Supporting Information

Metal-free C(3)-H arylation of coumarins promoted by catalytic amounts of 5,10,15,20-tetrakis(4-diethylaminophenyl)porphyrin

Masahiro Kojima, Kounosuke Oisaki*, and Motomu Kanai*

Graduate School of Pharmaceutical Sciences, The University of Tokyo
Kanai Life Science Catalysis Project, ERATO, Japan Science Technology Agency,
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Phone: +81-3-5841-4835 (Oisaki); +81-3-5841-4830 (Kanai), Fax: +81-3-5684-5206
Email: oisaki@mol.f.u-tokyo.ac.jp (Oisaki); kanai@mol.f.u-tokyo.ac.jp (Kanai)

Contents
1. General Method
2. General Procedure for the Arylation of Coumarins
3. Preliminary Mechanistic Study
4. Syntheses of Catalysts and Substrates
5. Characterization of Target Compounds
6. References
7. NMR Charts

1. General Method

1H NMR spectra were recorded on JEOL ECX500 (500 MHz for 1H NMR and 125.65 MHz for 13C NMR), and JEOL ECS400 (400 MHz for 1H NMR, 100 MHz for 13C NMR and 368 MHz for 19F NMR) spectrometer. For 1H NMR and 13C NMR, chemical shifts were reported in the scale relative to the solvent used as an internal reference. For 19F NMR, chemical shifts were reported relative to hexafluorobenzene ($\delta = -164.90$ ppm) as an external reference. Electrospray ionization (ESI)-mass spectra were measured on a JEOL JMS-T100LC AccuTOF spectrometer for HRMS. Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. Microwave irradiation was performed with Biotage Initiator. ICP analysis was conducted with Shimadzu ICPS-7510. Column chromatographies were performed with silica gel Merck 60 (230-400 mesh ASTM). Gel permeation chromatography (GPC) purification was conducted on a Japan Analytical Industry Co., Ltd. LC9210NEXT equipped with JAIGEL-1H and JAIGEL-2H, and CHCl$_3$ was used as an eluent. All non-electronic supplementary material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015
commercially available compounds were prepared and characterized as described in Section 4 of this SI. Other reagents were purchased from Aldrich, Tokyo Chemical Industry Co., Ltd. (TCI), Kanto Chemical Co., Inc., and Wako Pure Chemical Industries, Ltd. and were used as received.
2. General Procedure for the Arylation of Coumarins

![Chemical Reaction Diagram]

4-Fluorobenzenediazonium tetrafluoroborate (2d) (52.5 mg, 0.25 mmol), 7-ethoxycoumarin (1d) (238 mg, 1.25 mmol) and 5,10,15,20-tetrakis(4-diethylaminophenyl)porphyrin (4e) (22.5 mg, 0.025 mmol) were added in a dry test tube under argon atmosphere. Degassed DMSO (0.5 ml) was added into the tube, and the reaction mixture was stirred for 16 hours at 40 °C. After cooling the reaction to room temperature, the mixture was absorbed in silica gel and subjected to column chromatography (EtOAc/n-hexane = 2/13), which afforded pure 3m (47.9 mg, 0.169 mmol) in 67% yield as white solid.
3. Preliminary Mechanistic Study
a) Aryl radical trapping experiment

Considering that Meerwein arylation proceeds via an aryl radical intermediate, we performed an aryl radical trapping experiment to see whether aryl radicals involve in the present reaction (Scheme S1).

Scheme S1: Detection of an aryl radical intermediate

To a stirred solution of TEMPO (6.2 mg, 0.040 mmol), coumarin (29.2 mg, 0.20 mmol) and 4e (18.0 mg, 0.020 mmol) in DMSO (1.0 ml) was added a solution of aryldiazonium tetrafluoroborate (0.20 mmol) in DMSO (1.0 ml). After 20 hours, water (20 ml) was added, and products were extracted with EtOAc (20 ml x 3). The combined organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified as described below. Attempts to isolate 7d with column chromatography (with SiO₂, neutral silica or alumina) or GPC were unsuccessful possibly because of facile decomposition of 7d. 3-Arylcoumarins were not observed in all the cases. The efficient TEMPO-trapping as well as the absence of 3-arylcoumarin products support that aryl radicals are the key intermediate for the present C-C bond formation.

