Supporting Information for:

A Free-standing Molecularly Imprinted Photonic Hydrogels Based on β-Cyclodextrin
for Visual Detection of L-Tryptophan

Zhaokun Yang, Dongjian Shi, Mingqing Chen, and Shirong Liu*

The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122,
P. R. China

*Corresponding Author. E-mail: liushirong1@aliyun.com.

Fig. S1 exhibited the typical SEM photos of the adopted colloidal-crystal template
and the resultant hydrogel inverse opal film, as well as the photograph of MIPHs. Fig.
S2 presented FT-IR spectra of β-CD and MAH-β-CD. Fig S3 showed the Bragg
diffraction spectra of PAM-MIPHs when soaked into pure buffer solution and 10^{-12} M
L-Trp buffer solutions. Fig. S4 showed the imprinting effect of CD-MIPHs with
different amounts of MAH-β-CD, AM or BIS. In analogy to the definition of
imprinting factor of MIPs, the photonic imprinting factor (PIF) is calculated from the
Bragg diffraction wavelength shift of MIPHs and NIPHs (PIF=Δλ_{MIPHs}/Δλ_{NIPHs}).
Fig. S1. SEM images of (a) PS colloidal crystals, (b) inverse opals of MIPHs, (c) inverse opals of PAM-NIPHs and (d) photograph of MIPHs.

Fig. S2 FT-IR spectra of (a) β-CD and (b) MAH-β-CD.
Fig. S3 Bragg diffraction spectra of PAM-MIPHs upon exposure to pure buffer solution and 10^{-12} M L-Trp buffer solutions.

Fig. S4 Imprinting effect of MIPHs with different amounts of (a) MAH-β-CD, (b) AM and (c) BIS in L-Trp (10^{-5} mol.L$^{-1}$) buffer solution.