Copper-catalyzed asymmetric construction of dispiropyrrolidine skeleton *via* 1,3-dipolar cycloaddition of azomethine ylides with α -alkylidene succinimides

Wu-Lin Yang,^a Yang-Zi Liu,^a Shuai Luo,^a Xingxin Yu,^{*a} John S. Fossey^b and Wei-Ping Deng^{*a}

^{*a*} Shanghai Key Laboratory of New Drug Design & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China

^b School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK

Contents

1. General information

- 2. Table S1. Optimization of the asymmetric 1,3-dipolar cycloaddition of azomethine ylide 1a to α-alkylidene succinimide 2b
- 3. Procedure for synthesis of α-alkylidene succinimides
- 4. Procedure for asymmetric 1,3-dipolar cycloaddition of azomethine ylides to α-alkylidene succinimides
- 5. Scheme S1. Scaled up asymmetric 1,3-dipolar cycloaddition of azomethine ylide 1f to α-alkylidene succinimide 2b
- 6. Synthetic transformations of the cycloadduct
- 7. The absolute configuration determination of (1*R*,3*R*,4*R*,5*R*)-6
- 8. Scheme S2. Proposed transition state leading to the major product *endo*-3ab
- 9. Procedure for asymmetric 1,3-dipolar cycloaddition of azomethine ylides to 2-oxoindolin-3-ylidenes
- 10. References
- **11. HPLC Chromatograms**
- 12. ¹H NMR and ¹³C NMR spectra of products

General information

¹H NMR spectrum were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃ or (CD₃)₂SO. Chemical shifts were reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The spectrum are interpreted as: s = singlet, d = doublet, t = triplet, q = quartet, m = quartetmultiplet, brs = broad singlet, coupling constant(s) J are reported in Hz and relative integrations are reported. ¹³C NMR (100 MHz) spectrum were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃ or (CD₃)₂SO. Chemical shifts were reported in ppm with the internal chloroform signal at 77.16 ppm or DMSO signal at 39.52 ppm as a standard. Optical rotations were measured on an AUTOPOL V. Diastereomeric ratios were determined from crude ¹H NMR spectroscopy interpretation. Enantiomeric excess were determined by analysis of HPLC traces, obtained by using chiralcel AD-H, AS-H, or IF columns with *n*-hexane and *i*-propanol or EtOAc as solvents. (Chiralcel AD-H, AS-H, and IF columns were purchased from Daicel Chemical Industries, LTD.) Melting points were obtained in open capillary tubes using SGW X-4 micro melting point apparatus which were uncorrected. Mass spectrum were recorded on TOF mass spectrometer. All reagents and starting materials were obtained commercially and used as received unless otherwise stated. Toluene, THF, CPME, 1,4-dioxane and MeTHF were distilled over sodium/benzophenone. CH₃CN, CH₂Cl₂ and EtOAc were distilled over calcium hydride.

Table S1. Optimization of the asymmetric 1,3-dipolar cycloaddition

00 Ma

of azomethine ylide 1a to α-alkylidene succinimide 2b

	$\begin{array}{c} CO_2Me & O\\ N & + \\ H & -p-CIC_6H_4 & O\\ 1a & 2b \end{array}$	$Cu(OAc)_2 H_2O (10 m)$ $CO_2Me \frac{4a (11 mol%)}{Base, Solvent}$ $T, 4 \text{Å MS}$	NOI%) → MeO₂C	Ph/, P-CIC ₆ H ₄ endo- 3ab	L
Entry ^a	Base (mol%)	Solvent	<i>T</i> (°C)	Yield $(\%)^b$	ee (%) ^c
1	K_2CO_3 (2 equiv.)	THF	RT	85	93
2	Et ₃ N (20)	THF	RT	50	93
3	KO ^{<i>t</i>} Bu (10)	THF	RT	78	93
4	$Cs_2CO_3(20)$	THF	RT	80	93
5	NaHMDS (10)	THF	RT	82	93
6	K_2CO_3 (2 equiv.)	CH_2Cl_2	RT	trace	-
7	K_2CO_3 (2 equiv.)	EtOAc	RT	32	91
8	K_2CO_3 (2 equiv.)	toluene	RT	68	95
9	K_2CO_3 (2 equiv.)	1,4-dioxane	RT	trace	-
10	K_2CO_3 (2 equiv.)	CH ₃ CN	RT	63	81

11	K_2CO_3 (2 equiv.)	MeTHF	RT	85	95
12^{d}	K_2CO_3 (2 equiv.)	MeTHF	RT	85	95

^{*a*} All reactions were carried out with 0.2 mmol of **1a** and 0.1 mmol of **2a** in 1 mL of solvent. MeTHF = 2-Methyltetrahydrofuran. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis, and >20:1 dr was determined by ¹H NMR of crude product. ^{*d*} 5 mol% catalyst was used

Procedure for the synthesis of α-alkylidene succinimides¹⁻³

A maleimide derivative (10 mmol, 1.0 equiv.), corresponding aldehyde (10 mmol, 1.0 equiv.) and triphenylphosphine (10 mmol, 1.0 equiv.), were dissolved in anhydrous CH_2Cl_2 (30 mL) and stirred at room temperature for 24 h. The solvent was removed *in vacuo* and purification of the crude product by flash column chromatography yielded the α -alkylidene succinimides **2**.

(E)-3-Benzylidenepyrrolidine-2,5-dione (2a). White solid, yield (75%), m.p: > 200 °C; ¹H NMR

(400 MHz, $(CD_3)_2SO$) δ 11.44 (s, 1H,), 7.66-7.56 (m, 2H), 7.53-7.35 (m, 4H), 3.65 (d, J = 2.4, 2H). ¹³C NMR (100 MHz, $(CD_3)_2SO$) δ 176.2, 172.4, 134.6, 132.0, 130.6, 130.1, 129.4, 127.5, 121.6, 35.3. The NMR data are in agreement with the literature report.³

Methyl (E)-3-benzylidene-2,5-dioxopyrrolidine-1-carboxylate (2b). White solid, yield (72%),

m.p: 149-151 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.74 (m, 1H), 7.53-7.45 (m, 5H), 4.03 (s, 3H), 3.70 (d, J = 2.4, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 166.5, 149.0, 137.4, 133.6, 130.8, 130.5, 129.3, 121.6, 55.0, 34.4; HRMS (EI, m/z): Calcd for C₁₃H₁₁NO₄ [M]⁺: 245.0683, found: 245.0687.

