Table S1. 13C chemical shifts of sugarsa in artificial mixture (bold) and in honey (italics). The numbering system is shown in Fig. 1.

<table>
<thead>
<tr>
<th>Sugar</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C1'</th>
<th>C2'</th>
<th>C3'</th>
<th>C4'</th>
<th>C5'</th>
<th>C6'</th>
<th>C1''</th>
<th>C2''</th>
<th>C3''</th>
<th>C4''</th>
<th>C5''</th>
<th>C6''</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monosaccharides</td>
<td></td>
</tr>
<tr>
<td>α-D-glycopyranose (1α-GP)</td>
<td>92.66</td>
<td>72.05</td>
<td>73.34</td>
<td>70.22</td>
<td>71.99</td>
<td>61.17</td>
<td></td>
</tr>
<tr>
<td>β-D-glycopyranose (1β-GP)</td>
<td>96.47</td>
<td>74.70</td>
<td>76.32</td>
<td>70.17</td>
<td>76.30</td>
<td>61.33</td>
<td></td>
</tr>
<tr>
<td>α-D-fructopyranose (2α-FP)</td>
<td>65.74</td>
<td></td>
<td>71.03</td>
<td>71.03</td>
<td>61.70</td>
<td></td>
</tr>
<tr>
<td>β-D-fructopyranose (2β-FP)</td>
<td>64.46</td>
<td>98.63</td>
<td>68.13</td>
<td>70.25</td>
<td>69.77</td>
<td>63.92</td>
<td></td>
</tr>
<tr>
<td>α-D-fructofuranose (2α-FF)</td>
<td>63.48</td>
<td>104.99</td>
<td>82.54</td>
<td>76.61</td>
<td>81.86</td>
<td>61.66</td>
<td></td>
</tr>
<tr>
<td>β-D-fructofuranose (2β-FF)</td>
<td>63.24</td>
<td>102.06</td>
<td>75.95</td>
<td>74.98</td>
<td>81.23</td>
<td>62.94</td>
<td></td>
</tr>
<tr>
<td>Disaccharides</td>
<td></td>
</tr>
<tr>
<td>α-D-maltose (3α-GP)</td>
<td>100.18</td>
<td>72.30</td>
<td>73.40</td>
<td>69.89</td>
<td>73.21</td>
<td>61.05</td>
<td>92.42</td>
<td>71.84</td>
<td>73.77</td>
<td>77.49</td>
<td>70.49</td>
<td>61.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-D-maltose (3β-GP)</td>
<td>100.13</td>
<td>72.22</td>
<td>73.40</td>
<td>69.89</td>
<td>73.21</td>
<td>61.06</td>
<td>96.31</td>
<td>74.54</td>
<td>76.74</td>
<td>77.28</td>
<td>75.09</td>
<td>61.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-D-isomaltose (4α-GP)</td>
<td>98.55</td>
<td>72.09</td>
<td>73.60</td>
<td>70.08</td>
<td>72.38</td>
<td>61.07</td>
<td>92.76</td>
<td>72.00</td>
<td>73.57</td>
<td>70.13</td>
<td>70.61</td>
<td>66.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-D-isomaltose (4β-GP)</td>
<td>98.51</td>
<td>72.05</td>
<td>73.63</td>
<td>70.08</td>
<td>72.35</td>
<td>61.04</td>
<td>96.66</td>
<td>74.63</td>
<td>76.54</td>
<td>69.94</td>
<td>74.87</td>
<td>66.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-D-nigerose (5α-GP)</td>
<td>99.63</td>
<td>72.20b</td>
<td>73.46</td>
<td>70.00</td>
<td>72.32b</td>
<td>60.94</td>
<td>92.80</td>
<td>70.67</td>
<td>80.17</td>
<td>70.59</td>
<td>71.76</td>
<td>60.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccharide Type</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>β-D-nigerose (5β-GP)</td>
<td>99.53 72.20b 73.44 69.86 72.29b 60.94 96.53 73.40 82.69 70.61 76.21 61.10</td>
<td></td>
</tr>
<tr>
<td>Sucrose (6β-FF)</td>
<td>92.72 71.61 73.11 69.76 72.94 60.66 61.88 104.23 76.94 74.53 81.91 62.91</td>
<td></td>
</tr>
<tr>
<td>turanose (7α-FF)</td>
<td>97.41 71.76 73.44 69.88 72.80 60.84 63.28 104.81 85.33 75.06 82.07 61.57</td>
<td></td>
</tr>
<tr>
<td>Turanose (7β-FF)</td>
<td>99.03 71.98 73.23 69.88 72.88 60.84 63.40 102.25 81.07 74.90 81.40 62.84</td>
<td></td>
</tr>
<tr>
<td>turanose (7β-PP)</td>
<td>101.49 72.58 73.44 69.88 73.30 61.02 64.60 98.28 77.22 70.85 69.64 63.92</td>
<td></td>
</tr>
<tr>
<td>maltulose (8α-FF)</td>
<td>98.27 71.74 73.31 69.97 72.97 60.97 63.20 105.81 80.63 82.72 81.69 61.90</td>
<td></td>
</tr>
<tr>
<td>maltulose (8β-FF)</td>
<td>98.86 71.77 73.27 69.97 72.94 60.94 62.91 102.49 75.77 81.75 80.54 63.27</td>
<td></td>
</tr>
<tr>
<td>maltulose (8β-PP)</td>
<td>101.08 72.36 73.41 70.16 72.87 61.10 64.32 98.86 67.45 78.59 69.74 64.01</td>
<td></td>
</tr>
</tbody>
</table>

