Supporting Information

Stochastic Detection and Characterisation of Individual Ferrocene Derivative Tagged Graphene Nanoplatelets

Haoyu Wu, a Qianqi Lin, a Christopher Batchelor-McAuley, a Luis Moreira Gonçalves, b Carlos F. R. A. C. Lima, c,d Richard G. Compton* a

a Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK

b LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal

c CIQ, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal

d Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal

*To whom correspondence should be addressed

Email: richard.compton@chem.ox.ac.uk

Phone: +44 (0) 1865 275957 Fax: +44 (0) 1865 275410
Fig. S11 Potential variation of the impact frequency: plot of number of spikes per 20 s scan against potential. Black dots: 1-(biphen-4-yl)ferrocene modified GNP. Blue dots: ferrocene ‘modified’ GNP. Red dots: unmodified GNP.

Fig. S11 shows the number of spikes per 20 s chronoamperometry scan when different potentials are applied to the electrode. The impact frequency exhibits a random distribution. This phenomenon is consistent with the fact that the particle diffusion is independent of the applied potential to the electrode or modification of GNP.