Benzyl (E)-3-benzylidene-2,5-dioxopyrrolidine-1-carboxylate (2c). White solid, yield (80%),

m.p: 157-160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, J = 2.4, 1H), 7.49-7.46 (m, 7H), 7.44-7.32 (m, 3H), 5.43 (s, 2H), 3.67 (d, J = 2.4, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 166.5, 148.4, 137.4, 134.1, 133.6, 130.8, 130.5, 129.3, 128.8, 128.7, 128.4, 121.6, 69.9, 34.4; HRMS (EI, m/z): Calcd for C₁₉H₁₅NO₄ [M]⁺: 321.0996, found:

321.0997.

Methyl (E)-3-(4-methoxybenzylidene)-2,5-dioxopyrrolidine-1-carboxylate (2d). White solid,

yield (67%), m.p: 155-157 °C;¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 1.9, 1H), 7.51-7.40 (m, 2H), 7.06-6.92 (m, 2H), 4.03 (d, *J* = 2.0, 3H), 3.87 (d, *J* = 1.9, 3H), 3.65 (s, 2H);¹³C NMR (100 MHz, CDCl₃) δ 170.0, 166.8, 161.7, 149.1, 137.1,

132.5, 126.4, 118.5, 114.8, 55.5, 54.9, 34.5; HRMS (EI, m/z): Calcd for $C_{14}H_{13}NO_5$ [M]⁺: 275.0789, found: 275.0789.

Methyl (E)-2,5-dioxo-3-(4-(trifluoromethyl)benzylidene)pyrrolidine-1-carboxylate (2e). White

solid, yield (70%), m.p: 200-202 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.78 (m, 2H), 7.73 (s, 1H), 7.62 (d, *J* = 8.2, 2H), 4.04 (s, 3H), 3.73 (d, *J* = 2.4, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 166.1, 148.8, 136.8, 135.4, 132.1 (q, *J*_{C-F} =

32.9), 130.5, 126.2 (q, $J_{C-F} = 3.7$), 124.2, 123.6 (q, $J_{C-F} = 272.4$), 55.1, 34.3; HRMS (EI, m/z): Calcd for C₁₄H₁₀F₃NO₄ [M]⁺: 313.0557, found: 313.0560.

Methyl (E)-3-(4-bromobenzylidene)-2,5-dioxopyrrolidine-1-carboxylate (2f). White solid,

yield (63%), m.p: 193-195 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.68 (m, 1H), 7.64 (d, *J* = 8.4, 2H), 7.38 (d, *J* = 8.4, 2H), 4.05 (s, 3H), 3.68 (d, *J* = 2.3, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 166.3, 148.9, 136.0, 132.6, 132.4, 131.7, 125.5, 122.2, 55.1, 34.3; HRMS (EI, m/z): Calcd for C₁₃H₁₀BrNO₄ [M]⁺:

322.9788, found: 322.9794.

Methyl (E)-3-(3-bromobenzylidene)-2,5-dioxopyrrolidine-1-carboxylate (2g). White solid,

yield (65%), m.p: 160-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.67 (m, 1H), 7.62 (s, 1H), 7.59 (d, *J* = 7.9, 1H), 7.43 (d, *J* = 7.8, 1H), 7.36 (t, *J* = 7.8, 1H), 4.03 (s, 3H), 3.70 (d, *J* = 2.4, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 166.2, 148.9, 135.6, 135.5, 133.7, 133.0, 130.7, 128.9, 123.3, 123.1, 55.1, 34.3; HRMS (EI, m/z):

Calcd for C₁₃H₁₀BrNO₄ [M]⁺: 322.9788, found: 322.9792.

Methyl (E)-3-(furan-2-ylmethylene)-2,5-dioxopyrrolidine-1-carboxylate (2h). Yellow solid,

yield (75%), m.p: 141-143 °C; ¹H NMR(400 MHz, CDCl₃) δ 7.65 (d, J = 1.4, 1H), 7.48 (t, J = 2.4, 1H), 6.81 (d, J = 3.5, 1H), 6.58 (dd, J = 3.5, 1.8, 1H), 4.02 (s, 3H), 3.75 (d, J = 2.4, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 166.3, 150.6, 149.1, 146.6, 123.0, 118.7,

118.4, 113.0, 54.9, 34.5; HRMS (EI, m/z): Calcd for C₁₁H₉NO₅ [M]⁺: 235.0476, found: 235.0480.

Methyl (E)-3-butylidene-2,5-dioxopyrrolidine-1-carboxylate (2i).

Colorless oil, yield (68%), ¹H NMR (400 MHz, CDCl₃) δ 7.02-6.92 (m, 1H), 4.00 (s, 3H), 3.34 (dt, J = 2.6, 1.4, 2H), 2.20 (q, J = 7.4, 2H), 1.65-1.49 (m, 2H), 0.97 (t, J = 7.4, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 165.3, 149.0, 142.6, 124.2, 54.9, 32.3, 32.1, 21.3, 13.8; HRMS (EI, m/z): Calcd for C₁₀H₁₃NO₄ [M]⁺: 211.0840, found: 211.0843.

