Electronic Supplementary Information

A rapid genomic DNA extraction method and its combination with helicase dependent amplification for the detection of genetically modified maize

Eric Gonzalez Garcia¹, Andreas H. Farnleitner², Robert L. Mach², Rudolf Kraska³, Kurt Brunner¹

¹ Vienna University of Technology – IFA-Tulln, Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430, Tulln, Austria
² Vienna University of Technology, Institute of Chemical Engineering, Gumperdorfer Str. 1a, 1060, Vienna, Austria
³ University of Natural Resources and Life Sciences, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430, Tulln, Austria

1. Materials and methods ..2
 1.1 Extraction procedures ..2
 CTAB extraction protocol ...2
 Wizard® Genomic DNA purification kit ...2
 2. Results ...2
 2.1 Optimization of incubation times with proteinase K ...2
 2.2 Optimization of the best temperature of extraction ...3
 2.3 Addition of chemicals to the sodium phosphate buffer ...4
 2.4 Pretreatment of samples with solvents ..4
1. Materials and Methods

1.1 Extraction procedures

CTAB extraction protocol

The extraction was carried out based on the maize DNA isolation method proposed by the Community Reference Laboratory for GM Food and Feed, 2007. Briefly, genomic DNA was extracted by performing a thermal lysis (65°C, 1h) of the sample with the extraction buffer (1.4 M NaCl, 2% (w/v) cetyltrimethylammonium bromide (CTAB), 0.1M Tris-Base (pH=8), 0.02M EDTA (pH=8) and 1% polyvinyl pyrrolidone 40000). DNA was later precipitated with the precipitation buffer (1% (w/v) CTAB, 0.05 M Tris (pH=8), 0.01 M EDTA (pH=8)) and washed with 70% ethanol. Resuspension of the DNA was done afterwards in 10 mM Tris buffer at 65°C for 20 min and stored at -20°C until further use. All reagents were from Roth (Karlsruhe, Germany). Each extraction was done in triplicates.

Wizard® Genomic DNA Purification Kit

The protocol was carried out according to the manufacturer. Briefly, 40mg of ground maize powder were mixed with the nuclei lysis solution and incubated at 65°C for 15 min. RNase solution was afterwards added and further incubated at 37°C for 15 min. The protein precipitation solution was then added and the mixture was centrifuged at 15000 g. The supernatant was later removed and mixed with room temperature isopropanol. After centrifugation, the pellet formed was washed with 70% ethanol and air dried. The genomic DNA extracted was rehydrated with DNA Rehydration Solution and incubated at 65°C for 1 h. Solutions were then stored at -20°C until further use. Each extraction was done in triplicates.

2. Results

2.1 Optimization of incubations times with proteinase K

![Figure 1. Optimization of incubation times when digesting the samples with proteinase K.](image-url)
2.2 Optimization of the best temperature of extraction

Figure 2. Screening for the best temperature of extraction.
2.3 Addition of chemicals to the sodium phosphate buffer

Figure 3. Influence of the usage of different chemicals in the sodium phosphate buffer in the Cq value of the extracts.

2.4 Pretreatment of samples with solvents

Table 1. Results from a pretreatment of the maize powder samples with solvents.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cq ± STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃Cl</td>
<td>23.87 ± 0.68</td>
</tr>
<tr>
<td>CH₃Cl-EtoAc (1:1)</td>
<td>24.22 ± 0.86</td>
</tr>
<tr>
<td>EtoAc</td>
<td>24.82 ± 0.99</td>
</tr>
</tbody>
</table>