Supporting Information

Chloride triggered reversible switching from a metallosupramolecular [Pd₂L₄]⁴⁺ cage to a [Pd₂L₂Cl₄] metallo-macrocycle with release of *endo*- and <u>*exo*</u>-hedrally bound guests

Dan Preston,^a Alyssa Fox-Charles,^a Warrick K. C. Lo^a and James D. Crowley^{*a}

^aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin,

New Zealand; Fax: +64 3 479 7906; Tel: +64 3 479 7731.

*jcrowley@chemistry.otago.ac.nz

Contents

1	Expe	erimental4			
	1.1	Synthetic scheme4			
	1.2	General4			
	1.3	Synthesis of 1 ($C_{10}H_{14}BrNO_3$)			
	1.4	Synthesis of 2 (C ₁₅ H ₂₃ NO ₃ Si)6			
	1.5	Synthesis of 3 (C ₁₂ H ₁₅ NO ₃)7			
	1.6	Synthesis of L ($C_{29}H_{31}N_3O_6$)			
	1.7	Synthesis of C ($C_{116}H_{124}N_{120}O_{24}Pd_2B_4F_{16}$)			
2	Swit	ching mechanism12			
3	¹ H N	MR stacked plot of mixed guest uptake and release12			
4	Binc	ding studies13			
	4.1	Mesylate13			
	4.2	Cisplatin14			
5	Mol	ecular model of $[C_(cisplatin)_2(MsO^-)_2]^{2+}$			
6	¹ H D	OSY NMR data16			
7	X-ra	y data17			
	7.1	Ligand L17			
	7.2	Cage $[C \subset (H_2O)_4](BF_4)_4$			
	7.3	Metallacycle M			
	7.4	Cage [C (DMF) ₂ (MsO ⁻) ₂](MsO ⁻) ₂ 21			
	7.5	Crystallographic data25			
0	Pofe	vrences 27			

1 Experimental

1.1 Synthetic scheme

1.2 General

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification except 1-chloro-2-(2-methoxyethoxy)ethane which was synthesised according to a literature procedure.^[1] Solvents were laboratory reagent grade. Petrol refers to the fraction of petroleum ether boiling in the range 40-60 °C. ¹H and ¹³C NMR spectra were recorded on either a 400 MHz Varian 400-MR or Varian 500 MHz AR spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) and referenced to residual solvent peaks (CDCI₃: ¹H δ 7.26 ppm, ¹³C δ 77.16 ppm; CD₃CN: ¹H δ 1.94, ¹³C δ 1.32, 118.26 ppm; *d*₆-DMSO: ¹H δ 2.50 ppm, ¹³C δ 39.52 ppm). Coupling constants (*J*) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: m = multiplet, q = quartet, t = triplet, dt = double triplet, d = doublet, dd = double doublet, s = singlet, br = broad. IR spectra were recorded on a Bruker ALPHA FT-IR spectrometer with an attached ALPHA-P measurement module. Microanalyses were performed at the Campbell Microanalytical Laboratory at the University of Otago. Electrospray mass spectra (HR-ESMS) were collected on a Bruker micrOTOF-Q spectrometer.

1.3 Synthesis of 1 (C₁₀H₁₄BrNO₃)

1-chloro-2-(2-methoxyethoxy)ethane^[1] (4.82 g, 34.8 mmol, 1.5 eq.), 5-bromopyridin-3-ol (4.03 g, 23.2 mmol, 1 eq.) and K₂CO₃ (6.41 g, 46.4 mmol, 2 eq.) were dissolved in DMF (30 mL) and stirred overnight at 90 °C. After filtration the solvent was removed under vacuum. The residue was taken up in DCM (50 mL), washed with water (100 mL), with extraction of the aqueous layer with 3:1 CHCl₃/IPA (50 mL). The organic layers were combined, dried with Na₂SO₄ and filtered, before the solvent was removed under vacuum. Column chromatography on silica (DCM, then 1:19 acetone/DCM, then 1:4 acetone/DCM) gave the product as an orange oil. Yield = 5.72 g, 20.6 mmol, 89 %. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.28 (1H, d, *J* = 1.8 Hz, H_a), 8.26 (1H, d, *J* = 2.5 Hz, H_c), 7.40 (1H, t, *J* = 2.1 Hz, H_b), 4.19-4.16 (2H, m, H_d), 3.87-3.85 (2H, m, H_e), 3.72-3.69 (2H, m, H_f), 3.58-3.56 (2H, m, H_g), 3.39 (3H, s, H_h). ¹³C NMR (100 MHz, CDCl₃, 298 K) δ : 155.1, 142.8 (C_a), 136.4 (C_c), 123.9 (C_b), 120.0, 71.7 (C_d), 70.6 (C_e), 69.2 (C_f), 68.0 (C_g), 58.8 (C_h). HR-ESMS (CHCl₃) *m/z* = 298.0027 [M + Na]⁺ (calc. for C₁₀H₁₄BrNO₃·0.1acetone: C, 43.88; H, 5.22; N, 4.97%; found: C, 43.72; H, 5.28; N, 4.63%. IR: v (cm⁻¹) 2877, 2106, 1741, 1573, 1554, 1428, 1310, 1261, 1220, 1135, 1105, 1051, 1007, 935, 856.