Methyl (E)-2,5-dioxo-3-((E)-3-phenylallylidene)pyrrolidine-1-carboxylate(2j). Yellow solid, yield (70%), m.p: 196-198 °C;¹H NMR (400 MHz, CDCl₃) δ 7.49 (m, 3H), 7.43-7.34 (m, 3H), 7.08 (d, J = 15.4, 1H), 6.78 (dd, J = 15.4, 11.7, 1H), 4.02 (s, 3H), 3.53 (d, J = 2.2, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 165.8, 149.1, 144.3, 137.0, 135.4, 130.1, 129.0, 127.7, 122.5, 121.9, 54.9, 32.8;

HRMS (EI, m/z): Calcd for C₁₅H₁₃NO₄ [M]⁺: 271.0840, found: 271.0847.

Procedure for the asymmetric 1,3-dipolar cycloaddition of azomethine ylides to α-alkylidene succinimides

Under a nitrogen atmosphere, $Cu(OAc)_2 \cdot H_2O$ (2.0 mg, 0.01 mmol), ligand **4a** (4.4 mg, 0.011 mmol), K₂CO₃ (55.3 mg, 0.4 mmol) and 4 Å MS were dissolved in MeTHF (2 mL), and stirred at room temperature for approximately 1 h. Then, iminoester **1** (0.4 mmol) and α -alkylidene succinimides **2** (0.2 mmol) were added sequentially. Once starting material was consumed (monitored by TLC), the mixture was concentrated and purified by column chromatography to give the corresponding cycloaddition product.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-6-(4-chlorophenyl)-1,3-dioxo-9-phenyl-2,7-diazaspiro[4.4]nonane-

2,8-dicarboxylate

Yield (88%); White solid, m.p: 82-84 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.40 (m, 2H), 7.37-7.32 (m, 3H), 7.29-7.24 (m, 4H), 4.45 (s, 1H), 4.28 (d, *J* = 5.7, 1H), 4.08 (d, *J* = 5.7, 1H), 3.81 (s, 3H), 3.76 (s, 3H), 2.47 (d, *J* = 18.7, 1H), 2.30 (d, *J* = 18.7, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 172.3, 169.6, 147.6, 139.0, 135.2, 133.1, 129.5, 129.3, 128.6, 128.3, 128.0, 73.7, 67.1, 60.2, 54.9, 54.7, 52.7, 37.3; HRMS (EI, m/z): Calcd for C₂₃H₂₁ClN₂O₆ [M]⁺: 456.1083, found: 456.1091; [α]_D²⁵ = +52.9 (*c* 1.58, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 21.23 min, 34.28 min.

8-Ethyl 2-methyl (5*R*,6*R*,8*R*,9*R*)-6-(4-chlorophenyl)-1,3-dioxo-9-phenyl-2,7-diazaspiro[4.4] nonane-2,8-dicarboxylate

Yield (72%); White solid, m.p: 36-38 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.40 (m, 2H), 7.37-7.32 (m, 3H), 7.29-7.24 (m, 4H), 4.45 (s, 1H), 4.36-4.19 (m, 3H), 4.06 (d, *J* = 5.9, 1H), 3.77 (s, 3H), 2.49 (d, *J* = 18.6, 1H), 2.32 (d, *J* = 18.7, 1H), 1.26 (t, *J* = 7.1, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 171.8, 169.7, 147.6, 139.0, 135.2, 133.1, 129.5, 129.3, 128.6, 128.2, 128.0, 73.9, 67.3, 61.7, 60.2, 55.2, 54.8, 37.4, 14.2; HRMS (EI, m/z): Calcd for C₂₄H₂₃ClN₂O₆ [M]⁺: 470.1240, found: 470.1252; [α]_D²⁵ = +58.7 (*c* 1.13, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 18.57 min, 38.30 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-1,3-dioxo-6,9-diphenyl-2,7-diazaspiro[4.4]nonane-2,8-dicarboxylate Yield (83%); White solid, m.p: 60-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.40 (m, 2H), 7.37-7.31 (m, 6H), 7.27-7.25 (m, 2H), 4.46 (s, 1H), 4.29 (d, *J* = 5.6, 1H), 4.07 (d, *J* = 5.7, 1H), 3.82 (s, 3H), 3.73 (s, 3H), 2.46 (d, *J* = 18.6, 1H), 2.33 (d, *J* = 18.7, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 172.4, 169.8, 147.7, 139.3, 134.1, 129.5, 129.3, 129.2, 128.6, 128.2, 126.5, 74.5, 67.5, 60.2, 55.3, 54.5, 52.7, 37.3; HRMS (EI, m/z): Calcd for C₂₃H₂₂N₂O₆ [M]⁺: 422.1473, found: 422.1476; [α]_D²⁵ = +56.2 (*c* 1.22, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 19.09 min, 29.40 min.

Dimethyl (5*R*,6*S*,8*R*,9*R*)-6-(2-chlorophenyl)-1,3-dioxo-9-phenyl-2,7-diazaspiro[4.4]nonane-2,8-dicarboxylate

Yield (81%); White solid, m.p: 60-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 7.7, 1.4 Hz, 1H), 7.43-7.30 (m, 5H), 7.29-7.22 (m, 3H), 5.20 (s, 1H), 4.35 (d, J = 7.8, 1H), 4.15 (d, J = 7.8, 1H), 3.78 (s, 6H), 2.84 (d, J = 18.5, 1H), 2.53 (d, J = 18.5, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 172.3, 169.8, 147.9, 137.1, 134.0, 133.3, 129.9, 129.8, 129.4, 128.7, 128.6, 128.3, 127.5, 68.2, 65.3, 60.7, 54.7, 54.6, 52.6, 37.56; HRMS (EI, m/z): Calcd for C₂₃H₂₁ClN₂O₆ [M]⁺: 456.1083, found: 456.1088; [α]_D²⁵ = +32.3 (*c* 1.22, CH₂Cl₂); HPLC (Chiralcel AD-H, hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 17.16 min, 22.63 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-6-(3-chlorophenyl)-1,3-dioxo-9-phenyl-2,7-diazaspiro[4.4]nonane-2,8-dicarboxylate

