Magnetically tuneable piezoresistive sensor for direct, \textit{in situ} strain measurement in Li-ion batteries

J. Matthew Kaule, Lance R. Hoffman, Hitomi Mukaibo

a Department of Chemical Engineering, University of Rochester, U.S.A.

b Materials Science Program, University of Rochester, U.S.A.

Supplementary Information

Ohmic response of the PRM sample

![I-V curve](image)

Linear fit: $y = 0.78 + 620x$

$R^2 = 0.99995$

Fig. S1 I-V curve of the c-PRM sample with 33 wt % Ni under zero strain. The PRM had been infiltrated with 1 M LiClO$_4$/EC + PC electrolyte prior to the experiment. Black dots are the data and the red line is the linear fit to the data.

Gauge Factor calculation

Gauge factor, Γ, was calculated using the equation1:

$$\Gamma = -G(1 - 2\nu) - (1 + 2\nu)$$

Where ν is Poisson’s ratio (~ 0.35 for polymer composites) and G is the slope of the plots below.
Fig. S2 Logarithm of resistance versus the strain. The dotted lines are fitted linear lines used to calculate the G value.

X-ray diffraction of Sn before and after lithiation

Fig. S3 X-ray diffraction data of the 2-mm thick Sn foil (a) before and (b) after lithiation to 0.01 V. The Sn was lithiated at 0.5 mA/g Sn using Li counter electrode and 1 M LiClO$_4$/EC + PC electrolyte. Data comparison with JCPDS cards indicate that additional peaks in lithiated Sn can be attributed to multiple Li$_x$Sn$_y$ phases.

Reference