1.4 Synthesis of 2 (C₁₅H₂₃NO₃Si)

A solution of **1** (1.00 g, 3.62 mmol, 1 eq.) in diisopropylamine (6 mL) was degassed with N₂ for 15 minutes. Trimethylsilylacetylene (1.470 mL, 10.86 mmol, 3 eq.), $[Pd(PPh_3)_2]Cl_2$ (0.10 g, 0.15 mmol, 0.03 eq.) and copper(I) iodide (0.07 g, 0.36 mmol, 0.1 eq.) were added and the reaction mixture was heated at 70 °C for 2 days. A mixture of 3:1 CHCl₃/IPA (50 mL) and aqueous 0.1 M EDTA/NH₄OH solution (50 mL) were added and the mixture was stirred vigorously for 2 hours. After filtration through Celite and separation, the organic layer was washed with brine (100 mL), dried with MgSO₄ and the solvent was removed under vacuum. Column chromatography on silica (DCM, then 1:7 acetone/DCM) gave a brown oil. Yield = 0.92 g, 3.11 mmol, 86%. ¹H NMR (400 Hz, CDCl₃, 298 K) δ : 8.29 (1H, d, *J* = 1.6 Hz, H_c), 8.26 (1H, d, *J* = 1.8 Hz, H_a), 7.25 (1H, m, H_b), 4.18-4.16 (2H, m, H_d), 3.87-3.85 (2H, m, H_e), 3.72-3.70 (2H, m, H_f), 3.58-3.56 (2H, m, H_g), 3.39 (3H, s, H_h), 0.26 (9H, s, H_i). ¹³C NMR (100 Hz, CDCl₃, 298 K) δ : 154.1, 144.9 (C_c), 138.1 (C_a), 123.1 (C_b), 120.2, 101.3, 97.8, 71.8 (C_d), 70.7 (C_e), 69.4 (C_f), 67.8 (C_g), 58.9 (C_h), -0.3 (C_i). HR-ESMS (CHCl₃/MeOH): *m/z* = 316.1332 [M + Na]⁺ (calc. for C₁₅H₂₃NNaO₃Si, 316.1339), *m/z* = 294.1511 [M + H]⁺ (calc. for C₁₅H₂₄NO₃Si, 294.1520). Anal. calcd. for C₁₅H₂₃NNaO₃Si, 0.7H₂O: C, 58.87; H, 8.04; N, 4.58%; found: C, 58.50; H, 7.85; N, 4.54%. IR: v (cm⁻¹) 2958, 2925, 2159, 1581, 1419, 1290, 1249, 1171, 1108, 1058, 1019, 993, 840, 759, 701.

1.5 Synthesis of 3 (C₁₂H₁₅NO₃)

To a solution of **2** (0.917 g, 3.13 mmol, 1 eq.) in methanol (40 mL) was added Na₂CO₃ (0.663 g, 6.25 mmol, 2 eq.), and the mixture was stirred for 2 hours at RT. After filtration and removal of solvent under vacuum, the residue was purified through column chromatography on silica (DCM, then 1:10 acetone/DCM, then 1:3 acetone/DCM) to give a brown oil. Yield = 0.491 g, 2.50 mmol, 80%. ¹H NMR (400 MHz, CDCl₃, 298 K) δ : 8.28 (1H, d, *J* = 2.4 Hz, H_a), 8.26 (1H, d, *J* = 2.9 Hz, H_c), 7.26 (1H, m, H_b), 4.19-4.16 (2H, m, H_d), 3.88-3.85 (2H, m, H_e), 3.72-3.70 (2H, m, H_f), 3.58-3.56 (2H, m, H_g), 3.35 (3H, s, H_h), 3.18 (1H, s, H_i). ¹³C NMR (100 MHz, CDCl₃, 298 K) δ : 154.3, 145.2 (C_a), 138.5 (C_c), 123.8 (C_b), 119.4, 80.5 (C_i), 80.3, 72.0 (C_d), 70.9 (C_e), 69.6 (C_f), 68.0 (C_g), 59.1 (C_h). HR-ESMS (CHCl₃): *m/z* = 244.09 [M + Na]⁺ (calc. for C₁₂H₁₅NNaO₃, 244.09), *m/z* = 222.1110 [M + H]⁺ (calc. for C₁₂H₁₆NO₃, 222.1125). Anal. calcd. for C₁₂H₁₅NO₃: C, 65.14; H, 6.83; N, 6.33%; found: C, 65.20; H, 6.94; N, 6.10%. IR: v (cm⁻¹) 3226, 2875, 1580, 1560, 1420, 1319, 1285, 1170, 1106, 1056, 1018, 984, 873, 847, 700.