<table>
<thead>
<tr>
<th>R</th>
<th>product</th>
<th>yield (based on ArN₂BF₄)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
<td>7a</td>
<td>16%</td>
</tr>
<tr>
<td>CO₂Et</td>
<td>7b</td>
<td>14%</td>
</tr>
<tr>
<td>H</td>
<td>7c</td>
<td>12%</td>
</tr>
<tr>
<td>OMe</td>
<td>7d</td>
<td>decomposed</td>
</tr>
</tbody>
</table>

2,2,6,6-tetramethyl-1-(4-nitrophenoxypiperidine (7a)

Purified by column chromatography (EtOAc/n-hexane = 2/55). NMR spectra of the obtained product were consistent with the reported one.¹

4-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)benzoate (7b)
Purified by column chromatography (Et₃N/EtOAc/n-hexane = 1/2.5/100). ¹H NMR (CDCl₃): δ = 7.91 (2H, d, J = 9.2 Hz), 7.19 (2H, s), 4.31 (2H, q, J = 7.2 Hz), 1.67-1.54 (6H, m), 1.34 (3H, t, J = 7.2 Hz), 1.21 (6H, s), 0.97 (6H, s); ¹³C NMR (CDCl₃): δ = 167.38, 166.56, 130.99, 122.31, 113.69, 60.56, 60.42, 39.67, 32.35, 20.42, 16.95, 14.41; HRMS (ESI): m/z calcd for C₁₈H₂₇NO₃Na [M+Na]⁺ 328.1883 Found 328.1885; IR (KBr): 2977, 2932, 1715, 1602, 1501, 1272, 1252, 1150, 1109, 1095 cm⁻¹

2,2,6,6-tetramethyl-1-phenoxypiperidine (7c)

Purified by column chromatography (Et₃N/n-hexane = 1/100). NMR spectra of the obtained product were consistent with the reported one.²

b) Benzyl radical detection experiment

Compound S1a was prepared and subjected to the reaction conditions in order to determine the presence of benzyl radical intermediate. Based on a concept of “radical clock,”³a,³b cyclopropane opening should occur if benzyl radical intermediate was generated. As the observed product S3a is formed through ring-opening of cyclopropane, benzyl radical intermediate is likely to have involved in the present reaction.³c Product with the cyclopropane moiety remained (S3b) was not obtained. These results also indicate that 4-methoxybenzenediazonium tetrafluoroborate reacts via radical pathway.

Scheme S2: A radical clock experiment

4-methoxybenzenediazonium tetrafluoroborate (2a) (22.2 mg, 0.10 mmol), 4-
cyclopropyl-2H-chromen-2-one (S1a) (18.6 mg, 0.10 mmol) and 5,10,15,20-tetrakis(4-diethylaminophenyl)porphyrin (4e) (9.0 mg, 0.010 mmol) were added in a dry test tube under argon atmosphere. Degassed DMSO (0.2 ml) was added into the tube, and the reaction mixture was stirred for 10 hours at 40 °C. After cooling the reaction to room temperature, the mixture was absorbed in silica gel and subjected to column chromatography (EtOAc/n-hexane = 1/5) and then subjected to GPC, which afforded pure S3a (2.0 mg, 0.0068 mmol) in 7% yield as white solid.

4-allyl-3-(4-methoxyphenyl)-2H-chromen-2-one (S3a)

\[
\begin{align*}
\text{H NMR (CDCl}_3): \delta &= 7.65 (1H, dd, J = 7.4, 1.4 \text{ Hz}), 7.50 (1H, dt, J = 7.9, 1.4 \text{ Hz}), 7.36 (1H, dd, J = 8.2, 1.1 \text{ Hz}), 7.29-7.23 (3H, m), 6.95 (2H, d, J = 9.0 \text{ Hz}), 5.93 (1H, m), 5.14 (1H, dd, J = 10.7, 1.4 \text{ Hz}), 4.99 (1H, dd, J = 17.6, 1.2 \text{ Hz}), 3.83 (3H, s), 3.44 (2H, d, J = 5.7 \text{ Hz}) \quad ; \quad ^{13}C \text{ NMR (CDCl}_3): \delta = 161.43, 159.58, 152.95, 148.46, 134.21, 131.13, 130.81, 127.85, 126.27, 125.87, 124.15, 119.61, 117.85, 116.97, 113.87, 55.29, 33.93; \quad \text{HRMS (ESI): } m/z \text{ calcd for C}_{19}H_{16}O_3Na [M+Na]^+ 315.0992 \text{ Found 315.0994; IR (KBr): 1711, 1595, 1509, 1449, 1248, 1164, 1148, 835 cm}^{-1}
\end{align*}
\]