Trisaccharides

<table>
<thead>
<tr>
<th>Saccharide Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erllose (9β-FF)</td>
</tr>
<tr>
<td>a-D-maltotriose (10α-GP)</td>
</tr>
<tr>
<td>β-D-maltotriose (10β-GP)</td>
</tr>
<tr>
<td>a-D-isomaltotriose (11α-GP)</td>
</tr>
<tr>
<td>β-D-isomaltotriose (11β-GP)</td>
</tr>
<tr>
<td>a-D-panose (12α-GP)</td>
</tr>
<tr>
<td>β-D-panose (12β-GP)</td>
</tr>
<tr>
<td>Chemical Shifts (ppm)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*the tautomeric form of the reducing sugar is denoted in parentheses.

Chemical shifts may be interchanged
Table S2. Assignment of the carbon resonances in the five 13C NMR subspectra of Fig. S3a to S3e.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Tautomera,b</th>
<th>Signal</th>
<th>Tautomer</th>
<th>Signal</th>
<th>Tautomer</th>
<th>Signal</th>
<th>Tautomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2αFF2, 2αFP2</td>
<td>15</td>
<td>5βGP1, 5αGP1</td>
<td>29</td>
<td>7αFF3</td>
<td>43</td>
<td>12βGP$^{4''}$, 10βGP$^{4''}$</td>
</tr>
<tr>
<td>2</td>
<td>7αFF2</td>
<td>16</td>
<td>7βFF1</td>
<td>30</td>
<td>13αGP3</td>
<td>44</td>
<td>10βGP$^{4''}$, 10αGP4, 9βFF4, 3βGP4, 3αGP4</td>
</tr>
<tr>
<td>3</td>
<td>9βFF$^{2''}$, 6βFF3</td>
<td>17</td>
<td>12βGP1, 12αGP1, 8βFP2, 8βFF3, 2βFP2, 11βFP2</td>
<td>31</td>
<td>8αFF3, 5βGP3</td>
<td>45</td>
<td>14βFF3, 14βFF3, 7βFP3</td>
</tr>
<tr>
<td>4</td>
<td>13αGP$^{2''}$, 12βGP$^{2''}$, 13αGP$^{2''}$, 14βFF2</td>
<td>18</td>
<td>11αGP3, 4αGP1</td>
<td>32</td>
<td>2αFF3, 2αGP3</td>
<td>46</td>
<td>6βFF3</td>
</tr>
<tr>
<td>5</td>
<td>13αGP$^{2''}$, 14βFF2</td>
<td>19</td>
<td>11βGP$^{1''}$, 11αGP1, 8αFF3, 7βFP3, 4βGP1</td>
<td>33</td>
<td>7αFF5, 6βFF5</td>
<td>47</td>
<td>12βGP3</td>
</tr>
<tr>
<td>6</td>
<td>8βFF$^{2''}$</td>
<td>20</td>
<td>7αFF1</td>
<td>34</td>
<td>9βFF$^5''$</td>
<td>48</td>
<td>3βGP3</td>
</tr>
<tr>
<td>7</td>
<td>7βFF1</td>
<td>21</td>
<td>11βGP$^{1''}$, 4βGP1, 1αGP1</td>
<td>35</td>
<td>14βFF$^5''$, 2αFF5</td>
<td>49</td>
<td>4βGP3, 2αFP4, 2αFF4</td>
</tr>
<tr>
<td>8</td>
<td>2βFF2</td>
<td>22</td>
<td>5βGP1, 1βGP1</td>
<td>36</td>
<td>13αGP$^{5''}$, 14βFF$^5''$, 8βFF4, 8αFF$^5''$</td>
<td>50</td>
<td>10αGP$^4''$, 1βGP5, 1βGP3</td>
</tr>
<tr>
<td>9</td>
<td>7βFP1</td>
<td>23</td>
<td>12βGP$^{1''}$, 10βGP$^{1''}$, 3βGP$^{1''}$</td>