1.6 Synthesis of L (C₂₉H₃₁N₃O₆)

A solution of 3 (0.13 g, 0.59 mmol, 2 eq.) in diisopropylamine (25 mL) and THF (25 mL) was degassed with N_2 for 15 minutes, before addition of 2,6-dibromopyridine (0.07 g, 0.29 mmol, 1 eq.), Pd(PPh₃)₂Cl₂ (0.01 g, 0.02 mmol, 0.05 eq.) and copper(I) iodide (0.06 g, 0.03 mmol, 0.1 eq.), and the reaction was stirred under N₂ at room temperature for 2 days. Aqueous 0.1 M EDTA/NH₄OH solution (50 mL) and 3:1 CHCl₃/IPA (50 mL) were added and the solution was stirred for 2 hours. After filtration through Celite and separation, the organic layer was washed with brine (2 x 100 mL), dried with Na₂SO₄ and the solvent was removed under vacuum. Purification of the residue through column chromatography on silica (DCM, then 1:3 acetone/DCM, then 1:2 acetone/DCM) gave a colourless solid. Yield = 0.11 g, 209 mmol, 71%. ¹H NMR (400 MHz, CDCl₃, 298 K) δ: 8.39 (2H, d, J = 1.4 Hz, H_c), 8.31 (2H, d, J = 2.8 Hz, H_e), 7.83 (1H, t, J = 1.6 Hz, H_a), 7.60 (2H, d, J = 7.8 Hz, H_b), 7.51 (2H, dd, J = 2.7 & 1.5 Hz, H_d), 4.21-4.19 (4H, m, H_f), 3.90-3.88 (4H, m, H_g), 3.74-3.72 (4H, m, H_h), 3.60-3.58 (4H, m, H_i), 3.40 (6H, s, H_i). ¹³C NMR (100 MHz, CDCl₃, 298 K) δ: 155.5, 145.5 (C_c), 143.9, 139.9 (C_e), 138.4 (C_a), 128.1 (C_b), 124.1 (C_d), 120.0, 91.4, 86.4, 72.6 (C_i), 71.2 (C_h), 70.0 (C_f), 69.2 (C_g), 58.9 (C_i). HR-ESMS: $(CHCl_3/MeOH) m/z = 540.2093 [M + Na]^+ (calc. for C_{29}H_{31}N_3NaO_6, 540.2185), m/z = 518.2260 [M + H]^+$ (calc. for C₂₉H₃₂N₃O₆, 518.2286). Anal. calcd. for C₂₉H₃₁N₃O₆: C, 67.30; H, 6.04; N, 8.12%, found: C, 67.15; H, 6.00; N, 7.98%. IR: ν (cm⁻¹) 3046, 2887, 2208, 1582, 1554, 1459, 1441, 1418, 1330, 1311, 1250, 1220, 1195, 1166, 1126, 1100, 1054, 1034, 1013, 981, 965, 912, 875, 821.

Figure 1.8 ¹³C NMR spectrum (100 MHz, CD₃CN, 298K) of L.

