-3325719

Fax: +86-373-3325719

E-mail: fanjing@htu.cn

Table S1. List of the oligonucleotides used

Oligonucleotide	Sequences (from 5' to 3')
Apt 0	5'- DABCYL-GCA GC <u>T ATG TGG GGG TGG ACG T↓CCA</u> GC
	TGC-FAM-3'
Apt 1	5'-GCA GC <u>T ATG TGG GGG TGG ACG T↓CC A</u> GC TGC-FAM-3'
Apt 2	5'-TGG ATA CGG CCG GGT AGA TA-3'
Apt 3	5'-CGA CG <u>A CCT GGG GGA GTA T↓<i>CC G</i></u> CG TCG-FAM -3'
Apt 4	5'-CGG AGC GGA GGA AGG T-3'.

Technique and method	LOD and linear range	ref
fluorescent (peptide)	5 ng/mL, 0-52 nM	S 1
chemiluminescence	19 ng/mL, 0-1 μM	S2
fluorescence	456 ng/mL, 0-300 nM	S3
fluorescence;	0.19 ng/mL, 0-500 pM	S3
Exo-III amplification		
fluorescence polarization	12.1 ng/mL, 0-5 nM	S4
fluorescence	9.5 ng/mL, 0-500 nM	S5
fluorescence;	0.038 ng/mL, 0-200 pM	this study
nicking-enzyme amplification		

Table S2. Comparison of fluorescence methods for determination of $VEGF_{165}$

It should be noted that 1 pM $\,\approx 38 \text{ pg/mL}$

Technique and method	LOD and linear range	real sample	ref
fluorescence; carbon nanotubes	500 nM, 0.8-80 μM	No	S6
fluorescence; graphene oxide nanosheet	2000 nM, 5-2500 μM	cell extraction	S7
fluorescence; MoS ₂ nanosheet	4000 nM, 10-2000 μM	cell extraction	S8
fluorescence; graphene oxide nanosheet	6000 nM, 20-1400 μM	serum sample	S9
fluorescence anisotropy; graphene oxide nanosheet	120 nM; 0.5-250 μM	human serum	S10
fluorescence Exo III- amplification	9.5 nM, 0.01-2 μM	No	S11
colorimetric; Exo III- amplification	0.3 nM, 0.001-0.1 μM	human serum	S12
fluorescence; DNase I- amplification	140 nM, 0.5-50 μM	No	S13
fluorescence; Exo III-amplification molecular aptamer beacon	250 nM, 0.25-20 μM	No	S14
fluorescence ; DNase I-amplification; graphene oxide nanosheet	40 nM, 0.1-1000 μM	No	S15
fluorescence; DNase I- amplification; carbon nanoparticle	0.2 nM, 0 -1000 μM	cell media	S16
fluorescence; nicking-enzyme amplification; graphene oxide nanosheet	4 nM, 10-1000 nM	cell extraction	this study

Table S3. Sensing platforms for the detection of ATP

Scheme S1. Detection of biomolecules by the traditional molecular aptamer beacon method.

Figure S1. The fluorescence emission spectra of Apt 0 + Apt 2 in the absence (black line) and presence (red line) of VEGF₁₆₅. [Apt 0] = [Apt 2] = 20 nM, [VEGF₁₆₅] = 5 nM.

Figure S2. Fluorescence emission of Apt 1 + Apt 2-GO system upon addition of different concentrations of VEGF₁₆₅ in the absence of nicking enzyme. Inset is the relationship of the fluorescence enhancement with VEGF₁₆₅ concentration. The concentration of VEGF₁₆₅ from bottom to top is 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0 nM. [Apt 1] = [Apt 2] = 20 nM, and [GO] = 15 μ g/mL.

