Electronic Supplementary Information for

1,8-Naphthyridinic fluorescent ‘turn-on’ and ‘turn-off’
chemosensors for detecting of F\(^{-}\) and Hg\(^{2+}\) mimicking INHIBIT
molecular logic behaviour

Mandeep K. Chahal and Muniappan Sankar*
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee – 247667, India
E-mail: sankafcy@iitr.ac.in

Table of Contents

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>(^{1})H NMR spectrum of 1a in CDCl(_{3}).</td>
<td>3</td>
</tr>
<tr>
<td>S2</td>
<td>HRMS (ESI+) mass spectrum of 1a in CH(_{3})CN.</td>
<td>3</td>
</tr>
<tr>
<td>S3</td>
<td>FT-IR spectrum of 1a in KBr pellet.</td>
<td>4</td>
</tr>
<tr>
<td>S4</td>
<td>(^{1})H-NMR spectrum of 1b in CDCl(_{3}).</td>
<td>4</td>
</tr>
<tr>
<td>S5</td>
<td>HRMS (ESI+) spectrum of 1b in CH(_{3})CN.</td>
<td>5</td>
</tr>
<tr>
<td>S6</td>
<td>UV-Visible spectral changes of receptor 1a (40 (\mu)M) upon addition of different anions (4 eq.) in CH(_{3})CN at 298 K.</td>
<td>5</td>
</tr>
<tr>
<td>S7</td>
<td>Colorimetric naked eye detection upon addition of 4 eq. of F(^{-}) ions.</td>
<td>6</td>
</tr>
<tr>
<td>S8</td>
<td>UV-Vis spectra of 1a (40 (\mu)M), after the addition of F(^{-}) ions (120 (\mu)M) and strong base TBAOH (80 (\mu)M).</td>
<td>6</td>
</tr>
<tr>
<td>S9</td>
<td>FL spectra of 1a (40 (\mu)M), after the addition of F(^{-}) ions (120 (\mu)M) and strong base TBAOH (80 (\mu)M) supporting the deprotonation of amide NH-proton.</td>
<td>7</td>
</tr>
<tr>
<td>S10</td>
<td>Overlay of NMR spectrum of 1a with F(^{-}) ions.</td>
<td>7</td>
</tr>
<tr>
<td>S11</td>
<td>Absorption spectra of receptor 1b (4 (\times) 10(^{-5}) M) upon addition of 3 eq. of TBA salt of different anions in CH({3})CN (X(^{-}) = Cl(^{-}), Br(^{-}), PF({6})(^{-}), ClO({4})(^{-}), I(^{-}), HSO({4})(^{-}), NO({3})(^{-}) and BF({4})(^{-})).</td>
<td>8</td>
</tr>
<tr>
<td>S12</td>
<td>Fluorescence spectra of 1b (4 (\times) 10(^{-5}) M) in the absence and presence of 3 eq. of TBA salt of different anions in CH({3})CN medium (X(^{-}) = CH({3})COO(^{-}), H({2})PO({4})(^{-}), Cl(^{-}), Br(^{-}), I(^{-}), HSO({4})(^{-}), PF({6})(^{-}), ClO({4})(^{-}), BF({4})(^{-}) and NO(_{3})(^{-})).</td>
<td>8</td>
</tr>
<tr>
<td>S13</td>
<td>Absorption spectra of 1b (4.0 (\times) 10(^{-5}) M) in presence of varying concentration of F(^{-}) (0 to 1.60 (\times) 10(^{-4}) M) in CH(_{3})CN medium. Inset: Benesi-Hildebrand plot of 1b with F(^{-}) ion when monitoring absorbance changes at 378 nm show the 1:1 stoichiometry.</td>
<td>9</td>
</tr>
</tbody>
</table>
Figure S14. Emission spectral responses of 1b (4.0 × 10⁻⁵ M) towards varying [F⁻] (0 to 1.6 × 10⁻⁴ M) in CH₃CN. Inset: Good linear fit of Benesi-Hildebrand plot confirms the 1:1 binding stoichiometry using λ_exc = 240/328 nm and λ_mon = 463 nm. Slit width 5 nm.