1.7 Synthesis of C (C₁₁₆H₁₂₄N₁₂₀O₂₄Pd₂B₄F₁₆)

Combination of L (92.5 mg, 0.179 mmol, 4 eq.) and $[Pd(CH_3CN)_4](BF_4)_2$ (39.7 mg, 0.089 mmol, 2 eq.) in acetonitrile (5 mL) gave instantaneous product formation. The product was precipitated with diethyl ether to give a tan solid. Yield = 83 mg, 33 mmol, 75%. ¹H NMR (400 Hz, CDCl₃, 298 K) δ : 9.00 (2H, d, *J* = 1.2 Hz, H_c), 8.91 (2H, d, *J* = 2.6 Hz, H_e), 7.91 (1H, t, *J* = 3.2 Hz, H_a), 7.81 (2H, dd, *J* = 1.3 & 2.4 Hz, H_d), 7.72 (2H, d, *J* = 7.8 Hz, H_b), 4.35-4.33 (4H, m, H_f), 3.86-3.85 (4H, m, H_g), 3.67-3.65 (4H, m, H_h), 3.53-3.51 (4H, m, H_i), 3.34 (6H, s, H_j). ¹³C NMR (100 Hz, CDCl₃, 298 K) δ : 158.0, 146.1 (C_c), 143.3, 140.1 (C_e), 138.7 (C_a), 129.6 (C_d), 129.4 (C_b), 123.8, 94.2, 83.4, 72.5 (C_i), 71.2 (C_h), 70.5 (C_f), 69.7 (C_g), 58.9 (C_j). HR-ESMS (CD₃CN): *m/z* = 1228.3430 [M - (BF₄)₂]²⁺ (calc. for C₁₁₆H₁₂₄B₂F₈N₁₂O₂₄Pd₂ 1228.3518), *m/z* = 789.8970 [M - (BF₄)₃]³⁺ (calc. for C₁₁₆H₁₂₄BF₄N₁₂O₂₄Pd₂ 789.8998), *m/z* = 570.6726 [M - (BF₄)₄]⁴⁺, (calc. for C₁₁₆H₁₂₄N₁₂O₂₄Pd₂ 570.6737). Anal. calcd. for C₁₁₆H₁₂₄B₄F₁₆N₁₂O₂₄ Pd₂·4H₂O: C, 51.56; H, 4.92; N, 6.22%, found: C, 51.60; H, 5.04; N, 6.20%. IR: v (cm⁻¹) 3083, 2882, 1583, 1559, 1437, 1328, 1246, 1165, 1052, 877.

Figure 1.9 ¹H NMR spectrum (400 MHz, CD₃CN, 298K) of C.

Figure 1.10 ¹³C NMR spectrum (100 MHz, CD₃CN, 298K) of C.

Figure 1.11 HR-ESMS (CH₃CN) of 2 with isotopic splitting patterns (observed shown above, calculated shown below).

2 Switching mechanism

3 ¹H NMR stacked plot of mixed guest uptake and release

Figure 3.1 Partial stacked ¹H NMR specta (500 MHz, d_7 -DMF, 298 K) of a) cage **C** (0.75 mM), b) addition of cisplatin to **C** giving [(cisplatin)₂ \subset **C**]⁴⁺ c) addition of [NBu₄](CH₃SO₃) to **C** giving [(MsO⁻)₂ \subset **C**]²⁺, d) addition of cisplatin and [NBu₄](CH₃SO₃) to **C** giving [(cisplatin)₂(MsO⁻)₂ \subset **C**]²⁺ and e) release of guests and formation of metallacycle **M** through addition of 4 equivalents of [NBu₄]Cl.

4 Binding studies

4.1 Mesylate

A series of ¹H NMR spectra (500 MHz, d_7 -DMF, 298 K) were obtained in d_7 -DMF (650 µL) of cage **C** (0.58 mM) in the presence of varying mole equivalents of [NBu₄](CH₃SO₃). The change in chemical shift ($\Delta\delta$) against zero equivalents of mesylate of proton H_e, the proton *ortho* to the coordinating nitrogen on the exterior face of the cage, was plotted against the number of equivalents, giving a plot consistent with binding capacity of two mesylate anions per cage, using the mole-ratio method.^[2] Binding constants were obtained using a 2:1 binding isotherm, fitting experimental data to calculated values iteratively (K₁ = 1000 ± 100 M⁻¹, K₂ = 180 ± 20 M⁻¹).^[3]

Figure 5.1 Plot of $\Delta\delta$ (ppm) of H_e (500 MHz, d_{τ} -DMF, 298 K) against the number of equivalents of [NBu₄](CH₃SO₃) per cage **C** (\blacklozenge observed, **\blacksquare** calculated). The first linear trendline fitted through the first six data points (0, 0.25, 0.5, 0.75, 1.0 and 1.5 equivalents) and the second through the final four data points (4, 6, 8 and 10 equivalents).

4.2 Cisplatin

A series of ¹H NMR spectra (500 MHz, d_7 -DMF, 298 K) were obtained in d_7 -DMF (650 µL) of cage **C** (0.58 mM) in the presence of varying mole equivalents of cisplatin. The change in chemical shift ($\Delta\delta$) against zero equivalents of cisplatin of proton H_e, the proton *ortho* to the coordinating nitrogen on the exterior face of the cage, was plotted against the number of equivalents. The changes in chemical shift were small and therefore the interaction was weak, but appeared sigmoidal in nature. Binding constants were obtained using a 2:1 binding isotherm, fitting experimental data to calculated values iteratively (K₁ = 2 M⁻¹ ± 1, K₂ = 5 M⁻¹ ± 2).^[3]

Figure 5.2 Plot of $\Delta\delta$ (ppm) of H_e (500 MHz, d_7 -DMF, 298 K) against the number of equivalents of cisplatin per cage **C** (\blacklozenge observed, \blacksquare calculated).

