Supporting Information

for

Visual Trace Copper(II) Detection Based on Its Catalytic Action to the Disassociation of Thiosulfate

Xin Yan Hou¹, Shu Chen¹, Jian Tang¹, Yun Fei Long¹*, Li Zhu²*

¹Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China.

²School of Chemistry and Chemical Engineering, Beijin Union University, Beijin, 100101, PR China.

Fig. S1. The relationship of the absorbance at the position of maximum absorption peak and corresponding ΔA of TAg-NPs with the different concentrations of heating temperature. TAg-NPs-Vc-Cu²⁺-Na₂S₂O₃ not be heated (Curve a), TAg-NPs-Vc-Cu²⁺-Na₂S₂O₃ be heated (Curve b), ΔA (Curve c). Different heating temperature (90, 80, 70, 60, 50, 40, 25 °C), cCu²⁺ (0.75 μM), cNa₂S₂O₃ (5.0 μM), pH 6.8.

* Corresponding author. To Y. L. Tel.: +86 731 58388503; fax: +86 731 58372324. E-mail: l_yunfei927@163.com.

* Corresponding author. To Z. L. E-mail: x694200@163.com.
Fig. S2. The relationship of the ΔA at the position of maximum absorption peak of TAg-NPs and different heating time of mixture of Na$_2$S$_2$O$_3$ and Cu$^{2+}$, $c_{\text{Cu}^{2+}}$ (0.75 µM), $c_{\text{Na}_2\text{S}_2\text{O}_3}$ (5.0 µM), pH 6.8, heating at 80 °C, reacted 40 min at room temperature.

Fig. S3. The relationship of the absorbance at the position of maximum absorption peak of TAg-NPs and corresponding ΔA with the different concentrations of Na$_2$S$_2$O$_3$. TAg-NPs/Na$_2$S$_2$O$_3$ (Curve a), TAg-NPs/Cu$^{2+}$/Na$_2$S$_2$O$_3$ (Curve b), ΔA (Curve c). Different concentrations of Na$_2$S$_2$O$_3$ (10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 µM), $c_{\text{Cu}^{2+}}$ (0.75 µM), pH 6.8, heating temperature 80 °C, heating 30 min and then reacted with TAg-NPs for 40 min at room temperature.
Fig. S4. The relationship of the absorbance at the position of maximum absorption peak of TAg-NPs, and corresponding ΔA with the different pH. TAg-NPs-$\text{Na}_2\text{S}_2\text{O}_3$ (Curve a), TAg-NPs-Cu^{2+}-$\text{Na}_2\text{S}_2\text{O}_3$ (Curve b), ΔA (Curve c). Britton–Robinson buffer solutions with pH were individually 1.81, 2.87, 3.78, 4.35, 5.72, 6.8, 7.96, 8.69, 9.62, 10.88, and 11.82, $c_{\text{Cu}^{2+}}$ (0.75 µM), $c_{\text{Na}_2\text{S}_2\text{O}_3}$ (5.0 µM), heating temperature 80 °C, heating time 30 min and then reacted with TAg-NPs for 40 min at room temperature.

Fig. S5. The relationship of the ΔA at the position of maximum absorption peak of TAg-NPs and different reaction time, $c_{\text{Cu}^{2+}}$ (0.1 µM), $c_{\text{Na}_2\text{S}_2\text{O}_3}$ (5.0 µM), pH 6.8, heating temperature 80 °C, heating time 25 min, then reacted with TAg-NPs for different time at room temperature.
Table S1 Comparison of the sensitivity for copper ion detection in recent spectral methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>probe</th>
<th>Linear range(μM)</th>
<th>Detection limit(μM)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence</td>
<td>Copper/Silver Nanoclusters</td>
<td>0.005-0.2</td>
<td>0.0027</td>
<td>[1]</td>
</tr>
<tr>
<td>Absorption/colorimetry</td>
<td>Gold nanorods</td>
<td>0.05-1000</td>
<td>0.05</td>
<td>[2]</td>
</tr>
<tr>
<td>Absorption/colorimetry</td>
<td>Gold nanorods</td>
<td>0.01-0.3</td>
<td>0.00496</td>
<td>[3]</td>
</tr>
<tr>
<td>Absorption</td>
<td>Chromotrope 2R complex</td>
<td>0.005-1.0</td>
<td>0.0015</td>
<td>[4]</td>
</tr>
<tr>
<td>Absorption/colorimetry</td>
<td>TAg-NPs</td>
<td>0.0025-0.75/0.025-0.75</td>
<td>0.001</td>
<td>This work</td>
</tr>
</tbody>
</table>

Reference: