ESI: Enhanced CO$_2$ Electroreduction Efficiency through Secondary Coordination Effects on a Pincer Iridium Catalyst

Steven T. Ahn,a Elizabeth A. Bielinski,b Elizabeth M. Lane,c Yanqiao Chen,a Wesley H. Bernskoetter,*a,c Nilay Hazari*$_b$ and G. Tayhas R. Palmore*$_a$

aSchool of Engineering, Brown University, Providence, RI 02912

bDepartment of Chemistry, Yale University, New Haven, CT 06520

cDepartment of Chemistry, Brown University, Providence, RI 02912

-Electronic Supplementary Information -
Table of Contents

Experimental Details ... S2
Selected Spectra from Product Analysis S6
Selected Electrochemical Data .. S8
NMR Spectra for Complex 3 ... S10
References .. S11
Experimental Details

General Considerations. Nitrogen (N₂, 99.999%, Corp Brothers) and carbon dioxide (CO₂, 99.995%, laser grade, Praxair) with less than 2 ppm H₂O were used as received. Acetonitrile was dried and deoxygenated using literature procedures,¹ tested via Karl Fischer titration for trace amounts of water, and stored over 4Å molecular sieves until use. 18.2 MΩ deionized water was provided by a Milli-Q water purification system and was sparged with and stored under N₂. Tetrabutylammonium hexafluorophosphate (nBu₄NPF₆, electrochemical grade, Sigma-Aldrich) was dried at 60 °C under vacuum for 24 hr and stored in a glovebox. Compounds 1,² 2,³ and H[B(ArF)₄]•(Et₂O)₂⁴ (B(ArF)₄ = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) were prepared as previously described. All other reagents were purchased from Aldrich, Acros, Alpha Aesar or Strem chemicals and used as received. Manipulations of air-sensitive materials were conducted using standard vacuum, Schlenk, or glovebox techniques. ¹H and ³¹P NMR spectra were recorded on Bruker Avance DRX-400 (400 MHz) and Avance 600 (600 MHz) spectrometers. ¹H chemical shifts are referenced to residual solvent signals, and ³¹P chemical shifts are referenced to a H₃PO₄ external standard. Gaseous products were analyzed on a Buck Scientific 910 gas chromatograph (GC) in the Multiple Gas #3 configuration with automated sample loop.

Observation of [(PN³HP)IrH₂(MeCN)]⁺ (3). A J. Young NMR tube was charged with (PN³HP)IrH₃ (1) (10 mg, 0.020 mmol) in CD₃CN and treated with H[B(ArF)₄]•(Et₂O)₂ (26 mg, 0.030 mmol). The formation of 3 was monitored by NMR spectroscopy and complete conversion occurred within 30 min at ambient temperature. ¹H NMR (CD₃CN):
δ 7.71 (br s, 8H, o-Ar), 7.67 (br s, 4H, p-Ar), 3.32 (m, 2H, CH₂), 2.52 (m, 2H, CH₂), 2.19 (m, 2H, CH), 2.12 (m, 2H, CH₂), 2.06 (m, 2H, CH), 1.78 (m, 2H, CH₂), 1.24-1.29 (m, 12H, CH₃), 1.03 (dd, 6H, CH₃), 0.96 (dd, 6H, CH₃), -20.14 (t, 1H, Ir-H, J = 13 Hz), -22.27 (t, 1H, Ir-H, J = 16 Hz) (N-H resonance not located). \(^{13}\)C\(^{1}\)H NMR taken from HSQC (CD₃CN): δ 16.5 (CH₃), 17.9 (CH₃), 19.8 (CH₃), 20.6 (CH₃), 22.5 (CH), 26.5 (CH), 32.4 (CH₂), 55.2 (CH₂), 117.6 (p-Ar), 134.5 (o-Ar). \(^{31}\)P\(^{1}\)H NMR (CD₃CN): 51.37 (s, 2P).