5 Molecular model of [(cisplatin)₂(MsO⁻)₂ C]²⁺

Figure 4.1 Energy minimised molecular model (SPARTAN '14) of [(cisplatin)₂(MsO⁻)₂⊂**C**]²⁺, tube representation of **C** and spacefilling representation of guests.

6 ¹H DOSY NMR data

Table 5.1 ¹H DOSY NMR–derived diffusion coefficients (*D*) for compounds **C**, **M** and **L** (500 MHz, *d*₇-DMF, 298 K).

Compound	Diffusion coefficient (D)		
Compound	x 10 ⁻¹⁰ m ² s ⁻¹		
С	2.16		
М	3.10		
L	4.56		

Figure 6.1 Overlaid partial ¹H DOSY NMR spectra (500 MHz, d_T DMF, 298 K) showing diffusion of **C** (blue), **M** (red), and **L** (green).

7 X-ray data

7.1 Ligand L

An aqueous solution of **L** was allowed to evaporate, giving colourless needle-shaped crystals of **L**. Xray data were collected at 100 K on an Agilent Technologies Supernova system using Cu K α radiation with exposures over 1.0°, and data were treated using CrysAlisPro^[4] software. The structure was solved using SIR-97^[5] and weighted full-matrix refinement on F^2 was carried out using SHELXL-2013^[6] running within the WinGX^[7] package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and refined using a riding model.

The structure was solved in the monoclinic space group $P2_1/c$ and refined to an R_1 value of 4.1%. Present in the asymmetric unit is a molecule of ligand **L**.

Figure 7.1 Ellipsoid Mercury representation of the asymmetric unit of L. Ellipsoids shown at 50% probability level.

7.2 Cage [(H₂O)₄⊂C](BF₄)₄

A mixture of diethyl ether and an acetonitrile solution of **C** was shaken violently. The mixture was allowed to stand at room temperature overnight and gave yellow crystals of $[(H_2O)_4 \subset C](BF_4)_4$. X-ray data were collected at 100 K on an Agilent Technologies Supernova system using Cu K α radiation with exposures over 1.0°, and data were treated using CrysAlisPro^[4] software. The structure was solved using SIR-97^[5] and weighted full-matrix refinement on F^2 was carried out using SHELXL-97^[6] running within the WinGX^[7] package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbon atoms were placed in calculated positions and refined using a riding model. Hydrogen atoms attached to oxygen atoms were placed in calculated positions and orientated with sensible hydrogen-bonding acceptors.

The structure was solved in the triclinic space group P^{1} and refined to an R_{1} value of 7.5%. Present in the asymmetric unit is half of a C^{4+} cation, two BF_{4}^{-} anions and four solvent water molecules (each with 50% occupancy), encapsulated in the C^{4+} cation.

One of the BF_4^- anions was disordered and modelled with the PART command with occupancies of 60% (B2 and F5 to F8) and 40% (B3 and F9 to F12) over two sites. The minor component was modelled with the SAME command. The two solvent water molecules were disordered and modelled

with the PART command with occupancies of 50% over two sites. The DFIX command was used to fix all O-H distances in solvent water molecules to 0.85 Å. The ISOR command was applied to solvent water oxygen atoms O50 and O51.

Figure 7.2 Ellipsoid Mercury representation of the asymmetric unit of $[(H_2O)_4 \subset C](BF_4)_4$. Ellipsoids shown at 50% probability level.

The crystal lattice contained a small amount of diffuse electron density (outside the cavity of the C^{4+} cation) that could not be appropriately modelled. The SQUEEZE routine within PLATON was employed to resolve this problem, resulting in void electrons count of 17 that was assigned to two solvent water molecules (16 electrons in total).

Table 6.1 SQUEEZE results for $[(H_2O)_4 \subset C](BF_4)_4$.

Platon squeeze void number	1	2
Platon squeeze void average x	0.264	0.736
Platon squeeze void average y	0.877	0.122
Platon squeeze void average z	0.595	0.405
Platon squeeze void volume	26.1	26.1
Platon squeeze void count electrons	9.2	8.2
Platon squeeze details	Solvent water molecules that cou	Ild not be appropriately modelled

In the crystal structure of $[(H_2O)_4 \subset C](BF_4)_4$, one of the BF_4^- counterions was cradled in the diglyme chains above the palladium ion on the exterior of the cage, aligned such that fluoride atom (F4) was pointed towards the palladium ion (Fig 3.3). This fluoride atom was involved in quadfurcated hydrogen bonding to the four exohedral H_e protons (hydrogen bonding distances from 2.179(4) to 2.665(5) Å) as well as interaction with the metal (a Pd – F distance of 3.088(5) Å).

