A Modified QuEChERS Method Coupled with High Resolution LC-Q-TOF-Mass Spectrometry for Extraction, Identification and Quantification of Isoflavones in the Soybeans

Bo Ding a,b,c, Zhiyuan Wang a,b,* Rong Yi a,b, Siqun Zhang a,b, Xun Li a,b, Zhigang She c, Wenrui Chen a,b,*

SUPPORTING INFORMATION

Fig. S1 Extracted ion chromatograms of six authentic isoflavone compounds
Fig. S2 IDA-MS spectrum of six authentic isoflavones
Fig. S3 The trend chart of range value for daidzin concentration
Fig. S4 The trend chart of range value for daidzein concentration
Table S1 Mass Fragmentation Patterns of Individual Isoflavones Analyzed by the Positive Ion Model LC-Q-TOF-MS
Table S2 The results of analysis of range for daidzin concentration
Table S3 The Results of Analysis of Variance for Daidzin
Table S4 The results of analysis of range for daidzein concentration
Table S5 The Results of Analysis of Variance for Daidzein
Table S6 Analysis of Variance for the Fitted Quadratic Polynomial Model on Daidzin
Table S7 Analysis of Variance for the Fitted Quadratic Polynomial Model on Daidzein
Equations. The equations of RSM design
Fig. S1 Extracted ion chromatograms of six authentic isoflavone compounds

![Extracted ion chromatograms of six authentic isoflavone compounds](image_url)

Fig. S2 IDA-MS spectrum of six authentic isoflavones

- **Daidzin**
- **Glycitin**

![IDA-MS spectrum of six authentic isoflavones](image_url)
Genistin

- Spectrum from 05.wiff (sample 1) - d...TOF MS^2 (50 - 1000) from 6.134 min
- Precursor: 433.1 Da, CE: 35.0 CE=35
- Library Spectrum: ranliaomugan, CE=35±15

Daidzein

- Spectrum from 05.wiff (sample 1) - d...TOF MS^2 (50 - 1000) from 8.097 min
- Precursor: 285.1 Da, CE: 35.0 CE=35
- Library Spectrum: huangdouhuangsu-2, CE=35±15

Glycitin

- Spectrum from 05.wiff (sample 1) - d...TOF MS^2 (50 - 1000) from 8.999 min
- Precursor: 271.1 Da, CE: 35.0 CE=35
- Library Spectrum: ranliaomusu, CE=35±15

Genistein
Fig. S3 The trend chart of range value for daidzin concentration

Fig. S4 The trend chart of range value for daidzein concentration
<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Compounds</th>
<th>Formula</th>
<th>Ions</th>
<th>Theoretical (m/z)</th>
<th>Experimental (m/z)</th>
<th>Error (ppm)</th>
<th>retention time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Daidzin</td>
<td>C_{21}H_{20}O_{9}</td>
<td>[M+H]^+</td>
<td>417.11801</td>
<td>417.11830</td>
<td>0.7</td>
<td>6.20</td>
</tr>
<tr>
<td>2</td>
<td>Glycitin</td>
<td>C_{22}H_{22}O_{10}</td>
<td>[M+H]^+</td>
<td>447.12857</td>
<td>447.12892</td>
<td>0.8</td>
<td>6.35</td>
</tr>
<tr>
<td>3</td>
<td>Genistin</td>
<td>C_{21}H_{20}O_{10}</td>
<td>[M+H]^+</td>
<td>433.11292</td>
<td>433.11296</td>
<td>0.1</td>
<td>7.32</td>
</tr>
<tr>
<td>4</td>
<td>Daidzein</td>
<td>C_{15}H_{10}O_{4}</td>
<td>[M+H]^+</td>
<td>255.06519</td>
<td>255.06540</td>
<td>0.9</td>
<td>8.68</td>
</tr>
<tr>
<td>5</td>
<td>Glycitein</td>
<td>C_{16}H_{12}O_{5}</td>
<td>[M+H]^+</td>
<td>285.07575</td>
<td>285.07601</td>
<td>0.9</td>
<td>8.82</td>
</tr>
<tr>
<td>6</td>
<td>Genistein</td>
<td>C_{15}H_{10}O_{5}</td>
<td>[M+H]^+</td>
<td>271.06010</td>
<td>271.06018</td>
<td>0.3</td>
<td>9.73</td>
</tr>
</tbody>
</table>

Table S2 The results of analysis of range for daidzin concentration

<table>
<thead>
<tr>
<th>T value: 1.0e+003*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5588 1.2544 1.0280 1.0870 1.1460</td>
</tr>
<tr>
<td>1.0557 1.0818 1.3237 1.2582 1.1887</td>
</tr>
<tr>
<td>0.9843 1.0780 1.4054 1.0823 1.2027</td>
</tr>
<tr>
<td>1.0090 1.1934 0.8507 1.1803 1.0703</td>
</tr>
<tr>
<td>R value: 574.48 176.41 554.67 175.96 132.37</td>
</tr>
<tr>
<td>optimal level: 1 1 3 2 3</td>
</tr>
<tr>
<td>order: A; C; B; D</td>
</tr>
</tbody>
</table>
Table S3 The Results of Analysis of Variance for Daidzin