General Procedures for Electrochemistry Experiments

Cyclic voltammetry and bulk electrolysis experiments were performed on a Pine Research AFCBP1 bipotentiostat. The three-electrode system included either a smaller glassy carbon (GC) working electrode (7.1 mm², BASi) or larger GC electrode (19.6 mm², Bio-Logic) and platinum (Pt) mesh counter electrode (99.9%, Alfa Aesar). The reference electrode was Ag/AgNO₃ (i.e., Ag/Ag⁺) non-aqueous electrode filled with 0.01 M AgNO₃ and 0.1 M \(^{n}\)Bu₄NPF₆ in CH₃CN (-0.08 V vs Fc/Fc⁺, BASi). Prior to each experiment, the GC electrode was polished in succession with a 1-μm, 0.3-μm, and 0.05-μm alumina slurry to obtain a mirror finish, sonicated in 50:50 acetone and Milli-Q water, rinsed in Milli-Q water and dried in vacuo. Cyclic voltammograms (CVs) were conducted in a gas-tight one-compartment cell to minimize internal resistance impacting measured potentials. For electrolysis, the counter electrode was separated from the working electrode in a gas-tight two-compartment cell with vigorous stirring in the cathode compartment. Electrolyses of 1 mM 1 were conducted under 1 atm CO₂ in 5-6 mL 12% v/v H₂O/CH₃CN (0.1 M \(^{n}\)Bu₄NPF₆, RT, no iR compensation). For control experiments, 1 was omitted and/or N₂ replaced CO₂. Ferrocene was added at the end of
each experiment and the potential was converted relative to the midpoint potential of the Fc/Fc+ CV. Electrolysis experiments lasting longer than 24 hrs required enhancements to maintain system stability and to increase turnover frequency. Of note, a salt bridge separated the Ag/Ag+ reference electrode from the cathode compartment to avoid contamination from Ag+. A Luggin capillary was also used to reduce possible Ohmic drop between the working and reference electrodes.

Product Analysis

The liquid products of electroreduction were analyzed by 1H NMR spectrometry. The liquid phase was acidified with an aqueous solution of HCl (18%), spiked with a benzene internal standard and then diluted with CD\textsubscript{3}CN. Gaseous products of electroreduction were analyzed by gas chromatography using both a FID and a TCD. The headspace of the electrochemical cell was connected to the GC sample loop. A bubbler was then connected to the back end of the loop to confirm a gas-tight system. Gaseous products were analyzed at random points during electrolysis, at least thrice in a 24-hr period and after at least 1 hr from the start of experiment to ensure adequate degassing of connections.
Fig. S1 GC traces from FID channel *in situ* during bulk electrolysis with potential held at -1.73 V vs Fc/Fc$^+$ (red) juxtaposed with calibration standards (blue and black). All traces were taken at least 1 hr after the start of electrolysis. Asterisk (*) indicates valve switching.
Fig. S2 GC trace from TCD channel *in situ* during bulk electrolysis with potential held at -1.73 V vs Fc/Fc⁺ (red) juxtaposed with calibration standard (black). All traces were taken at least 1 hr after the start of electrolysis. Asterisk (*) indicates valve switching.

Fig. S3 1H NMR spectrum of formate electrolysis product following acidification (*vide supra*) and addition of a benzene internal standard in acetonitrile-d_3. Spectrum taken post-electrolysis with potential held at -1.73 V vs Fc/Fc⁺. Insert corresponds to a spectral region between 7.0 and 8.4 ppm.
Selected Electrochemical Data

Fig. S4 Electrolysis current in the absence of catalyst (black) and in the presence of 1 mM 1 (red) under CO$_2$ in 12% H$_2$O/CH$_3$CN with potential held at -1.73 V vs Fc/Fc$^+$ and vigorous stirring. Additional conditions: glassy carbon electrode, 0.1 M $^{\text{a}}$Bu$_4$NPF$_6$ electrolyte, 1 atm CO$_2$, RT, no iR compensation.

Fig. S5 CVs of 1 mM 1 in CH$_3$CN under CO$_2$ with 0-14% added H$_2$O from +0.2 V to -1.4 V vs Fc/Fc$^+$.
Fig. S6 CVs of electrolyte solution (0.1 M n-Bu$_4$NPF$_6$) with 0-14% added H$_2$O under N$_2$ at (a) 10 mV/s and (b) 100 mV/s scan rates.

Fig. S7 CVs of 1 mM 1 and 10 mM (i.e., 10 equiv.) NaPF$_6$ under N$_2$ (black) and 1 atm CO$_2$ (red). Additional conditions: glassy carbon electrode (7.1 mm2), 12% H$_2$O/CH$_3$CN solvent, 0.1 M n-Bu$_4$NPF$_6$ electrolyte, 10 mV/s scan rate.
Fig. S8 31P 1H NMR (top) and 1H NMR (bottom) spectra of 3 generated from H[B(ArF)$_4$]•(Et$_2$O)$_2$ addition to 1 in acetonitrile-d_3. An insert for the upfield region of the 1H NMR spectrum is provided. The * denotes residual THF, diethyl ether, and acetonitrile solvents.
References