c) Solubility measurement of 4d and 4e

In order to rationalize the difference in reactivity between 4d and 4e, their solubility in DMSO was evaluated. To an Eppendorf tube, 4d or 4e (50 mg) and DMSO (1 mL) were added. The tube was subjected to vortex mixing for 5 minutes and centrifuged (100,000 rpm for 5 minutes). Then 0.1 mL of their supernatant was transferred to a glass vial, which was freezeed with liquid nitrogen and dried under high vacuum. After the removal of solvent, solid from the supernatant of 4d weighed 0.33 mg whereas that from 4e weighed 4.10 mg. These results suggested that the solubility of 4d is 3.3 g/L (= 4.2 mM) and 4e is 41.0 g/L (= 46 mM). Therefore, their maximum concentration in the standard reaction conditions (0.5 M to aryl diazonium tetrafluoroborate) corresponds to 0.84 mol% for 4d and 9.2 mol% for 4e. These inherent difference in solubility could be one crucial factor for the catalytic reactivity.
4. Syntheses of Catalysts and Substrates

(4-A) Synthesis of 4e

5,10,15,20-tetrakis(4-diethylaminophenyl)porphyrin (4e)

4e can be synthesized as was reported previously.\(^4\) We also developed a new procedure for shorter reaction time and better reproducibility. 4-Diethylaminobenzaldehyde (2.5 g, 14.1 mmol) and freshly distilled pyrrole (0.875 ml, 12.6 mmol) were heated to 250 °C under microwave irradiation in a sealed tube for 12 hours. Then the reaction mixture was cooled to room temperature and was suspended into acetone (125 ml). The suspension was filtered and washed several times with acetone. The solid was dried under vacuum and pure 5,10,15,20-tetrakis(4-diethylaminophenyl)porphyrin was obtained (206.7 mg, 0.230 mmol) in 7% yield as black solid.

5,10,15,20-tetrakis(4-diethylaminophenyl)porphyrin (4e)

\[^1\text{H} \text{NMR} (\text{CDCl}_3): \delta = 8.92 (8\text{H, s}), 8.08 (8\text{H, d, } J = 8.8 \text{ Hz}), 7.04 (8\text{H, d, } J = 9.1 \text{ Hz}), 3.61 (16\text{H, q, } J = 7.1 \text{ Hz}), 1.39 (24\text{H, t, } J = 7.1 \text{ Hz}), -2.54 (2\text{H, s});[^13]C \text{ NMR} (\text{CDCl}_3): \delta = 147.21, 136.15, 129.71, 128.90, 120.41, 110.01, 44.57, 12.86 (one aromatic carbon is overlapped or unidentified); \text{HRMS (ESI): } m/z \text{ calcld for } \text{C}_{60}\text{H}_{67}\text{N}_8 [\text{M+H}]^+ 899.5483 \text{ Found 899.5484}; \text{IR (KBr): } 2968, 1606, 1519, 1353, 1265, 1194, 800 \text{ cm}^{-1}.\]

(4-B) Synthesis of aryl diazonium tetrafluoroborates

All the aryl diazonium tetrafluoroborates were synthesized according to the reported
(4-C) Synthesis of 1h

\[\text{N}(2\text{-oxo-2H-chromen-6-yl)pivalamide (1h)} \]

\[\text{O} \quad \text{O} \quad \text{S2} \quad \text{PivCl, Et}_3\text{N} \quad \text{O} \quad \text{O} \quad \text{NH}_{\text{Piv}} \]

6-Nitrocoumarin (1.91 g, 10 mmol) and SnCl\(_2\) (6.17 g, 33 mmol) were suspended in concentrated HCl (100 ml) and heated to 75 °C for 1 hour. Then the reaction mixture was cooled to 0 °C on ice bath and basified with saturated NH\(_3\) aqueous solution (120 ml). The resulting suspension was filtered, washed with H\(_2\)O and extracted with acetone. Concentration of the acetone extract afforded 6-aminocoumarin (S2) (1.22 g, 7.5 mmol) in 75% yield as yellow solid.