Figure S15. UV-Visible spectra of 2 (40 µM) (black line), and after the addition of F⁻ ion (120 µM) (red line) in CH₃CN.

Figure S16. HRMS (ESI-) mass spectra of (1:1) complex of 1a and fluoride ion.

Figure S17. HRMS (ESI+) mass spectrum of (1:1) complex of 1a and fluoride ion.

Figure S18. DFT-optimized structures of 1b along with its fluoride complex in Gas phase and in CH₃CN calculated at B3LYP/6-311+G(2df,2p) level of theory.

Figure S19. HOMO-LUMO energy gaps for 1a and 1a+F⁻ complex in gas phase and CH₃CN.

Figure S20. HOMO-LUMO energy gap for 1b and 1b+F⁻ complex in gas phase and CH₃CN.

Figure S21. Pictorial view of frontier molecular orbitals of 1a.

Figure S22. Pictorial view of frontier molecular orbitals of 1a+F⁻

Figure S23. The experimental absorption spectra (a) 1a (b) 1a+F⁻ which were compared with TD-DFT calculated absorption spectral features.

Figure S24. HRMS (ESI+) mass spectra of (1:1) complex of 1a and Hg²⁺ ion.

Figure S25. Absorbance of 1a in CH₃CN, normalized between the minimum absorbance was found at zero equiv of F⁻ and the maximum absorbance was found at 4.0 eq. of F⁻.

Figure S26. Normalized response of fluorescence signal to changing F⁻ concentrations for 1a.

Figure S27. Normalised response of fluorescence signal to changing Hg²⁺ concentrations for 1a.

Figure S28. UV-Vis absorption changes (a) after addition of 4 equivalents and (b) excess of F⁻ ions, respectively with 1a and its regeneration upon addition of protic solvents such as methanol.

Figure S29. UV-Vis absorption changes (a) after addition TBAOH (b) Et₃N, respectively with 1a.
Table S1. Computed vertical excitation wavelength and their orbital contribution using B3LYP/6-311+G(2df, 2p)

Scheme S1. Schematic representation of binding events while adding 4 equivalents of F⁻ ions to 1a and its regeneration upon addition of protic solvents such as methanol.

Figure S1. ¹H NMR spectrum of 1a in CDCl₃.

Figure S2. HRMS (ESI+) mass spectrum of 1a in CH₃CN.
Figure S3. FT-IR spectrum of 1a in KBr pellet.

Figure S4. 1H-NMR spectrum of 1b in CDCl$_3$.
Figure S5. HRMS (ESI+) spectrum of 1b in CH₃CN.

Figure S6. UV-Visible spectral changes of receptor 1a (40 μM) upon addition of different anions (4 eq.) in CH₃CN at 298 K.
Figure S7. Colorimetric naked eye detection upon addition of fluoride ions in CH$_3$CN.

Figure S8. UV-Vis spectra of 1a (40 µM), after the addition of F$^-$ ion (120 µM) and strong base TBAOH (80 µM).
Figure S9. The fluorescence spectra of 1a (40 µM), and after the addition of F⁻ (120 µM) and TBAOH (80 µM) supporting the deprotonation of amide NH-proton.

Figure S10. Overlay of NMR spectra of 1a (0.01 M) in presence and absence of 4 equivalents of F⁻ ions in CDCl₃ at 298 K.
Figure S11. Absorption spectra of receptor 1b (4 x 10^{-5} M) upon addition of 3 eq. of TBA salt of different anions in CH_3CN (X^- = Cl^-, Br^-, PF_6^-, ClO_4^-, I^-, ClO_3^-, HSO_4^-, NO_3^- and BF_4^-).

Figure S12. Fluorescence spectra of 1b (4 x 10^{-5} M) in the absence and presence of 3 eq. of TBA salt of different anions in CH_3CN medium (X^- = CH_3COO^-, H_2PO_4^-, Cl^-, Br^-, I^-, HSO_4^-, PF_6^-, ClO_4^-, BF_4^- and NO_3^-).
Figure S13. Absorption spectra of 1b (4.0 × 10⁻⁵ M) in presence of varying concentration of F⁻ (0 to 1.60 × 10⁻⁴ M) in CH₃CN medium. Inset: Benesi-Hildebrand plot of 1b with F⁻ ion when monitoring absorbance changes at 378 nm show the 1:1 stoichiometry.