Figure 7.3 Partial ball and stick model of the crystal structure of $[(H_2O)_4 \subset C](BF_4)_4$, showing interactions between the fluoride F4 of a BF₄⁻ counterion and exohedral pyridyl protons and the palladium(II) centre. All hydrogen atoms except H6, H36, H24 and H53 omitted for clarity. Selected distances (Å): Pd1…F4 3.088(5), H6…F4 2.665(5), H24…F4 2.179(4), H36…F4 2.306(4), H53…F4 2.541(3).

7.3 Metallacycle M

Vapour diffusion of diethyl ether into a solution of **C** in DMF in the presence of a chloride source gave yellow crystals of **M**. X-ray data were collected at 100 K on an Agilent Technologies Supernova system using Cu K α radiation with exposures over 1.0°, and data were treated using CrysAlisPro^[4] software. The structure was solved using SIR-97^[5] and weighted full-matrix refinement on F^2 was carried out using SHELXL-97^[6] running within the WinGX^[7] package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbon atoms were placed in calculated positions and refined using a riding model.

The structure was solved in the monoclinic space group C2/m and refined to an R_1 value of 5.52%. Present in the asymmetric unit is one quarter of the metallacycle: consisting of half of ligand **L**, and half of one palladium(II) cation bound to two chloride atoms.

Figure 7.4 Ellipsoid Mercury representation of the asymmetric unit of M. Ellipsoids shown at 50% probability level.

The crystal lattice contained a large amount of diffuse electron density that could not be appropriately modelled. The SQUEEZE routine within PLATON was employed to resolve this problem, resulting in void electrons count of 116 that was assigned to two solvent DMF molecules and three water molecules (110 electrons in total).

Platon squeeze void number	1	2	3	4	5	6
Platon squeeze void average x	0.000	0.500	0.165	0.665	0.335	0.835
Platon squeeze void average y	0.000	0.500	0.500	0.000	0.000	0.500
Platon squeeze void average z	-0.006	0.016	0.475	0.475	0.525	0.525
Platon squeeze void volume	145	145	25	25	25	25
Platon squeeze void count electrons	54	54	2	2	2	2
Platon squeeze details	Solvent DMF	molecules and	water molecu modelled	les that could d	l not be appr	opriately

Table	6.2	SOLIFE7F	results	for	м
Table	0.2	JQULLZL	results	101	141

Figure 7.5 Ball and stick Mercury representation of a) stepwise packing of metallacycle M, b) non-classical hydrogen bonding exists between the terminal ether oxygen (O1) and the C-H *para* to the coordinating nitrogen (H8).

7.4 Cage [(DMF)₂(MsO⁻)₂⊂C](MsO⁻)₂

Cage **C** was combined with ten equivalents of $[NBu_4](CH_3SO_3)$ in d_7 -DMF. Vapour diffusion of diethyl ether into the solution gave colourless block crystals of $[(DMF)_2(MsO^-)_2 \subset C](MsO^-)_2 \cdot 2DMF$. X-ray data were collected at 100 K on an Agilent Technologies Supernova system using Mo K α radiation with exposures over 1.0°, and data were treated using CrysAlisPro^[4] software. The structure was solved using SIR-2011^[5] and weighted full-matrix refinement on F^2 was carried out using SHELXL-97^[6] running within the WinGX^[7] package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbon atoms were placed in calculated positions and refined using a riding model, or fixed in sensible geometries where necessary.

The structure was solved in the monoclinic space group $P2_1/n$ and refined to an R_1 value of 10.86%. Present in the asymmetric unit is one half of a cage (two of ligand **L**, and one Pd(II) centre), two mesylate counterions, and two DMF solvent molecules, one within the cavity and the other outside.

Figure 7.6 Ellipsoid Mercury representation of the asymmetric unit of $[(DMF)_2(MsO^{-})_2 \subset C](MsO^{-})_2 \cdot 2DMF$. Ellipsoids shown at 50% probability level.