6-aminocoumarin (S2)

\[\text{O} \quad \text{O} \quad \text{NH}_{\text{2}} \]

NMR spectra of the obtained product were consistent with the reported one.\(^6\)

A solution of 6-aminocoumarin (600 mg, 3.73 mmol) and Et\(_3\)N (0.624 ml, 4.48 mmol) in dichloromethane (7.5 ml) were cooled to 0 °C and PivCl (0.483 ml, 3.92 mmol) was added dropwise. The reaction mixture was warmed to room temperature and was stirred for 3 hours. Then the reaction mixture was washed with water three times. The organic layer was dried with Na\(_2\)SO\(_4\), filtered and concentrated to afford \(\text{N}(2\text{-oxo-2H-chromen-6-yl)pivalamide (1h)}\) (815 mg, 3.07 mmol) in 82% yield as white solid.

\(\text{N}(2\text{-oxo-2H-chromen-6-yl)pivalamide (1h)}\)

\[\text{O} \quad \text{O} \quad \text{NH}_{\text{Piv}} \]

\(^1\text{H NMR (CDCl}_3\): } \delta = 8.04 (1\text{H}, \text{d}, \text{J} = 2.3 \text{ Hz}), 7.65 (1\text{H}, \text{d}, \text{J} = 9.8 \text{ Hz}), 7.38 (1\text{H}, \text{s}), 7.37 (1\text{H}, \text{dd}, \text{J} = 8.9, 2.3 \text{ Hz}), 7.26 (1\text{H}, \text{d}, \text{J} = 8.9 \text{ Hz}), 6.41 (1\text{H}, \text{d}, \text{J} = 9.8 \text{ Hz}), 1.32 (9\text{H}, \text{s}); ^{13}\text{C NMR (CDCl}_3\): } \delta = 177.03, 160.77, 150.24, 143.48, 134.62, 123.90, 118.83, 118.76, 116.97, 116.93, 39.59, 27.46; \text{HRMS (ESI): m/z calcd for C}_{18}\text{H}_{18}\text{O}_2\text{Na} \]
[M+Na]$^+$ 268.0944 Found 268.0934; IR (KBr): 3262, 2984, 1735, 1650, 1573, 1536, 1435, 1156, 822 cm$^{-1}$

(4-D) Synthesis of S1a

4-cyclopropyl-2H-chromen-2-one (S1a)

To a flame-dried flask was added ZnCl$_2$ (1M in diethyl ether: 4.0 ml, 4.0 mmol) and cyclopropyl magnesium bromide (0.5 M in THF: 8.0 ml, 4.0 mmol). The resulting suspension was stirred at 50 °C for 40 minutes. The suspension was cooled to room temperature and its supernatant was used for the reaction.

2-oxo-2H-chromen-4-yl trifluoromethanesulfonate was prepared as reported previously.7 To a stirred suspension of Pd(PPh$_3$)$_4$ (46.0 mg, 0.040 mmol) and 2-oxo-2H-chromen-4-yl trifluoromethanesulfonate (58.8 mg, 0.20 mmol) in dry THF (0.5 ml), the supernatant (1.8 ml, 0.6 mmol of cyclopropyl zinc chloride) was added. The mixture was stirred at 50 °C for 11 hours. After cooling to room temperature, the reaction was quenched with 1N HCl. After extraction with EtOAc, the combined organic layer was dried over Na$_2$SO$_4$, filtered and concentrated under reduced pressure. Purification by column chromatography (EtOAc/n-hexane = 1/10 to 1/5) afforded 4-cyclopropyl-2H-chromen-2-one (S1a) (15.2 mg, 0.082 mmol) in 41% yield as white solid.

4-cyclopropyl-2H-chromen-2-one (S1a)

1H NMR (CDCl$_3$): δ = 7.79 (1H, d, J = 8.6 Hz), 6.87 (1H, dd, $J = 8.6, 2.6$ Hz), 6.80 (1H, d, $J = 2.6$ Hz), 5.87 (1H, s), 3.86 (3H, s), 2.08-2.02 (1H, m), 1.13-1.09 (1H, m), 0.83-0.80 (1H, m); 13C NMR (CDCl$_3$): δ = 161.44, 157.66, 153.37, 131.62, 124.63, 124.12, 120.17, 117.07, 110.33, 11.95, 8.01; HRMS (ESI): m/z calcd for C$_{12}$H$_{10}$O$_2$Na [M+Na]$^+$ 209.0573 Found 209.0557; IR (KBr): 1719, 1609, 1408, 1281, 1208, 1137, 841 cm$^{-1}$
5. Characterization of Target Compounds