<td>37</td>
<td>7βFP3</td>
<td>51</td>
<td>10βGP$^{3''}$</td>
</tr>
<tr>
<td>10</td>
<td>8βFP1</td>
<td>24</td>
<td>11αGP$^{2''}$</td>
<td>38</td>
<td>2βFF3, 2αFP5</td>
<td>52</td>
<td>5βGP$^5''$</td>
</tr>
<tr>
<td>11</td>
<td>13αGP1</td>
<td>25</td>
<td>14βFF1</td>
<td>39</td>
<td>7βFP3</td>
<td>53</td>
<td>2βFF3</td>
</tr>
<tr>
<td>12</td>
<td>12αGP1, 10βGP1, 9βFF3, 10αGP$^1''$</td>
<td>26</td>
<td>10αGP$^{1''}$, 6βFF1, 5αGP1, 4αGP1, 3αGP1</td>
<td>40</td>
<td>8βFF5, 8αFF4</td>
<td>54</td>
<td>8βFF3</td>
</tr>
<tr>
<td>13</td>
<td>12βGP$^{3''}$</td>
<td>27</td>
<td>12αGP$^{1''}$, 9βFF1</td>
<td>41</td>
<td>8βFP4, 5αGP3</td>
<td>55</td>
<td>12αGP$^{5''}$</td>
</tr>
<tr>
<td>14</td>
<td>10βGP3, 10αGP3, 3βGP1, 3αGP1</td>
<td>28</td>
<td>13αGP1</td>
<td>42</td>
<td>12αGP$^{4''}$</td>
<td>56</td>
<td>10βGP$^{5''}$, 7αFF3, 3βGP$^{5''}$</td>
</tr>
<tr>
<td>Signal</td>
<td>Tautomer</td>
<td>Signal</td>
<td>Tautomer</td>
<td>Signal</td>
<td>Tautomer</td>
<td>Signal</td>
<td>Tautomer</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>57</td>
<td>14βFF⁴',2βFF⁵</td>
<td>69</td>
<td>13αGP²,12βGP⁵,12αGP⁵,11βGP⁵',11αGP²,10βGP²,10αGP²,8βFP⁵',5βGP⁵,5βGP⁴,4αGP⁵,4βGP⁵',3αGP²,5αGP³,5αGP²</td>
<td>81</td>
<td>12βGP⁴',12αGP⁴,11βGP⁴,11αGP⁴,1αGP⁴</td>
<td>93</td>
<td>8βFP⁵',8αFF¹',2βFP⁶</td>
</tr>
<tr>
<td>58</td>
<td>11βGP⁵',4βGP⁵</td>
<td>70</td>
<td>12βGP²,12αGP²,10αGP²',5βGP²',3βGP²</td>
<td>82</td>
<td>13αGP⁴,13αGP⁴,11βGP⁴',11αGP⁴,11αGP⁴,8βFP⁵,4αGP⁴,4βGP⁴,4αGP⁴,1βGP⁵</td>
<td>94</td>
<td>7βFP⁵',7βFP⁵',2αF¹</td>
</tr>
<tr>
<td>59</td>
<td>12αGP²,11βGP²',11αGP²',4βGP²',1βGP²</td>
<td>71</td>
<td>13αGP²,12αGP²,12αGP²,11βGP²',11αGP²,11αGP²',11αGP²,10αGP²,6βFF⁵',1αGP²,1αGP²,4αGP²,4βGP²</td>
<td>83</td>
<td>12αGP⁴,12αGP⁴,11βGP⁴',10βGP⁴,10αGP⁴,9βFP⁴,8αFF⁴,8βFP⁴,7αFF⁴,7βFP⁴,5βGP⁴,4βGP⁴,3βGP⁴,3αGP⁴</td>
<td>95</td>
<td>8βFP⁶',7αFF⁶',2βF¹</td>
</tr>
<tr>
<td>60</td>
<td>14βFF⁴,12βGP²',11βGP²',10βGP²',9βFF⁴,6βFF⁴,3βGP²</td>
<td>72</td>
<td>11βGP²',11αGP²,7βFP²,4αGP²</td>
<td>84</td>
<td>14βFF⁴,8βFP⁵,7βFP⁵,7βFP⁴,6βFP⁵,2βFP⁵'</td>
<td>96</td>
<td>14βFF⁶',9βFP⁵',7βFP⁵',6βFF⁶',2βFP⁵'</td>
</tr>
<tr>
<td>61</td>
<td>13αGP²,12αGP⁵',11αGP²,10βGP³,10αGP³,10αGP³,3αGP²</td>
<td>73</td>
<td>12βGP²,12αGP²,3αGP²</td>
<td>85</td>
<td>2βFP³</td>
<td>97</td>
<td>13αGP²',14βFP⁶',7βFP⁵</td>
</tr>
</tbody>
</table>