The mesylate anion containing S71 was disordered and was modelled using the DFIX command for all constituent non-hydrogen atoms and the ISOR command for C71, O72 and O73. The encapsulated DMF solvent molecule was also disordered and was modelled using the ISOR command for C91, C92 and C93. One of the diglyme chains in the asymmetric unit (two per cage) was disordered. The disorder could not be resolved through parting, or from using the predominant Q-peaks and then squeezing. In addition, the terminal methyl group could not be located nor placed in a sensible position. Accordingly, the final eleven atoms in the chain ($CH_2CH_2OCH_3$) were not included in the structure and the SQUEEZE routine within PLATON was employed to resolve the problem of residual electron density, resulting in void electrons count of 364 that was assigned to the four missing chain ends (132 electrons), four DMF solvent molecules (160 electrons) and six water molecules (60 electrons) for a total of 352 electrons. The values of both the weighted *R* factor and w*R*₂ were high (0.380 for both), giving B alerts in the cif check.

Platon squeeze void number	1	2	3	4	5	6
Platon squeeze void average x	0.000	0.082	-0.082	0.500	0.418	0.582
Platon squeeze void average y	0.000	0.730	0.270	0.500	0.230	0.770
Platon squeeze void average z	0.000	0.357	0.643	0.500	0.143	0.857
Platon squeeze void volume	288	73	73	288	73	73
Platon squeeze void count electrons	55	18	18	55	18	18
Platon squeeze details	Solvent DMF molecules, water molecules and diglyme chain subsitutents that could not be appropriately modelled					ents that

Table 6.3 SQUEEZE results for [C⊂(DMF)₂(MsO⁻)₂](MsO⁻)₂·2DMF.

The largest Q-peak, Q1, together with Q6 and Q7, located within an area of electron density possibly consisting of an unresolved DMF molecule. Q2, Q3 and Q5 located around the mesylate counterion not bound to the exohedral palladium face. Q4 is located within the region where the diglyme chain could not be appropriately modelled.

The internal cavity of the cage is inhabited by two symmetry equivalent solvent DMF molecules. Two symmetry equivalent mesylate anions are cradled in the diglyme chains on the exohedral face of the palladium(II) centres.

Figure 7.7 Ball and stick Mercury representation of cage $[Pd_2L_4]^{4+}$ with spacefilling representation of two DMF solvent molecules and two mesylate anions bound endohedrally and exohedrally respectively.

The oxygen on the mesylate anion directed towards the palladium (O61) is involved in quadfurcated non-classical hydrogen bonding to the four exohedral protons *ortho* to the coordinating nitrogen atoms (H9, H26, H42 and H53), and an interaction with the palladium(II) metal.

Figure 7.8 Partial ball and stick model of the crystal structure of $[(DMF)_2(MsO^-)_2 \subset \mathbb{C}](MsO^-)_2 \cdot 2DMF$. showing interactions between O61 of a mesylate, and exohedral pyridinyl protons or the palladium(II) centre. Some hydrogen atoms omitted for clarity; H9, H26, H42 and H53 shown. Selected distances (Å): Pd1…O61 2.886(4), H9…O61 2.295, H26…O61 2.493, H42…O61 2.275, H53…O61 2.499.

7.5 Crystallographic data

Identification code	Ligand L		Cage [(H₂O)₄⊂C](BF₄)₄			
Empirical formula	C ₂₉ H ₃₁ N ₃ O ₆		$C_{116}\ H_{132}\ B_{4}\ F_{16}\ N_{12}\ O_{28}\ Pd_{2}$			
Formula weight	517.57		2702.38			
Temperature	100.0	(2) K	100.0(1) K			
Wavelength	1.541	.84 Å	1.5	1.54184 Å		
Crystal system	Mono	clinic	Tr	Triclinic		
Space group	P 2	1/c		ρ1		
Unit cell dimensions	a = 19.2486(2) Å	α= 90°	a = 14.8562(5) Å	α= 117.401(3)°		
	b = 10.91640(10) Å	β= 93.1170(10)°	b = 16.5839(5) Å	β= 93.110(2)°		
	c = 12.41140(10) Å	γ = 90°	c = 16.9982(4) Å	$\gamma = 114.691(3)^{\circ}$		
Volume	2604.0	9(4) ų	3216.	53(16) ų		
Z	4	Ļ	1			
Density (calculated)	1.320 1	Mg/m ³	1.395 Mg/m ³			
Absorption coefficient	Absorption coefficient 0.763 mm ⁻¹		3.098 mm ⁻¹			
F(000)	1096		1392			
Crystal size	0.27 x 0.22 x 0.09 mm ³		0.24 x 0.09 x 0.05 mm ³			
Theta range for data collection	ion 4.60 to 76.78°		3.08	to 76.54°		
Index ranges	idex ranges -23<=h<=24, -13<=k<=13, -15<=l<=11		-18<=h<=18, -20-	<=k<=20, -19<=l<=21		
Reflections collected	406	606	39257			
Independent reflections	5459 [<i>R</i> (_{int}) = 0.0409]		13327 [<i>R</i> (_{int}) = 0.0675]			
Completeness	100.00%		100.00%			
	to theta = 67.00°		to theta = 77.03°			
Absorption correction	Gaus	sian	Gaussian			
Max. and min. transmission	0.987 an	id 0.966	0.890 and 0.679			
Refinement method	Full-matrix leas	t-squares on F ₂	Full-matrix least-squares on F2			
Data / restraints / parameters	5459/	0 / 345	13327 / 30 / 869			
Goodness-of-fit on F2	1.0	98	1.121			
Final R indices [I>2sigma(I)]	$R_1 = 0.0413, v$	$wR_2 = 0.1046$	$R_1 = 0.0749$, w $R_2 = 0.2070$			
R indices (all data)	$R_1 = 0.0444$, w $R_2 = 0.1066$		$R_1 = 0.1015, wR_2 = 0.2251$			
Largest diff. peak and hole	0.267 and -	0.238 e.Å⁻³	3.169 and -0.882 e.Å ⁻³			