3-(4-methoxyphenyl)-2H-chromen-2-one (3a)

Purified by GPC. NMR spectra of the obtained product were consistent with the reported one.8

3-(4-methoxyphenyl)-6-methyl-2H-chromen-2-one (3b)

Purified by GPC. NMR spectra of the obtained product were consistent with the reported one.8

7-methoxy-3-(4-methoxyphenyl)-2H-chromen-2-one (3c)

Purified by GPC. NMR spectra of the obtained product were consistent with the reported one.8

7-ethoxy-3-(4-methoxyphenyl)-2H-chromen-2-one (3d)

Purified by GPC. NMR spectra of the obtained product were consistent with the reported one.8

7-hydroxy-3-(4-methoxyphenyl)-2H-chromen-2-one (3e)

Purified by GPC. NMR spectra of the obtained product were consistent with the reported one.9
7-(diethylamino)-3-(4-methoxyphenyl)-2H-chromen-2-one (3f)

Purified by GPC. NMR spectra of the obtained product were consistent with the reported one.\(^8\)

3-(4-methoxyphenyl)-6-nitro-2H-chromen-2-one (3g)

Purified by GPC. NMR spectra of the obtained product were consistent with the reported one.\(^10\)

\(N\)-(3-(4-methoxyphenyl)-2-oxo-2H-chromen-6-yl)pivalamide (3h)

Purified by GPC. \(^1\)H NMR (CDCl\(_3\)): \(\delta = 8.05\) (1H, d, \(J = 2.5\) Hz), 7.68 (1H, s), 7.63 (2H, d, \(J = 9.2\) Hz), 7.44 (1H, s), 7.36 (1H, dd, \(J = 9.0, 2.5\) Hz), 7.26 (1H, d, \(J = 8.9\) Hz), 6.95 (2H, d, \(J = 9.2\) Hz), 3.83 (3H, s), 1.32 (9H, s); \(^13\)C NMR (CDCl\(_3\)): \(\delta = 176.85, 160.72, 160.21, 149.69, 138.31, 134.46, 129.83, 128.31, 126.95, 122.97, 119.99, 118.51, 116.59, 113.94, 55.35, 39.65, 27.57\); HRMS (ESI): \(m/z\) calcd for \(C_{21}H_{21}NO_3\) Na \([M+Na]^+\) 374.1363 Found 374.1363; IR (KBr): 3282, 2967, 1725, 1649, 1514, 1253, 826 cm\(^-1\)

7-(diethylamino)-3-(4-methoxyphenyl)-4-methyl-2H-chromen-2-one (3i)

Purified by GPC. \(^1\)H NMR (CDCl\(_3\)): \(\delta = 7.42\) (1H, d, \(J = 9.0\) Hz), 7.20 (2H, d, \(J = 9.0\) Hz), 6.94 (2H, d, \(J = 10.0\) Hz), 6.59 (1H, dd, \(J = 9.0, 2.5\) Hz), 6.52 (1H, d, \(J = 2.5\) Hz), 3.40 (4H, q, \(J = 7.2\) Hz), 1.19 (6H, t, \(J = 7.0\) Hz); \(^13\)C NMR (CDCl\(_3\)): \(\delta = 162.25, 158.87, 154.91, 150.03, 148.06, 131.58, 127.44, 125.98, 120.65, 113.65, 109.53, 108.47, 97.39, 55.20, 44.66, 16.26, 12.39\); HRMS (ESI): \(m/z\) calcd for \(C_{21}H_{22}NO_3\) Na \([M+Na]^+\) 360.1570 Found 360.1587; IR (KBr): 2966, 1703, 1617, 1578, 1524, 1273, 1248, 1073 cm\(^-1\)
4-hydroxy-3-(4-methoxyphenyl)-2H-chromen-2-one (3j)

Purified by GPC. NMR spectra of the obtained product were consistent with the reported one.\(^{11}\)

7-ethoxy-3-phenyl-2H-chromen-2-one (3k)