Yield (80%); White solid, m.p: 124-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.40 (m, 2H), 7.37-7.29 (m, 3H), 7.27-7.24 (m, 3H), 7.22-7.19 (m, *J* = 7.5 Hz, 1H), 4.43 (s, 1H), 4.29 (d, *J* = 5.7 Hz, 1H), 4.08 (d, *J* = 5.7 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 2.48 (d, *J* = 18.6 Hz, 1H), 2.30 (d, *J* = 18.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 172.2, 169.5, 147.7, 139.0, 136.6, 135.3, 130.4, 129.5, 129.5, 128.6, 128.3, 126.8, 125.1, 73.7, 67.1, 60.1, 54.8, 54.7, 52.7, 37.2; HRMS (EI, m/z): Calcd for C₂₃H₂₁ClN₂O₆ [M]⁺: 456.1083, found: 456.1083; [α]_D²⁵ = +64.3 (*c* 0.94, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 16.58 min, 35.59 min.

Dimethyl (5R,6R,8R,9R)-6-(4-bromophenyl)-1,3-dioxo-9-phenyl-2,7-diazaspiro[4.4]nonane-

2,8-dicarboxylate

Yield (77%); White solid, m.p: 58-60 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.47 (m, 2H), 7.43-7.40 (m, 2H), 7.37-7.33 (m, 1H), 7.26-7.21 (m, 4H), 4.43 (s, 1H), 4.28 (d, *J* = 5.7, 1H), 4.08 (d, *J* = 5.8, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 2.47 (d, *J* = 18.6, 1H), 2.30 (d, *J* = 18.7, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 172.3, 169.6, 147.6, 139.0, 133.6, 132.3, 129.5, 128.6, 128.3, 128.3, 123.3, 73.8, 67.1, 60.1, 54.9, 54.8, 52.7, 37.3; HRMS (EI, m/z): Calcd for C₂₃H₂₁BrN₂O₆ [M]⁺: 500.0578, found: 500.0584; [α]_D²⁵ = +51.1 (*c* 1.12, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 25.10 min, 42.67 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-6-(4-fluorophenyl)-1,3-dioxo-9-phenyl-2,7-diazaspiro[4.4]nonane-2,8-dicarboxylate

Yield (72%); White solid, m.p: 53-55 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.37-7.31 (m, 3H), 7.27-7.25 (m, 2H), 7.06-7.02 (m, 2H), 4.45 (s, 1H), 4.28 (d, *J* = 5.7, 1H), 4.08 (d, *J* = 5.7, 1H), 3.82 (s, 3H), 3.76 (s, 3H), 2.47 (d, *J* = 18.6, 1H), 2.30 (d, *J* = 18.6, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 172.3, 169.7, 163.2 (d, *J* _{*C-F*} = 248.5), 147.6, 139.1, 130.2 (d, *J* _{*C-F*} = 3.3), 129.5, 128.6, 128.4 (d, *J* _{*C-F*} = 8.3), 128.2, 116.1 (d, *J* _{*C-F*} = 21.6), 73.8, 67.2, 60.1, 55.0, 54.7, 52.7, 37.3; HRMS (EI, m/z): Calcd for C₂₃H₂₁FN₂O₆ [M]⁺: 440.1379, found: 440.1385; [α]_D²⁵ = +49.8 (*c* 1.35, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 19.78 min, 35.70 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-1,3-dioxo-9-phenyl-6-(4-(trifluoromethyl)phenyl)-2,7-diazaspiro[4.4] nonane-2,8-dicarboxylate:

Yield (82%); White solid, m.p: 54-56 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.1, 2H), 7.49 (d, J = 8.1, 2H), 7.43 (t, J = 7.4, 2H), 7.36 (t, J = 7.2, 1H), 7.26 (d, J = 6.4, 2H), 4.55 (s, 1H), 4.31 (d, J = 5.8, 1H), 4.11 (d, J = 5.8, 1H), 3.82 (s, 3H), 3.70 (s, 3H), 2.50 (d, J = 18.7, 1H), 2.36 (d, J = 18.7, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 172.3, 169.5, 147.5, 138.9, 138.8, 131.4

(q, $J_{C-F} = 32.7$), 129.6, 128.6, 128.3, 127.1, 126.1 (q, $J_{C-F} = 3.6$), 123.8 (q, $J_{C-F} = 272.1$), 73.8, 67.1, 60.4, 54.7, 54.7, 52.8, 37.5; HRMS (EI, m/z): Calcd for C₂₄H₂₁F₃N₂O₆ [M]⁺: 490.1347, found: 490.1354; [α]_D²⁵ = +50.9 (*c* 1.70, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 15.47 min, 29.13 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-1,3-dioxo-9-phenyl-6-(o-tolyl)-2,7-diazaspiro[4.4]nonane-2,8dicarboxylate

Yield (71%); White solid, m.p: 45-47 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.48 (m, 1H), 7.43-7.40 (m, 2H), 7.37-7.33 (m, 1H), 7.28 (d, *J* = 8.5, 2H), 7.24-7.14 (m, 3H), 4.89 (s, 1H), 4.31 (d, *J* = 6.3, 1H), 4.14 (d, *J* = 6.3, 1H), 3.81 (s, 3H), 3.76 (s, 3H), 2.45 (d, *J* = 18.4, 1H), 2.37 (s, 3H), 2.34 (d, *J* = 18.4, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 172.4, 169.7, 147.7, 138.7, 135.7, 133.0, 131.4, 129.4, 128.6, 128.6, 128.2, 126.8, 126.3, 69.0, 66.7, 61.2, 55.2, 54.5, 52.7, 37.6, 20.1; HRMS (EI, m/z): Calcd for C₂₄H₂₄N₂O₆ [M]⁺: 436.1629, found: 436.1638; [α]_D²⁵ = +19.3 (*c* 1.17, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 254 nm) t_R= 15.64 min, 27.51 min.

