Supplementary Information

Fluorine-modified bisbenzimide derivative as a molecular probe for bimodal and simultaneous detection of DNAs by \(^{19}\)F NMR and fluorescence

Takashi Sakamoto,\(^{a}\) Daisaku Hasegawa\(^{a}\) and Kenzo Fujimoto\(^{a,b}\)

\(^{a}\)School of Materials Science, \(^{b}\)Research Center for Bio-Architecture, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan

Contents

1. Experimental Procedures S2
2. Supporting Figures S3
3. Synthetic Procedures S6
4. NMR and Mass Spectra of Compound 1 S8
1. Experimental Procedures

ODNs and other reagents: All hpODNs were purchased from Fasmac (Japan). Bisbenzimide H 33258 and 3,5-bis(trifluoromethyl)benzylbromide were purchased from Sigma-Aldrich (CA) and TCI (Tokyo, Japan), respectively. Other reagents and solvents for probe synthesis were purchased from Wako Pure Chemical Industry (Osaka, Japan) or Kanto Chemical (Tokyo, Japan).

19F NMR measurement: 19F NMR spectra were recorded using AVANCE III 500 MHz NMR spectrometer (Bruker Biospin) equipped with a 5 mm probe head (PA BBO 500S2 BBF-H-D-05 Z, Bruker Biospin) at 470 MHz for 19F. The chemical shifts were corrected using TFA (≈–75.6 ppm) as an internal standard.

** Fluorescence measurement:** Fluorescence spectra were recorded using Varioskan fluorescence microplate reader (Thermo Scientific, MA) or FP-6500 spectrofluorophotometer (JASCO, Tokyo, Japan) with excitation at 345 nm.

Cell cultivation and fluorescence microscopic analysis: Hela cells (2.3×10^4 / chamber) in DMEM (10% FBS) were seeded on a 4-chamber glass-bottom dish (35 mm) and incubated for 24 h in a humidified chamber (37°C, 5% CO$_2$). After washing with FluoroBrite$^\text{TM}$ DMEM (Gibco, 300 µL × 2), a solution of 1 or bisbenzimide H 33258 (10 µM in FluoroBrite$^\text{TM}$ DMEM, 300 µL) was poured to the chambers and then incubated for 10 min in a humidified chamber (37°C, 5% CO$_2$). Fluorescence microscopic analyses were performed by a fluorescence microscope (BZ-8000, Keyence, Japan) equipped with a filter box (Ex360/40, DM400, BA460/50) and an objective lens (PlanFluor ELWD 20×/0.45 Ph1 DM, Nikon, Japan).
2. Supporting Figures

![Image](image_url)

Fig. S1 19F NMR spectra of the mixture of 1, hpODN-CG and various contents of bisbenzimide H 33258 (Ho). The molar ratio is indicated at the left of each spectrum. $[1] = [\text{hpODN-CG}] = 10 \, \mu\text{M}$ in 50 mM Tris-HCl (pH 7.6) containing 100 mM NaCl and 10% (v/v) D$_2$O. Measurements were performed at 27°C.
Fig. S2 Fluorescence spectra and fluorescence titration curves of bisbenzimide H 33258 (Ho) versus hpODNs. [Ho] = 1 or 2 nM in 50 mM Tris-HCl (pH 7.6) containing 100 mM NaCl. Measurements were performed at 27°C. Fluorescence intensity at 460 nm was used for preparing titration curves and K_D values were calculated with non-linear least square fitting.
Fig. S3 Fluorescence spectra and fluorescence titration curves of 1 versus hpODNs. [1] = 1 or 2 nM in 50 mM Tris-HCl (pH 7.6) containing 100 mM NaCl. Measurements were performed at 27°C. Fluorescence intensity at 460 nm was used for preparing titration curves and K_D values were calculated with non-linear least square fitting.
Fig. S4 19F NMR spectra of the mixture of I and hpODNs having different stem length.