Purified by column chromatography (EtOAc/\(n\)-hexane = 1/6). \(^1\)H NMR (CDCl\(_3\)): \(\delta = 7.73\) (1H, s), 7.66 (2H, d, \(J = 7.1\) Hz), 7.43-7.33 (4H, m), 6.85-6.79 (2H, m), 4.08 (2H, q, \(J = 7.2\) Hz), 1.44 (3H, t, \(J = 7.1\) Hz); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta = 161.97, 160.90, 155.28, 140.03, 135.03, 128.78, 128.37, 128.35, 124.61, 113.17, 113.11, 100.83, 64.15, 14.53\) (one carbon is overlapped); HRMS (ESI): \(m/z\) calcd for C\(_{17}\)H\(_{14}\)O\(_3\)Na [M+Na]\(^+\) 289.0835 Found 289.0844; IR (KBr): 2977, 1711, 1604, 1274, 823, 783, 692 cm\(^{-1}\)

7-ethoxy-3-(p-tolyl)-2H-chromen-2-one (3l)

Purified by column chromatography (EtOAc/\(n\)-hexane = 2/13). \(^1\)H NMR (CDCl\(_3\)): \(\delta = 7.70\) (1H, s), 7.57 (2H, d, \(J = 8.2\) Hz), 7.38 (1H, d, \(J = 8.5\) Hz), 7.22 (2H, d, \(J = 8.0\) Hz), 6.82 (1H, dd, \(J = 8.5, 2.3\) Hz), 6.81 (1H, d, \(J = 2.5\) Hz), 4.08 (2H, q, \(J = 7.1\) Hz), 2.37 (3H, s), 1.44 (3H, t, \(J = 7.1\) Hz); \(^{13}\)C NMR (CDCl\(_3\)): \(\delta = 161.81, 161.00, 155.17, 139.40, 138.34, 132.13, 129.08, 128.66, 128.22, 124.62, 113.27, 113.04, 100.82, 64.13, 21.22, 14.54\); HRMS (ESI): \(m/z\) calcd for C\(_{18}\)H\(_{16}\)O\(_3\)Na [M+Na]\(^+\) 303.0992 Found 303.0994; IR (KBr): 1704, 1606, 1268, 1180, 1120, 1038, 822 cm\(^{-1}\)

7-ethoxy-3-(4-fluorophenyl)-2H-chromen-2-one (3m)

Purified by column chromatography (EtOAc/\(n\)-hexane = 2/13). \(^1\)H NMR (CDCl\(_3\)): \(\delta = 7.70\) (1H, s), 7.64 (2H, dd, \(J = 9.2, 5.5\) Hz), 7.39 (1H, d, \(J = 8.7\) Hz),
7.09 (2H, dd, J = 8.9, 8.9 Hz), 6.83 (1H, dd, J = 8.7, 2.5 Hz), 6.80 (1H, d, J = 2.3 Hz), 4.08 (2H, q, J = 7.2 Hz), 1.44 (3H, t, J = 7.2 Hz); 19F NMR (CDCl3): δ = -115.96 (s, 1F); 13C NMR (CDCl3): δ = 162.76 (d, J = 252 Hz), 162.06, 160.87, 155.26, 139.88, 131.03 (d, J = 3.8 Hz), 130.17 (d, J = 8.1 Hz), 128.78, 123.56, 115.34 (d, J = 21.5 Hz), 113.21, 113.04, 100.84, 64.18, 14.52; HRMS (ESI): m/z calcld for C17H13O3FNa [M+Na]+ 307.0741 Found 307.0741; IR (KBr): 1706, 1604, 1513, 1274, 1240, 1177, 822 cm⁻¹

3-(4-chlorophenyl)-7-ethoxy-2H-chromen-2-one (3n)

Purified by column chromatography (EtOAc/n-hexane = 1/6). 1H NMR (CDCl3): δ = 7.73 (1H, s), 7.62 (2H, d, J = 8.7 Hz), 7.40 (1H, d, J = 8.7 Hz), 7.37 (2H, d, J = 8.4 Hz), 6.84 (1H, dd, J = 8.7, 2.3 Hz), 6.81 (1H, d, J = 2.3 Hz), 4.09 (2H, q, J = 7.2 Hz), 1.45 (3H, t, J = 7.1 Hz); 13C NMR (CDCl3): δ = 162.22, 160.69, 155.37, 140.11, 134.37, 133.45, 129.66, 128.88, 128.59, 123.37, 113.31, 112.99, 100.87, 64.22, 14.54; HRMS (ESI): m/z calcld for C17H13O3Na [M+Na]+ 323.0445 Found 323.0438; IR (KBr): 1713, 1611, 1507, 1363, 1270, 817 cm⁻¹