Yield (77%); White solid, m.p: 53-55 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.40 (m, 2H), 7.37-7.33 (m, 1H), 7.26 (d, *J* = 7.1, 2H), 7.19 (d, *J* = 8.1, 2H), 7.14 (d, *J* = 8.1, 2H), 4.41 (s, 1H), 4.28 (d, *J* = 5.5, 1H), 4.04 (d, *J* = 5.6, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 2.43 (d, *J* = 18.7, 1H), 2.32 (s, 3H), 2.30 (d, *J* = 18.6, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 172.4, 169.9, 147.7, 139.4, 139.2, 130.9, 129.8, 129.4, 128.6, 128.1, 126.4, 74.4, 67.5, 60.2, 55.4, 54.5, 52.7, 37.2, 21.2; HRMS (EI, m/z): Calcd for C₂₄H₂₄N₂O₆ [M]⁺: 436.1629, found: 436.1633; [α]_D²⁵ = +56.2 (*c* 1.28, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 17.08 min, 29.70 min.

Yield (74%); White solid, m.p: 92-94 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (t, J = 7.3, 2H), 7.37-7.33 (m, 1H), 7.27-7.23 (m, 4H), 6.86 (d, J = 8.7, 2H), 4.40 (s, 1H), 4.28 (d, J = 5.5, 1H), 4.05 (d, J = 5.6, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.76 (s, 3H), 2.44 (d, J = 18.6, 1H), 2.28 (d, J = 18.7, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 172.4, 169.9, 160.3, 147.7, 139.4, 129.4, 128.6, 128.1, 127.8, 125.9, 114.5, 74.2, 67.4, 60.1, 55.3, 55.3, 54.6, 52.7, 37.2; HRMS (EI, m/z): Calcd for C₂₄H₂₄N₂O₇ [M]⁺: 452.1579, found: 436.1581; [α]_D²⁵ = +53.3 (*c* 1.06, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 23.00 min, 48.21 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-6-(naphthalen-2-yl)-1,3-dioxo-9-phenyl-2,7-diazaspiro[4.4]nonane-2,8-dicarboxylate

Yield (74%); White solid, m.p: 51-53 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 4H), 7.49-7.36 (m, 6H), 7.30-7.26 (m, 2H), 4.63 (d, *J* = 6.9, 1H), 4.35 (s, 1H), 4.12 (d, *J* = 4.5, 1H), 3.85 (s, 3H), 3.52 (brs, 1H), 3.42 (s, 3H), 2.48 (d, *J* = 18.5, 1H), 2.41 (d, *J* = 18.6, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.5, 172.4, 169.7, 147.5, 139.3, 133.7, 133.3, 131.6, 129.5, 129.1, 128.6, 128.2, 128.2, 127.7, 126.6, 126.6, 126.1, 123.9, 74.7, 67.5, 60.5, 55.1, 54.3, 52.7, 37.4; HRMS (EI, m/z): Calcd for C₂₇H₂₄N₂O₆ [M]⁺: 472.1629, found: 472.1635; [α]_D²⁵ = +51.8 (*c* 1.12, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 27.41 min, 53.78 min.

Dimethyl (5*R*,6*S*,8*R*,9*R*)-6-(furan-2-yl)-1,3-dioxo-9-phenyl-2,7-diazaspiro[4.4]nonane-2,8-dicarboxylate

Yield (90%); White solid, m.p: 43-45 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.31 (m, 4H), 7.21 (d, *J* = 7.3, 2H), 6.41 (s, 1H), 6.34 (s, 1H), 4.54 (s, 1H), 4.29 (d, *J* = 5.8, 1H), 4.00 (d, *J* = 5.7, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 2.46 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 171.8, 170.1, 148.4, 148.0, 143.2, 138.9, 129.5, 128.6, 128.2, 110.7, 108.5, 68.0, 67.7, 59.3, 55.7, 54.8, 52.7, 36.9; HRMS (EI, m/z): Calcd for C₂₁H₂₀N₂O₇ [M]⁺: 412.1266, found: 412.1273; [α]_D²⁵ = +63.4 (*c* 1.56, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 16.72 min, 27.47 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-6-cyclohexyl-1,3-dioxo-9-phenyl-2,7-diazaspiro[4.4]nonane-2,8-dicarboxylate

Yield (40%); White solid, m.p: 85-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (t, *J* = 7.3, 2H), 7.31 (t, *J* = 7.3, 1H), 7.13 (d, *J* = 7.3, 2H), 4.06 (d, *J* = 7.6, 1H), 3.99 (s, 3H), 3.81 (d, *J* = 7.8, 1H), 3.70 (s, 3H), 3.07 (d, *J* = 7.7, 1H), 2.76 (brs, 1H), 2.48 (d, *J* = 19.2, 1H), 2.32 (d, *J* = 19.2, 1H), 2.09 (d, *J* = 12.6, 1H), 1.81-1.60 (m, 4H), 1.34-1.06 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 171.9, 170.9, 148.3, 137.9, 129.4, 128.7, 128.3, 76.0, 66.3, 59.8, 57.9, 55.2, 52.5, 39.1, 38.3, 31.8, 31.0, 26.0, 25.9, 25.8; HRMS (EI, m/z): Calcd for C₂₃H₂₈N₂O₆ [M]⁺: 428.1942, found: 428.1950; [α]_D²⁵ = +27.6 (*c* 0.50, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 254 nm) t_R= 15.71 min, 34.47 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-6-(4-chlorophenyl)-9-(4-methoxyphenyl)-1,3-dioxo-2,7-diazaspiro [4.4]nonane-2,8-dicarboxylate

Yield (77%); White solid, m.p: 75-77 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.6, 2H), 7.27 (d, J = 8.6, 2H), 7.16 (d, J = 8.7, 2H), 6.93 (d, J = 8.7, 2H), 4.41 (s, 1H), 4.23 (d, J = 5.7, 1H), 4.03 (d, J = 5.9, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.77 (s, 3H), 2.50 (d, J = 18.6, 1H), 2.31 (d, J = 18.7, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 172.3, 169.7, 159.3, 147.6, 135.1, 133.2, 130.8, 129.7, 129.3, 128.0, 114.8, 73.6, 67.2, 60.3, 55.4, 54.7, 54.3, 52.7, 37.3; HRMS (EI, m/z): Calcd

for $C_{24}H_{23}CIN_2O_7$ [M]⁺: 486.1189, found: 486.1190; $[\alpha]_D^{25} = +36.6$ (*c* 1.05, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 23.39 min, 42.67 min.