Notes:
- The table lists various combinations of tautomers, likely referring to different chemical or biological states.
- The entries under 'Tautomer' include combinations of Greek letters and numbers, which might represent specific chemical compositions or categories.

Additional Information:
- The table appears to be a scientific or technical reference, possibly related to biochemistry or a similar field, given the presence of Greek letters and chemical symbols.
| 62 | 13αGP^ε,12βGP^ε,12αGP^ε,12βGP^ε,11αGP^ε,11βGP^ε,11αGP^p,10βGP^p,10αGP^ε,9βFP^p,4αGP^p,4αGP^ε | 74 | 14βFF³,8αFF³,8βFF³,7αFF³,5αGP^ε | 86 | 8βFP^ε | 98 | 13αGP^ε |
| 63 | 13αGP^ε,14βFF³,9βFF^ε,8βFP³,7αFF³,7βFP^p,3βGP^p,3αGP^p | 75 | 9βFF³,6βFF² | 87 | 11βGP^ε | 99 | 9βFF^ε,8αFF^ε,8βFFⁿ,6βFFⁿ,2αFP^ε |
| 64 | 8βFF³,8αFF³,7βFP^p,5βGP^p,1αGP^p | 76 | 13αGP^ε | 88 | 12βGP^ε,12αGP^ε | 100 | 7αFF^ε,7αFP^ε,2αFP^p,2αFP^ε |
| 65 | 10βGP^ε,9βFF³,10αGP^p,7βFF^p,3βGP^p,3αGP^p | 77 | 9βFF² | 89 | 11αGP^ε,4αGP^ε | 101 | 14βFFⁿ,12βGP^ε,3βGP^ε,1βGP^p |
| 66 | 6βFF³ | 78 | 10βGP^ε,10βGP^p,10αGP^ε,9βFF^ε,7βFP^p | 90 | 4βGP^ε | 102 | 13αGP^ε,12αGP^ε,10βGP^ε,5βGP^ε,3αGP^p |
| 67 | 14βFF³,9βFF^ε,8αFF³,8βFF^ε,7βFF^ε | 79 | 11βGP^ε,11αGP^ε,9βFF^ε,10αGP^ε,5βGP^ε,5αGP^p,4αGP^ε,3αGP^ε | 91 | 2βFP^ε | 103 | 13αGP^ε,14βFFⁿ,12αGP^ε,12αGP^p,11βGP^p,11αGP^ε,10βGP^ε,10βGP^p,10βGP^ε,10αGP^ε,10αGP^p,9βFP^p,8βFP^p,8αFP^p,8βFF^ε,7βFP^p,7βFP^ε,5βGP^p,5αGP^ε,4αGP^p,4αGP^p,3βGP^p,3αGP^p,1αGP^p |
| 68 | 13αGP^ε,8βFP^p,7αFF^ε | 80 | 2βFP^ε | 92 | 8βFP^ε,7βFP^ε,2βFP^ε | 104 | 14βFF^ε,9βFF^ε,6βFF^ε |