3-(4-bromophenyl)-7-ethoxy-2H-chromen-2-one (3o)

Purified by column chromatography (EtOAc/n-hexane = 1/6). 1H NMR (CDCl3): δ = 7.73 (1H, s), 7.57-7.52 (4H, m), 7.40 (1H, d, J = 8.6 Hz), 6.84 (1H, dd, J = 8.6, 2.6 Hz), 6.81 (1H, d, J = 2.3 Hz), 4.06 (2H, q, J = 7.1, Hz), 1.45 (3H, t, J = 7.0 Hz); 13C NMR (CDCl3): δ = 162.25, 160.62, 155.39, 140.11, 133.93, 131.55, 129.94, 128.90, 123.40, 122.60, 113.33, 113.00, 100.88, 64.23, 14.54; HRMS (ESI): m/z calcld for C17H13O3BrNa [M+Na]+ 366.9940 Found 366.9947; IR (KBr): 1711, 1611, 1507, 1363, 1270, 1176, 817 cm⁻¹

7-ethoxy-3-(4-iodophenyl)-2H-chromen-2-one (3p)

Purified by column chromatography (EtOAc/n-hexane = 1/7). 1H
NMR (CDCl₃): δ = 7.73 (2H, d, J = 8.6 Hz), 7.72 (1H, s), 7.41 (2H, d, J = 8.6 Hz), 7.39 (1H, d, J = 8.6 Hz), 6.83 (1H, dd, J = 8.6, 2.3 Hz), 6.80 (1H, d, J = 2.3 Hz), 4.08 (2H, q, J = 7.1 Hz), 1.44 (3H, t, J = 7.0 Hz); ¹³C NMR (CDCl₃): δ = 162.25, 160.53, 155.38, 140.07, 137.50, 134.51, 130.08, 128.91, 123.44, 113.30, 112.98, 100.87, 94.27, 64.22, 14.53; HRMS (ESI): m/z calcd for C₁₇H₁₃O₃Na [M+Na]⁺ 414.9802 Found 414.9809; IR (KBr): 1713, 1611, 1506, 1362, 1269, 1176, 816 cm⁻¹

ethyl 4-(7-ethoxy-2-oxo-2'H-chromen-3-yl)benzoate (3q)

Purified by GPC. ¹H NMR (CDCl₃): δ = 8.06 (2H, d, J = 8.9 Hz), 7.79 (1H, s), 7.75 (2H, d, J = 8.7 Hz), 7.41 (1H, d, J = 8.9 Hz), 6.84 (1H, dd, J = 8.9, 2.5 Hz), 6.80 (1H, d, J = 2.5 Hz), 4.37 (2H, q, J = 7.3 Hz), 4.08 (2H, q, J = 7.2 Hz), 1.44 (3H, t, J = 7.2 Hz), 1.38 (3H, t, J = 7.2 Hz); ¹³C NMR (CDCl₃): δ = 166.20, 162.42, 160.45, 155.51, 140.90, 139.38, 130.09, 129.54, 129.07, 128.21, 123.40, 113.33, 112.90, 100.83, 64.22, 61.00, 14.50, 14.29; HRMS (ESI): m/z calcd for C₂₀H₁₈O₅Na [M+Na]⁺ 361.1046 Found 361.1057; IR (KBr): 1715, 1609, 1366, 1276, 1186, 1109, 783 cm⁻¹

7-ethoxy-3-(4-(trifluoromethyl)phenyl)-2'H-chromen-2-one (3r)