Yield (68%); White solid, m.p: 87-89 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.1, 2H), 7.41 (d, J = 8.1, 2H), 7.34 (d, J = 8.6, 2H), 7.28 (d, J = 8.5, 2H), 4.46 (s, 1H), 4.26 (d, J = 5.7, 1H), 4.17 (d, J = 5.7, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 2.43 (d, J = 18.5, 1H), 2.34 (d, J = 18.5, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.7, 171.9, 169.1, 147.5, 143.0, 135.4, 132.8, 130.5 (q, $J_{C-F} = 32.8$), 129.4, 129.1, 127.9, 126.44 (q, $J_{C-F} = 3.6$), 123.8 (q, $J_{C-F} = 272.7$), 73.9, 67.0, 59.9, 54.8, 54.2, 52.8, 37.3; HRMS (EI, m/z): Calcd for C₂₄H₂₀ClF₃N₂O₆ [M]⁺: 524.0957, found: 524.0966; [α]_D²⁵ = +42.6 (*c* 1.12, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R = 14.19 min, 35.96 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-9-(4-bromophenyl)-6-(4-chlorophenyl)-1,3-dioxo-2,7-diazaspiro[4.4] nonane-2,8-dicarboxylate

Yield (88%); White solid, m.p: 85-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.2, 2H), 7.33 (d, J = 8.4, 2H), 7.27 (d, J = 8.5, 2H), 7.14 (d, J = 8.3, 2H), 4.41 (d, J = 10.0, 1H), 4.23-4.18 (m, 1H), 4.05 (d, J = 5.8, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 3.30-3.21 (m, 1H), 2.46 (d, J = 18.5, 1H), 2.33 (d, J = 18.5, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 172.0, 169.3, 147.5, 137.9, 135.3, 132.9, 132.6, 130.3, 129.4, 128.0, 122.3, 73.8, 67.1, 59.9, 54.8, 54.1, 52.8, 37.3; HRMS (EI, m/z): Calcd for C₂₃H₂₀BrClN₂O₆ [M]⁺: 534.0188, found: 534.0181; [α]_D²⁵ = +78.9 (*c* 1.18, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 23.87 min, 43.44 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-9-(3-bromophenyl)-6-(4-chlorophenyl)-1,3-dioxo-2,7-diazaspiro[4.4] nonane-2,8-dicarboxylate

Yield (85%); White solid, m.p: 80-82 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.0, 1H), 7.42 (s, 1H), 7.35-7.25 (m, 5H), 7.20 (d, J = 7.7, 1H), 4.43 (d, J = 9.7, 1H), 4.22 (t, J = 6.2, 1H), 4.05 (d, J = 5.7, 1H), 3.83 (s, 3H), 3.76 (s, 3H), 3.33-3.20 (m, 1H), 2.48 (d, J = 18.5, 1H), 2.35 (d, J = 18.5, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 172.0, 169.3, 147.5, 141.4, 135.3, 132.9, 131.6, 131.4, 131.0, 129.4, 128.0, 127.3, 123.5, 73.8, 67.1, 60.0, 54.8, 54.2, 52.8, 37.3; HRMS (EI, m/z): Calcd for C₂₃H₂₀BrClN₂O₆ [M]⁺: 534.0188, found: 534.0196; [α]_D²⁵ = +60.6 (*c* 1.32, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 254 nm) t_R= 54.26 min, 59.42 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-6-(4-chlorophenyl)-9-(furan-2-yl)-1,3-dioxo-2,7-diazaspiro[4.4] nonane-2,8- dicarboxylate

Yield (60%); Yellow solid, m.p: 56-58 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.33 (d, *J* = 8.5, 2H), 7.27 (d, *J* = 8.4, 2H), 6.39-6.38 (m, 1H), 6.31-6.30 (m, 1H), 4.47 (s, 1H), 4.30 (d, *J* = 6.0, 1H), 4.14 (d, *J* = 6.0, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 2.49 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 171.6, 169.7, 151.9, 147.6, 143.3, 135.3, 132.6, 129.3, 128.0, 110.7, 109.6, 72.8, 64.4, 59.5, 54.8, 52.8, 48.5, 36.4; HRMS (EI, m/z): Calcd for C₂₁H₁₉ClN₂O₇ [M]⁺: 446.0876, found: 446.0877; [α]_D²⁵ = +35.7 (*c* 1.00, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 16.67 min, 34.82 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-6-(4-chlorophenyl)-1,3-dioxo-9-propyl-2,7-diazaspiro[4.4]nonane-2,8-dicarboxylate

Yield (50%); White solid, m.p: 47-49 °C;¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 7.4, 2H), 7.25 (d, J = 7.4, 2H), 4.18 (s, 1H), 3.86 (s, 3H), 3.79 (s, 3H), 3.77 (s, 1H), 3.00 (d, J = 18.2, 1H), 2.90-2.82 (m, 1H), 2.60 (d, J = 18.2, 1H), 1.61-1.30 (m, 4H), 1.09-0.88 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 172.9, 169.9, 147.7, 135.1, 133.3, 129.2, 128.0, 72.6, 65.1, 58.8, 54.8, 52.7, 47.4, 36.0, 33.4, 20.5, 14.0; HRMS (EI, m/z): Calcd for C₂₀H₂₃ClN₂O₆ [M]⁺: 422.1240, found: 422.1246; [α]_D²⁵ = +51.7 (*c* 1.52, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 254 nm) t_R= 16.77 min, 35.28 min.

