Supplementary Material

Deformability measurement of red blood cells using microfluidic channel array and air cavity in driving syringe with high throughput and precise detection of subpopulations

Yang Jun Kanga, Young-Ran Hab, and Sang-Joon Leec*

aDepartment of Mechanical Engineering, Chosun University, Gwangju, Republic of Korea

bDivision of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

cDepartment of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

*Address: Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Republic of South Korea. Fax: +82-54-279-3199

*E-mail: sjlee@postech.ac.kr
#1: MOVIE-1: Figure 1C (a microfluidic device)

#2: MOVIE-2: Figure 1D (normal blood)

#MOVIE-3: (Blood cells passing though the microfluidic channel array)

#MOVIE-4: Figure 4A (P. falciparum-infected blood sample)