Figure S14. Emission spectral responses of 1b (4.0 × 10⁻⁵ M) towards varying [F⁻] (0 to 1.6 × 10⁻⁴ M) in CH₃CN. Inset: Good linear fit of Benesi-Hildebrand plot confirms the 1:1 binding stoichiometry using λ_ext = 240 nm and λ_mon = 463 nm. Slit width 5 nm.
Figure S15. UV-Visible spectra of 2 (40 µM) (black line), and after the addition of F⁻ ion (120 µM) (red line) in CH₃CN.

Figure S16. HRMS (ESI-) mass spectra of (1:1) complex of 1a and fluoride ion.
Figure S17. HRMS (ESI+) mass spectrum of (1:1) complex of 1a and fluoride ion.

Gas Phase

CH3CN
Figure S18. DFT-optimized structures of 1b along with its fluoride complex in Gas phase and in CH₃CN calculated at B3LYP/6-311+G(2df,2p) level of theory.

Figure S19. HOMO-LUMO energy gaps for 1a and 1a+F⁻ complex in gas phase and CH₃CN.

Figure S20. HOMO-LUMO energy gap for 1b and 1b+F⁻ complex in gas phase and CH₃CN.
Figure S21. Pictorial view of frontier molecular orbitals of 1a

Figure S22. Pictorial view of frontier molecular orbitals of 1a+F⁻.
Figure S23. The experimental absorption spectra (a) 1a (b) 1a+F− which were compared with TD-DFT calculated absorption spectral features.

Table S1. Computed vertical excitation wavelength and their orbital contribution using B3LYP/6-311+G(2df,2p).

<table>
<thead>
<tr>
<th></th>
<th>λ_{abs}, nm</th>
<th>f^a</th>
<th>assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>306.7</td>
<td>0.2089</td>
<td>HOMO → LUMO (90%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO-2→ LUMO+1 (5%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO-4→ LUMO+1 (3%)</td>
</tr>
<tr>
<td></td>
<td>269.5</td>
<td>0.0143</td>
<td>HOMO-2→ LUMO (68%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO → LUMO+1 (15%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO-4→ LUMO (14%)</td>
</tr>
<tr>
<td>1a.F−</td>
<td>369.3</td>
<td>0.1926</td>
<td>HOMO→ LUMO (94%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO → LUMO+2 (3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO-3 → LUMO+2 (2%)</td>
</tr>
<tr>
<td></td>
<td>297.1</td>
<td>0.2588</td>
<td>HOMO→ LUMO+2 (85%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO-3 → LUMO (9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO→ LUMO (2%)</td>
</tr>
</tbody>
</table>

^aoscillator strength

Note:

Δλ = 63 nm (Theoretically) for 1a to 1a+F−

Δλ = 69 nm (Experimentally) for 1a to 1a+F−

The electronic spectral data obtained through computational studies are in close agreement with experimental data.
Figure S24. HRMS (ESI+) mass spectra of (1:1) complex of 1a and Hg$^{2+}$ ion.

Figure S25. Absorbance of 1a in CH$_3$CN, normalized between the minimum absorbance was found at zero equiv of F$^-$ and the maximum absorbance was found at 4.0 eq. of F$^-$.

\[y = 1.1261x + 5.2226 \]
\[R^2 = 0.9614 \]
Figure S26. Normalized response of fluorescence signal to changing F^- concentrations for 1a.

\[
y = 1.4763x + 6.698 \\
R^2 = 0.9359
\]

Figure S27. Normalized response of fluorescence signal to changing Hg^{2+} concentrations for 1a.

\[
y = 0.3856x + 2.4981 \\
R^2 = 0.9584
\]
Scheme S1. Schematic representation of binding events while adding 4 equivalents of F⁻ ions to 1a and its regeneration upon addition of protic solvents such as methanol.

Figure S28. UV-Vis absorption changes (a) after addition of 4 equivalents and (b) excess of F⁻ ions, respectively with 1a and its regeneration upon addition of protic solvents such as methanol.

Figure S29. UV-Vis absorption changes (a) after addition TBAOH (b) Et₃N, respectively with 1a.