Identification code	Metallacycle M		[(DMF)₂(MsO ⁻)₂⊂C](MsO ⁻)₂·2DMF.		
Empirical formula	C ₅₈ H ₆₂ Cl ₄ N ₆ O ₁₂ Pd ₂		$C_{126}H_{150}N_{16}O_{38}Pd_{2}S_{4}$		
Formula weight	138	9.74	2837.66		
Temperature	100.02	1(10) K	100.01(10) K		
Wavelength	1.543	184 Å	0.	71073 Å	
Crystal system	Mono	oclinic	Monoclinic		
Space group	C2	/m	P1 2 ₁ /n 1		
Unit cell dimensions	a = 13.8958(6) Å	α= 90°	a = 13.099 Å	α= 90°	
	b = 21.0537(7) Å	β= 101.982(4)°	b = 17.179 Å	β= 91.566(2)°	
	c = 11.1192(5) Å	γ = 90°	c = 32.2500(10) Å	γ = 90°	
Volume	3182.1	1(2) Å ³	725	54.4(2) Å ³	
Z	2	2	2		
Density (calculated)	1.450 Mg/m ³		1.299 Mg/m ³		
Absorption coefficient	6.618 mm ⁻¹		0.384 mm ⁻¹		
F(000) 1416			2956		
Crystal size 0.17 x 0.13 x 0.08 mm ³		x 0.08 mm ³	0.33 x 0.	19 x 0.16 mm³	
Theta range for data collection	3.87 to	76.32°	2.90 to 26.02°		
Index ranges	-11<=h<=17, -26<=	=k<=26, -11<=l<=13	-14<=h<=16, -21<=k<=21, -39<=l<=39		
Reflections collected	76	517	105476		
Independent reflections	3299 [<i>R</i> (_{int}) = 0.0258]		14267 [<i>R</i> (_{int}) = 0.0381]		
Completeness	98.80% to theta = 67.00°		99.80% to theta = 26.02°		
Absorption correction	Gaussian		Gaussian		
Max. and min. transmission	1.00000 and 0.47054		1.00000 and 0.63630		
Refinement method	Full-matrix least-squares on F2		Full-matrix least-squares on F ₂		
Data / restraints / parameters	3299 /	0/191	14267 / 58 / 838		
Goodness-of-fit on F2	1.0)86	1.86		
Final R indices [I>2sigma(I)]	$R_1 = 0.0552,$	$wR_2 = 0.1589$	$R_1 = 0.1103$, w $R_2 = 0.3733$		
R indices (all data)	$R_1 = 0.0627$, w $R_2 = 0.1674$		$R_1 = 0.1201$, w $R_2 = 0.3871$		
Largest diff. peak and hole	2.795 and	-1.107 e.Å ⁻³	4.230 and -1.480 e.Å ⁻³		

8 References

- [1] V. Gudipati, D. P. Curran, C. S. Wilcox, J. Org. Chem. 2006, 71, 3599-3607.
- [2] A. S. Meyer, Jr., G. H. Ayres, J. Am. Chem. Soc. **1957**, 79, 49-53.
- [3] R. D. Sommer, A. L. Rheingold, A. J. Goshe, B. Bosnich, *J. Am. Chem. Soc.* **2001**, *123*, 3940-3952.
- [4] CrysAlisPro; Agilent Technologies: Yarnton, England, 2012.
- [5] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G.
 Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115-119.
- [6] G. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112-122.
- [7] L. Farrugia, J. Appl. Cryst. **1999**, 32, 837-838.