Figure S3. The effect of GO concentration on the fluorescence response of the sensing system. [Apt 3] = [Apt 4] = 100 nM, [Nt.CviPII] = 0.4 U/ μ L. F₀ and F are the fluorescence intensity in the absence and the presence of 1 μ M of ATP, respectively. All experiments were performed in the 1×NEBufer 2.

Figure S4. The effect of Nt.CviPII concentration on the signal-to-noise level of the detection system. [Apt 3] = [Apt 4] = 100 nM, [GO] =50 μ g/mL. F and F₀ are the fluorescence intensity of the sensing system with and without 1 μ M of ATP, respectively.

Figure S5. Time course of fluorescence intensities recorded before (black line) and after (red line) the addition of 1 μ M of ATP into the system. [Apt 3] = [Apt 4] = 100 nM, [GO] =50 μ g/mL, [Nt.CviPII] = 0.5 U/ μ L.

Figure S6. Selectivity of the developed sensing system for ATP(1 μ M) against other interfering molecules: UTP, CTP and GTP at 100 μ M. The error bar was calculated from three independent experiments.

References:

- S1. Y. Suzuki, K. Yokoyama. ChemBioChem, 2009, 10, 1793-1795.
- S2. C. I. Stains, J. L. Furman, J. R. Porter, S. Rajagopal, Y. X. Li, R. T. Wyatt, I. Ghosh, ACS Chem. Biol., 2010, 5, 943-952.
- S3. R. Freeman, J. Girsh, A.F. Jou, J. Annie Ho, T. Hug, J. Dernedde, I. Willner, Anal. Chem., 2012, 84, 6192-6198.
- S4. S. E. Wang, Y. Huang, K. Hu, J. N. Tian. S. L. Zhao. Anal. Method, 2014, 6, 62-66.
- S5. S. E. Wang, S. H. Si, Appl. Spectrosc., 2013, 67, 1270-1274.
- S6. S, J. Zhen, L. Q. Chen, S. J. Xiao, Y. F. Li, P. P. Hu, L. Zhan, L. Peng, E. Q. Song, C. Z. Huang, Anal. Chem., 2010, 82, 8432-8437.
- S7. Y. He, Z. G. Wang, H. W. Tang, D. W. Pang. Biosens. Bioelectron., 2011, 29, 76-81.
- S8. J. Ge, E. C. Ou, R. Q. Yu, X. Chu, J. Mater. Chem. B., 2014, 2, 625-628.
- S9. Y. F. Bai, F. Feng, L. Zhao, Z. Z. Chen, H. Y. Wang, Y. L. Duan. Analyst, 2014, 139, 1843-1846.
- S10. J. H. Liu, C. Y. Wang, Y. Jiang, Y. P. Hu, J. S. Li, S. Yang, Y. H. Li, R. H. Yang, W. H. Tan, C. Z. Huang, Anal. Chem., 2013, 85, 1424-1430.
- S11. Y. Y. Xu, J. Xu, Y. Xiang, R. Yuan, Y. Q. Chai, Biosens. Bioelectron., 2014, 51, 293-296.
- S12. X. Gong, J. F. Li, W. J. Zhou, Y. Xiang, R. Yuan, Y. Q. Chai, Anal. Chim. Acta., 2014, 828, 80-84.
- S13. Y. L. Wei, Y. X. Chen, H. H. Li, S. M. Shuang, C. Dong, G. F. Wang, Biosens. Bioelectron., 2015, 63, 311-316.
- S14. X. Q. Liu, R. Freeman, I. Willner, Chem. Eur. J. 2012, 18, 2207-2211.
- S15. C. H. Lu, J. Li, M. M. Lin, Y. W. Wang, H. H. Yang, X. Chen, G. N. Chen, Angew. Chem. Int. Ed., 2010, 49, 8454-8457.
- S16. X. Y. Lin, L. Cui, Y. S. Huang, Y. Lin, Y. Xie, Z. Zhu, B. C.Yin, X. Chen, .Y. ang, Chem. Commun., 2014, 50, 7646-7648.