Purified by column chromatography (EtOAc/n-hexane = 1/6).
¹H NMR (CDCl₃): δ = 7.79 (1H, s), 7.79 (2H, d, J = 8.2 Hz), 7.66 (2H, d, J = 8.7 Hz), 7.43 (1H, d, J = 8.7 Hz), 6.86 (1H, dd, J = 8.7, 2.5 Hz), 6.82 (1H, d, J = 2.3 Hz), 4.09 (2H, q, J = 7.1 Hz), 1.45 (3H, t, J = 7.1 Hz); ¹⁹F NMR (CDCl₃): δ = -65.51 (s, 3F); ¹³C NMR (CDCl₃): δ = 162.55, 160.53, 155.59, 141.07, 138.58 (q, J = 1.3 Hz), 130.25 (q, J = 33.2 Hz), 129.11, 128.69, 125.33 (q, J = 3.8 Hz), 124.04 (q, J = 276 Hz), 123.11, 113.45, 112.85, 100.91, 64.29, 14.52; HRMS (ESI): m/z calcd for C₁₉H₁₃O₃F₃Na [M+Na]⁺ 367.0709 Found 357.0710; IR (KBr): 1713, 1612, 1331, 1274, 178, 1117, 1071, 849 cm⁻¹

7-ethoxy-3-(4-nitrophenyl)-2'H-chromen-2-one (3s)
Purified by GPC. 1H NMR (CDCl$_3$): δ = 8.26 (2H, d, $J = 9.0$ Hz), 7.88 (2H, d, $J = 8.7$ Hz), 7.87 (1H, s), 7.46 (1H, d, $J = 8.7$ Hz), 6.88 (1H, dd, $J = 8.7$, 2.3 Hz), 6.83 (1H, d, $J = 2.3$ Hz), 4.11 (2H, q, $J = 7.1$ Hz), 1.46 (3H, t, $J = 7.1$ Hz); 13C NMR (CDCl$_3$): δ = 162.98, 160.19, 155.81, 147.41, 141.81, 141.52, 129.37, 129.14, 123.60, 122.08, 113.70, 112.67, 100.92, 64.38, 14.52; HRMS (ESI): m/z calcd for C$_{17}$H$_{13}$O$_3$INa $[M+Na]^+$ 334.0686 Found 334.0700; IR (KBr): 1712, 1610, 1524, 1347, 1275, 1224, 1037, 852 cm$^{-1}$

3-(2-bromophenyl)-7-ethoxy-2H-chromen-2-one (3t)

Purified by column chromatography (EtOAc/$_n$-hexane = 1/5). 1H NMR (CDCl$_3$): δ = 7.65 (1H, d, $J = 7.8$ Hz), 7.63 (1H, s), 7.40-7.34 (3H, m), 7.25-7.21 (1H, m), 6.86-6.83 (2H, m), 4.10 (2H, q, $J = 7.0$ Hz), 1.45 (3H, t, $J = 7.0$ Hz); 13C NMR (CDCl$_3$): δ = 162.33, 160.11, 155.80, 142.68, 136.07, 133.03, 131.47, 129.91, 128.98, 127.40, 125.01, 123.81, 113.19, 112.45, 101.10, 64.22, 14.53; HRMS (ESI): m/z calcd for C$_{17}$H$_{13}$O$_3$BrNa $[M+Na]^+$ 366.9940 Found 366.9922; IR (KBr): 1734, 1615, 1356, 1276, 1177, 1125, 1036, 823 cm$^{-1}$

3-(3-bromophenyl)-7-ethoxy-2H-chromen-2-one (3u)

Purified by column chromatography (EtOAc/$_n$-hexane = 1/6). 1H NMR (CDCl$_3$): δ = 7.80 (1H, dd, $J = 1.8$, 1.8 Hz), 7.73 (1H, s), 7.62 (1H, dd, $J = 8.0$, 0.9 Hz), 7.47 (1H, dt, $J = 8.2$, 0.9 Hz), 7.40 (1H, d, $J = 8.9$ Hz), 7.27 (1H, t, $J = 8.0$ Hz), 6.84 (1H, dd, $J = 8.7$, 2.5 Hz), 6.80 (1H, d, $J = 2.3$ Hz), 4.08 (2H, q, $J = 7.2$ Hz), 1.44 (3H, t, $J = 7.2$ Hz); 13C NMR (CDCl$_3$): δ = 162.35, 160.49, 155.44, 140.63, 137.02, 131.31, 131.18, 129.85, 128.99, 127.05, 123.00, 122.40, 113.33, 112.88, 100.85, 64.23, 14.52; HRMS (ESI): m/z calcd for C$_{17}$H$_{13}$O$_3$BrNa $[M+Na]^+$ 366.9940. Found 366.9928; IR (KBr): 1714, 1605, 1276, 1177, 822, 787, 686 cm$^{-1}$
6. References