$[I] = [\text{hpODN}] = 10 \, \mu\text{M}$ in 50 mM Tris-HCl (pH 7.6) containing 100 mM NaCl and 10% (v/v) D$_2$O. Measurements were performed at 27°C.
3. Synthetic Procedures

Synthesis of Compound 1: To a suspension of bisbenzimide H 33258 (43 mg, 81 µmol) and K$_2$CO$_3$ (34 mg, 243 µmol) in dry DMF (1 mL), 3,5-bis(trifluoromethyl)benzylbromide (38 mg, 122 µmol) was added and stirred for 38 h at 60°C under nitrogen atmosphere. After cooling down to ambient temperature, supernatant was diluted with 0.1 % (v/v) aqueous solution of TFA (1 mL) and MeOH (2 mL) and then purified by a reversed-phase HPLC (JASCO PU-980, HG-980-31, DG-980-50, UV-970 system equipped with an InertSustain™ C18 column (GL Science, 5 µm, 10 × 150 mm), 0 to 70% acetonitrile containing 0.1% v/v TFA in 0.1% aqueous TFA over 30 min (flow rate: 3 mL/min) at 60°C). Lyophilization of the corrected peak at retention time 18 min afforded 1 as yellow powder (38 mg, 38 µmol, 47%).

1H NMR (500 MHz, DMSO-d6): δ (ppm) 8.44 (1H, s), 8.37 (3H, s), 8.10 (2H, d, J = 8.75 Hz), 8.08 (1H, d, J = 8.0 Hz), 7.87 (1H, d, J = 8.5 Hz), 7.72 (1H, d, J = 9.0 Hz), 7.32 (1H, d, J = 9.0 Hz), 7.28 (1H, s), 7.00 (2H, d, J = 8.7 Hz), 4.95 (2H, s), 3.88 (2H, d, J = 14.0 Hz), 3.78 (2H, dd, 10.0 Hz), 3.60 (2H, d, 12.2 Hz), 3.49 (2H, dd, 11.1 Hz), 3.19 (3H, s)

13C NMR (125 MHz, DMSO-d6): δ (ppm) 160.5, 158.2 (CF$_3$CO$_2$H, q, 2J$_{FC}$ = 33 Hz), 154.1, 149.6, 147.9, 133.9, 132.0, 130.8 (CF$_3$-Ph, q, 2J$_{FC}$ = 33 Hz), 130.5, 129.1, 127.8, 124.4, 123.1 (CF$_3$-Ph, q, 1J$_{FC}$ = 275 Hz), 118.6, 117.9, 116.1, 116.0, 115.3, 114.6, 114.1, 99.4, 66.0, 59.0, 44.2, 42.8, 42.1

19F NMR (470 MHz, DMSO-d6): δ (ppm) –61.19 (6F, s, (CF$_3$)$_2$-Ph), –74.12 (9F, s, 3(CF$_3$CO$_2$H))

MALDI-TOF-MS (Matrix, DHBA): 651.23 calcd. for [(M+H)$^+$], found 651.81.
4. NMR and Mass Spectra of Compound 1

1H NMR (500 MHz in DMSO-d6)
13C NMR (125 MHz in DMSO-d$_6$)

![NMR spectrum]

Chemical shifts (ppm):
- 65.94
- 58.951
- 44.193
- 42.094
- 58.951
- 44.193
- 42.094
- 158.380
- 157.847
- 158.114
- 158.380

Structure:

![Chemical structure]

3(CF$_3$CO)$_2$H
\(^{19}\text{F NMR (470 MHz in DMSO-d6)} \)

\[
\begin{array}{c}
\text{CF}_3 \\
\text{CF}_3 \\
3\text{(CF}_3\text{CO}_2\text{H)}
\end{array}
\]

\(-74.118 \)

\(-61.187 \)

\(3.000 \)

\(2.002 \)

\(\text{TFA} \)

\(\text{SI} = 65536 \)

\(\text{SF} = 470.5923770 \text{ MHz} \)

\(\text{WDW} = \text{EM} \)

\(\text{SSB} = 0 \)

\(\text{LB} = 0.30 \text{ Hz} \)

\(\text{PC} = 1.00 \)

S10
MALDI-TOF-MS (Matrix: DHBA)

[(M+H)⁺]
Calcd. 651.2307
Found 651.8114