Dimethyl (5*R*,6*R*,8*R*,9*R*)-6-(4-chlorophenyl)-1,3-dioxo-9-((E)-styryl)-2,7-diazaspiro[4.4] nonane-2,8-dicarboxylate

Yield (30%); Yellow solid, m.p: 74-76 °C;¹H NMR (400 MHz, CDCl₃) δ 7.44-7.23 (m, 9H), 6.59 (d, *J* = 15.6 Hz, 1H), 6.10 (dd, *J* = 14.6, 11.0 Hz, 1H), 4.30 (s, 1H), 3.94 (d, *J* = 3.5 Hz, 1H), 3.86 (s, 3H), 3.80 (s, 3H), 3.76 (s, 1H), 3.70-3.68 (m, 1H), 3.05 (d, *J* = 18.4 Hz, 1H), 2.61 (d, *J* = 18.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 172.0, 169.7, 147.7, 135.7, 135.6, 135.2, 132.9, 129.3, 128.8, 128.5, 128.0, 126.6, 125.8, 72.8, 65.9, 59.2, 54.8, 53.2, 52.8, 36.4; HRMS (EI, m/z): Calcd for C₂₅H₂₃ClN₂O₆ [M]⁺: 482.1240, found: 482.1239; [α]_D²⁵ = +17.9 (*c* 0.62, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 18.78 min, 36.62 min.

Under a nitrogen atmosphere, Cu(CH₃CN)₄BF₄ (3.1 mg, 0.01 mmol), ligand **4a** (4.4 mg, 0.011 mmol), and Et₃N (5.6 μ L, 0.04 mmol) were dissolved in CH₂Cl₂ (2 mL), and stirred at room temperature for approximately 1 h. Then, iminoester **1a** (84.7 mg, 0.4 mmol) was added, the mixture was cooled to -20 °C and α -alkylidene succinimide **2k** (37.4 mg, 0.2 mmol) was then

added. Once starting material was consumed (monitored by TLC), the mixture was concentrated and purified by column chromatography to give the corresponding cycloaddition product.

Methyl (1*R*,3*R*,5*S*)-1-(4-chlorophenyl)-6,8-dioxo-7-phenyl-2,7-diazaspiro[4.4]nonane-3carboxylate

Yield (90%); White solid, m.p: 74-76 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.28 (m, 7H), 6.62-6.56 (m, 2H), 4.28 (s, 1H), 4.15 (dd, J = 9.9, 5.1, 1H), 3.83 (s, 3H), 2.99 (dd, J = 38.5, 17.1, 2H), 2.91 (dd, J = 12.3, 6.4, 1H), 2.47 (dd, J = 13.7, 9.9, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 177.1, 172.5, 171.8, 133.9, 132.8, 130.1, 128.1, 128.0, 127.7, 127.0, 125.2, 72.1, 57.8, 53.2, 51.56, 38.2, 38.0; HRMS (EI, m/z): Calcd for C₂₁H₁₉ClN₂O₄ [M]⁺: 398.1028, found: 398.1032; [α]_D²⁵ = -21.8 (*c* 1.25, CH₂Cl₂); HPLC (Chiralcel IF, *n*-hexane/EtOAc = 50/50, 0.8 mL/min, 254 nm) t_R= 9.63 min, 10.55 min.

Scheme S1. Scaled up asymmetric 1,3-dipolar cycloaddition of azomethine ylide 1f to α-alkylidene succinimide 2b

Synthetic transformations of the cycloadduct

Compound **3fa** (100.3 mg, 0.2 mmol), CH_2Cl_2 (5 mL), triethylamine (27.9 µL, 0.2 mmol) and benzylamine (24.1 µL, 0.22 mmol) were placed in a 10 mL round-bottom flask with magnetic stir bar at room temperature. The resulting mixture was allowed to stir for 24 h. Then, the solvent was removed *in vacuo* and the residue was purified by column chromatography to give **6**.

Methyl (1*R*,3*R*,4*R*,5*R*)-1-(4-bromophenyl)-6,8-dioxo-4-phenyl-2,7-diazaspiro[4.4]nonane-3-carboxylate (6): Yield (85%); White solid, m.p: 95-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (brs, 1H), 7.48-7.38 (m, 4H), 7.38-7.32 (m, 1H), 7.26-7.19 (m, 4H), 4.38 (s, 1H), 4.23 (d, *J* = 6.2, 1H), 4.02 (d, *J* = 6.2, 1H), 3.79 (s, 3H), 3.29 (brs, 1H), 2.43 (d, *J* = 18.7, 1H), 2.27 (d, *J* = 18.7, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.4, 173.3, 171.3, 138.0, 133.3, 131.1, 128.4, 127.6, 127.4, 127.1, 122.0, 71.9, 65.9, 59.9, 54.2, 51.6, 36.8; HRMS (EI, m/z): Calcd for C₂₁H₁₉BrN₂O₄ [M]⁺: 442.0523, found: 442.0526; [α]_D²⁵ = +64.7 (*c* 1.33, CH₂Cl₂); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 70/30, 1.0 mL/min, 254 nm) t_R= 14.43 min, 15.09 min.

To a solution of **6** (88.7 mg, 0.2 mmol) and K_2CO_3 (165.9 mg, 1.2mmol) in DMF (2 mL) MeI (37.5 µL, 0.6 mmol) was added at room temperature. The mixture was stirred for 4 h and was then quenched with water, the aqueous phase was extracted with CH_2Cl_2 . The combined organic phases were dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo* and the residue was purified by column chromatography to afford **7**.