<table>
<thead>
<tr>
<th>sources of variance</th>
<th>sum of squares</th>
<th>freedom</th>
<th>Standard deviation</th>
<th>F value</th>
<th>F^*</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>factor 1</td>
<td>5.5830e+004</td>
<td>3</td>
<td>1.8610e+004</td>
<td>14.0456</td>
<td>4.7571;9.7795</td>
<td>high significance</td>
</tr>
<tr>
<td>factor 2</td>
<td>5.6590e+003</td>
<td>3</td>
<td>1.8836e+003</td>
<td>1.4217</td>
<td>4.7571;9.7795</td>
<td></td>
</tr>
<tr>
<td>factor 3</td>
<td>4.9957e+004</td>
<td>3</td>
<td>1.6652e+004</td>
<td>12.5681</td>
<td>4.7571;9.7795</td>
<td>high significance</td>
</tr>
<tr>
<td>factor 4</td>
<td>5.2940e+003</td>
<td>3</td>
<td>1.7647e+003</td>
<td>1.3318</td>
<td>4.7571;9.7795</td>
<td></td>
</tr>
<tr>
<td>blank list*</td>
<td>2.6559e+003</td>
<td>3</td>
<td>885.2891</td>
<td>0.6682</td>
<td>4.7571;9.7795</td>
<td></td>
</tr>
<tr>
<td>error</td>
<td>7.9498e+003</td>
<td>6</td>
<td>1.3250e+003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td>1.1939e+005</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S4 The results of analysis of range for daidzein concentration

<table>
<thead>
<tr>
<th>T value:</th>
<th>506.75</th>
<th>439.70</th>
<th>483.54</th>
<th>367.88</th>
<th>405.04</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>437.68</td>
<td>435.73</td>
<td>498.13</td>
<td>492.80</td>
<td>453.74</td>
</tr>
<tr>
<td></td>
<td>407.91</td>
<td>429.17</td>
<td>435.32</td>
<td>419.87</td>
<td>423.40</td>
</tr>
<tr>
<td></td>
<td>352.17</td>
<td>399.91</td>
<td>287.52</td>
<td>423.96</td>
<td>422.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R value:</th>
<th>154.58</th>
<th>39.79</th>
<th>210.61</th>
<th>124.92</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>optimal level:</th>
<th>1 1 2 2 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>order:</td>
<td>C; A; D; B</td>
</tr>
</tbody>
</table>

Table S5 The Results of Analysis of Variance for Daidzein

<table>
<thead>
<tr>
<th>sources of variance</th>
<th>sum of squares</th>
<th>freedom</th>
<th>Standard deviation</th>
<th>F value</th>
<th>F^*</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>factor 1</td>
<td>3.1088e+004</td>
<td>3</td>
<td>1.0363e+003</td>
<td>11.2942</td>
<td>4.7571;9.7795</td>
<td>high significance</td>
</tr>
<tr>
<td>factor 2</td>
<td>243.2587</td>
<td>3</td>
<td>81.0862</td>
<td>0.8838</td>
<td>4.7571;9.7795</td>
<td></td>
</tr>
<tr>
<td>factor 3</td>
<td>6.9443e+003</td>
<td>3</td>
<td>2.3148e+003</td>
<td>25.2287</td>
<td>4.7571;9.7795</td>
<td>high significance</td>
</tr>
<tr>
<td>factor 4</td>
<td>1.9705e+003</td>
<td>3</td>
<td>653.8207</td>
<td>7.1587</td>
<td>4.7571;9.7795</td>
<td></td>
</tr>
<tr>
<td>blank list*</td>
<td>307.2483</td>
<td>3</td>
<td>102.4161</td>
<td>1.1162</td>
<td>4.7571;9.7795</td>
<td></td>
</tr>
<tr>
<td>error</td>
<td>550.5070</td>
<td>6</td>
<td>91.7512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td>1.2574e+004</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S6 Analysis of Variance for the Fitted Quadratic Polynomial Model on Daidzin

