Colorimetric sensing of atrazine in rice samples using cysteamine functionalized gold nanoparticles after solid phase extraction

Guangyang Liua,b,c, Shanshan Wangb, Xin Yanga,*, Tengfei Lib, Yongxin Sheb, Jing Wanga,b,*, Pan Zoua, Fen Jinb, Maojun Jinb, Hua Shaob

aSchool of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, P.R. China; bKey Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China and Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, 100081 Beijing, P.R. China.

*Corresponding author: Prof. Xin Yang, Email: yangxin@hit.edu.cn; Prof. Jing Wang, Email: w_jing2001@126.com; Phone: +86-10-82106568, Fax: 010-82106567.

Fig. S-1 UV–vis spectra of cysteamine-AuNPs solution with different concentrations of atrazine under different pH conditions (a, Blank; b, 0.033 µg/g; c, 0.167µg/g; d, 0.33 µg/g; e, 1.67 µg/g; f, 3.33 µg/g; g, 6.67 µg/g).
Fig. S-2 UV–vis spectra of cysteamine-AuNPs solution with atrazine and other interfering substances (a, Blank; b, Na⁺; c, glucose; d, Mg²⁺; e, vitamin C; f, L-cysteine; g, hexazinone; h, Hg²⁺; i, atrazine).