^athe tautomeric form of the reducing sugar is denoted for the tautomers (see Fig. 1)

^bThe superscript in each tautomer denotes carbon number (see Fig. 1)
Table S3. Comparison of the measured amount (%w/w) of each tautomer of D-fructose and D-glucose in the isoglucose mixture from integration of the 13C NMR signals to that of the actual concentration (weighted amount).

<table>
<thead>
<tr>
<th>Tautomers</th>
<th>Actual concentration</th>
<th>Concentration determined by 13C NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-D-fructofuranose</td>
<td>118.5</td>
<td>118.2</td>
</tr>
<tr>
<td>β-D-fructofuranose</td>
<td>1659.1</td>
<td>1654.1</td>
</tr>
<tr>
<td>α-D-fructopyranose</td>
<td>47.4</td>
<td>44.5</td>
</tr>
<tr>
<td>β-D-fructopyranose</td>
<td>545.1</td>
<td>537.2</td>
</tr>
<tr>
<td>Total D-fructose</td>
<td>2370.1</td>
<td>2354.0</td>
</tr>
<tr>
<td>α-D-glucopyranose</td>
<td>723.3</td>
<td>708.6</td>
</tr>
<tr>
<td>β-D-glucopyranose</td>
<td>1205.5</td>
<td>1183.3</td>
</tr>
<tr>
<td>Total D-glucose</td>
<td>1928.9</td>
<td>1891.9</td>
</tr>
</tbody>
</table>
Table S4. Comparison of the measured amount (% w/w) of each sugar tautomer in the artificial mixture from integration of the 13C NMR signals to that of the actual concentration (weighted amount).

<table>
<thead>
<tr>
<th>Tautomer</th>
<th>Actual concentration</th>
<th>Concentration determined by 13C NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-D-fructofuranose (2α-FF)</td>
<td>118.5</td>
<td>117.6</td>
</tr>
<tr>
<td>turanose (7β-FF)</td>
<td>19.6</td>
<td>19.2</td>
</tr>
<tr>
<td>1-kestose (14β-FF)</td>
<td>9.9</td>
<td>9.6</td>
</tr>
<tr>
<td>maltulose (8β-FF)</td>
<td>20.2</td>
<td>20.4</td>
</tr>
<tr>
<td>turanose (7β-FP)</td>
<td>38.2</td>
<td>38.0</td>
</tr>
<tr>
<td>maltulose (8β-FP)</td>
<td>40.4</td>
<td>39.8</td>
</tr>
<tr>
<td>melisitose (13α-GP)</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>α-D-nigerose (5α-GP)</td>
<td>10.7</td>
<td>10.7</td>
</tr>
<tr>
<td>β-D-nigerose (5β-GP)</td>
<td>17.1</td>
<td>17.1</td>
</tr>
<tr>
<td>turanose (7α-FF)</td>
<td>39.2</td>
<td>38.5</td>
</tr>
<tr>
<td>β-D-glycopyranose (1β-GP)</td>
<td>1205.5</td>
<td>1188.0</td>
</tr>
<tr>
<td>β-D-fructofuranose (2β-FF)</td>
<td>545.1</td>
<td>543.9</td>
</tr>
<tr>
<td>erlose (9β-FF)</td>
<td>49.6</td>
<td>49.4</td>
</tr>
<tr>
<td>β-D-fructopyranose (2β-FP)</td>
<td>1659.1</td>
<td>1650.3</td>
</tr>
</tbody>
</table>
Table S2. Continued