Supporting Information

Electrochemical sensor based on polyaniline-modified SnO\textsubscript{2} nanocomposite for ethephon detection

Zhihong Zhanga,b,*, Shuyong Zhaib, Minghua Wanga, Linghao Heb, Donglai Pengb, Shunli Liub, Yanqin Yanga, Shaoming Fanga,b, Hongzhong Zhanga,b,*

aHenan Collaborative Innovation Center of Environmental Pollution Control and Ecological Resoration,

bHenan Provincial Key Laboratory of Surface and Interface Science,

Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou 450001, P. R. China.

E-mail addresses: mainzhh@163.com or zhz@zzuli.edu.cn
1. EIS Nyquist plots and equivalent circuit

The EIS spectra were analyzed using the software Zview2, a nonlinear least-square was used to fit and determine the parameters of the elements in an equivalent circuit (Fig. S1). The Randles equivalent circuit consisting of solution resistance (R_s), charge-transfer resistance (R_{ct}), constant-phase element (CPE), and Warburg impedance (W_o) was inset of Fig. S1.

![EIS Nyquist plots and equivalent circuit](image)

Fig. S1 EIS Nyquist plots and equivalent circuit

2. Chemical elements of SnO$_2$@PANI and SnO$_2$@PANI- ethephon

Table S1 Atomic % in SnO$_2$@PANI and SnO$_2$@PANI- ethephon

<table>
<thead>
<tr>
<th>Samples</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C 1s</td>
</tr>
<tr>
<td>SnO$_2$@PANI</td>
<td>60.33</td>
</tr>
<tr>
<td>SnO$_2$@PANI+ethephon</td>
<td>43.1</td>
</tr>
</tbody>
</table>

3. N$_2$ adsorption /desorption measurements
The N\textsubscript{2} adsorption–desorption isotherms of SnO\textsubscript{2}@PANI sample is presented in Fig. S2. According to the BET analysis, the specific surface area of the composite material was obtained as 14.332 m2/g.

![N\textsubscript{2} adsorption and desorption isotherm of SnO\textsubscript{2}@PANI nanocomposite.](image)

Fig. S2 (a) N\textsubscript{2} adsorption and desorption isotherm of SnO\textsubscript{2}@PANI nanocomposite.

4. Other interferences

![ΔR\textsubscript{ct} values for ethephon detection](image)

Fig. S3 ΔR\textsubscript{ct} values for the ethephon detection in the absence (a) and presence of 3 ng/mL of glucose (b), citric acid (c), oxalic acid (d), PO\textsubscript{4}3− (e), SO\textsubscript{4}2− (f), NO\textsubscript{3}− (g), Cu2+ (h), Fe3+ (i), Pb2+ (j), Hg2+ (k), methyl parathion (l), carbofuran (m), and p-nitrophenol (n).