<table>
<thead>
<tr>
<th>sources</th>
<th>sum of squares</th>
<th>df</th>
<th>mean square</th>
<th>F value</th>
<th>p-value</th>
<th>prob>F</th>
<th>significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>28320.60</td>
<td>9</td>
<td>3146.73</td>
<td>1.20</td>
<td>0.4163</td>
<td></td>
<td>not significant</td>
</tr>
<tr>
<td>X1</td>
<td>3112.05</td>
<td>1</td>
<td>312.05</td>
<td>1.18</td>
<td>0.3130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>270.61</td>
<td>1</td>
<td>270.61</td>
<td>0.10</td>
<td>0.7579</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>2709.00</td>
<td>1</td>
<td>2709.00</td>
<td>1.03</td>
<td>0.3442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1X2</td>
<td>7745.32</td>
<td>1</td>
<td>7745.32</td>
<td>2.94</td>
<td>0.1300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1X3</td>
<td>4003.28</td>
<td>1</td>
<td>4003.28</td>
<td>1.52</td>
<td>0.2573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2X3</td>
<td>6371.63</td>
<td>1</td>
<td>6371.63</td>
<td>2.42</td>
<td>0.1637</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X12</td>
<td>34.95</td>
<td>1</td>
<td>34.95</td>
<td>0.013</td>
<td>0.9115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X22</td>
<td>2616.61</td>
<td>1</td>
<td>2616.61</td>
<td>0.99</td>
<td>0.3520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X32</td>
<td>1181.57</td>
<td>1</td>
<td>1181.57</td>
<td>0.45</td>
<td>0.5244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>18429.78</td>
<td>7</td>
<td>2632.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>11838.31</td>
<td>3</td>
<td>3946.10</td>
<td>2.39</td>
<td>0.2090</td>
<td></td>
<td>not significant</td>
</tr>
<tr>
<td>Pure error</td>
<td>6591.47</td>
<td>4</td>
<td>1647.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cor Total</td>
<td>46750.37</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S7 Analysis of Variance for the Fitted Quadratic Polynomial Model on Daidzein

<table>
<thead>
<tr>
<th>sources</th>
<th>sum of squares</th>
<th>df</th>
<th>mean square</th>
<th>F value</th>
<th>p-value</th>
<th>prob>F</th>
<th>significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1213.14</td>
<td>9</td>
<td>134.79</td>
<td>1.38</td>
<td>0.3414</td>
<td></td>
<td>not significant</td>
</tr>
<tr>
<td>X1</td>
<td>76.57</td>
<td>1</td>
<td>76.57</td>
<td>0.79</td>
<td>0.4046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>221.66</td>
<td>1</td>
<td>221.66</td>
<td>2.28</td>
<td>0.1750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>6.82</td>
<td>1</td>
<td>6.82</td>
<td>0.070</td>
<td>0.7989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1X2</td>
<td>162.22</td>
<td>1</td>
<td>162.22</td>
<td>1.67</td>
<td>0.2377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1X3</td>
<td>620.58</td>
<td>1</td>
<td>620.58</td>
<td>6.38</td>
<td>0.0395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2X3</td>
<td>14.41</td>
<td>1</td>
<td>14.41</td>
<td>0.15</td>
<td>0.7119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X12</td>
<td>97.78</td>
<td>1</td>
<td>97.78</td>
<td>1.00</td>
<td>0.3496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X22</td>
<td>8.16</td>
<td>1</td>
<td>8.16</td>
<td>0.084</td>
<td>0.7806</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X32</td>
<td>0.34</td>
<td>1</td>
<td>0.34</td>
<td>3.489E-003</td>
<td>0.9545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>681.39</td>
<td>7</td>
<td>97.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>449.40</td>
<td>3</td>
<td>149.80</td>
<td>2.58</td>
<td>0.1908</td>
<td></td>
<td>not significant</td>
</tr>
<tr>
<td>Pure error</td>
<td>231.99</td>
<td>4</td>
<td>58.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cor Total</td>
<td>1894.53</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equations. The equations of RSM design

Equation 1:

\[x_i = (X_i - X_0) = \Delta X \] \hspace{1cm} (1)

Where \(x_i \) was the value of the independent variable \(X_i \), \(X_0 \) was the value of \(X_i \) at the center point, and \(\Delta X \) was the step change value.

Equation 2:

\[Y = b_0 + \sum_{i=1}^{3} A_i X_i + \sum_{i=1}^{3} A_{ii} X_i^2 + \sum_{i=1}^{3} \sum_{j=i+1}^{3} A_{ij} X_i X_j \] \hspace{1cm} (2)

Where \(Y \) was the predicted variable function and \(A_i, A_{ii}, \) and \(A_{ij} \) were the regression coefficient of linear, quadratic, and interaction terms of independent variables \(X_i \) and \(X_j \).

Equation 3:

\[Y \text{dai} \text{d} \text{z} \text{i} \text{n} = 207.56 + 19.72X_1 + 5.82X_2 + 18.40X_3 - 44.00X_1X_2 - 31.64X_1X_3 + 39.91X_2X_3 + 2.88X_1^2 + 24.93X_2^2 + 16.75X_3^2 \] \hspace{1cm} (3)

Equation 4:

\[Y \text{dai} \text{d} \text{z} \text{i} \text{e} \text{i} \text{n} = 89.35 + 3.09X_1 + 5.26X_2 + 0.92X_3 - 6.37X_1X_2 - 12.46X_1X_3 + 1.90X_2X_3 + 4.82X_1^2 + 1.3 \]