Methyl (1*R*,3*R*,4*R*,5*R*)-1-(4-bromophenyl)-2,7-dimethyl-6,8-dioxo-4-phenyl-2,7-diazaspiro [4.4]nonane-3-carboxylate (7): Yield (92%); White solid, m.p: 131-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.5, 2H), 7.41-7.34 (m, 2H), 7.34-7.28 (m, 3H), 7.17-7.15 (m, 2H), 4.27 (d, *J* = 7.9, 1H), 3.76 (s, 1H), 3.73 (s, 1H), 3.65 (d, *J* = 7.9, 1H), 2.45 (s, 3H), 2.36 (s, 3H), 2.33 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 177.0, 173.2, 170.8, 137.2, 134.2, 130.8, 128.3, 128.2, 127.9, 127.0, 121.8, 79.8, 72.5, 58.1, 51.3, 50.7, 38.3, 37.4, 23.3. HRMS (EI, m/z): Calcd for $C_{23}H_{23}BrN_2O_4[M]^+$: 470.0836, found: 470.0849; $[\alpha]_D^{25} = +43.0$ (*c* 1.50, CH₂Cl₂).

Compound 7 (94.2 mg, 0.2 mmol) was dissolved in dry THF (4 mL) at 0 °C under a nitrogen atmosphere. Lithium aluminium hydride (60.7 mg, 1.6 mmol) was added in portions. Cooling was removed and the mixture was heated at reflux for 48 h protected from air. The mixture was cooled to 0 °C and the following were slowly added dropwise: water (0.1 mL), 15% NaOH aq (0.1 mL) and water (0.3 mL). The resulting slurry was filtered, the solids were washed with THF (10 mL) and the combined filtrates were concentrated *in vacuo* and the residue was purified by column chromatography to afford **8**.

((1*R*,3*R*,4*R*,5*S*)-2,7-dimethyl-1,4-diphenyl-2,7-diazaspiro[4.4]nonan-3-yl)methanol (8): Yield (65%), Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.17 (m, 10H), 3.80 (dd, *J* = 11.1, 3.6, 1H), 3.67 (s, 1H), 3.52 (dd, *J* = 11.1, 1.5, 1H), 3.41 (d, *J* = 7.7, 1H), 2.93 (ddd, *J* = 7.6, 3.5, 1.5, 1H), 2.86 (brs, 1H), 2.61 (d, *J* = 9.3, 1H), 2.27 (s, 3H), 2.17-2.08 (m, 2H), 2.04 (s, 3H), 1.86 (td, *J* = 8.7, 5.8, 1H), 1.57-1.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 138.2, 129.0, 127.9, 127.2, 127.1, 126.4, 125.5, 78.8, 71.7, 64.1, 59.1, 56.2, 54.9, 53.0, 41.3, 38.3, 31.1. HRMS (EI, m/z): Calcd for C₂₂H₂₈N₂O [M]⁺: 336.2197, found: 336.2206; [α]_D²⁵ = -35.2 (*c* 1.20, CH₂Cl₂); HPLC (Chiralcel AS-H, *n*-hexane/*i*-propanol = 90/10, 0.8 mL/min, 254 nm) t_R= 5.24 min, 12.39 min.

The absolute configuration determination of (1*R*,3*R*,4*R*,5*R*)-6

Fig S1. X-ray structure of (1*R*,3*R*,4*R*,5*R*)-6

Crystal data and structure refinement for cd21432

(CCDC 1019642 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/conts/retrieving.html.)

Empirical formula	$C_{22}H_{19}BrCl_3N_2O_4$
Formula weight	561.65
Temperature	293(2) K
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions	a = 10.2175(12) Å; $b = 12.1386(14)$ Å; $c = 19.641(2)$ Å
Volume	2436.0(5) Å^3
Z, Calculated density	4, 1.531 Mg/m^3
Reflections collected / unique	14495 / 3494 [R (int) = 0.0401]
Refinement method	Full-matrix least-squares on F ²
Final R indices [I>2 sigma(I)]	R1 = 0.0638, $wR2 = 0.1817$
R indices (all data)	R1 = 0.0877, $wR2 = 0.1980$

Scheme S2. Proposed transition state leading to the major product *endo*-3ab

The excellent diastereoselectivities and enantioselectivities observed in this 1,3-dipolar cycloaddition can be rationalised by considering the proposed transition state **I** shown in Scheme S2. According to a previous report,⁴ the 1,3-dipolar cycloaddition is proposed to favor an *endo* cycloaddition mode, and two phenyl groups adjacent to the oxygen in the ligand might block the dipolarophile's approach from the "bottom" face (as drawn) and form *endo*-(5R,6R,8R,9R)-**3ab** through approach from the "top" face.

Procedure for the asymmetric 1,3-dipolar cycloaddition of azomethine ylides to 2-oxoindolin-3-ylidenes

Under a nitrogen atmosphere, $Cu(OAc)_2 \cdot H_2O$ (2.0 mg, 0.01 mmol), ligand **4a** (4.4 mg, 0.011 mmol), DIPEA (3.3 µL, 0.02 mmol) and 4 Å MS were dissolved in CPME (1 mL), and stirred at room temperature for approximately 1 h. Next, iminoester **1** (0.2 mmol) and 2-oxoindolin-3-ylidene **9** (0.1 mmol) were added sequentially. Once starting material was consumed (monitored by TLC), the mixture was concentrated and purified by column chromatography to give the corresponding cycloaddition product **10**.

Methyl (2'*R*,3*S*,4'*R*,5'*R*)-2'-(4-chlorophenyl)-2-oxo-4'-phenylspiro[indoline-3,3'-pyrrolidine]-

5'-carboxylate

Yield (95%); ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.28 (m, 3H), 7.23-7.20 (m, 2H), 7.11-7.07 (m, 2H), 7.03 (td, J = 7.7, 1.1, 1H), 6.97 (s, 1H), 6.90 (d, J = 8.5, 2H), 6.68 (td, J = 7.7, 0.9, 1H), 6.57 (d, J = 7.7, 1H), 6.04 (d, J = 7.6, 1H), 4.69 (s, 1H), 4.58 (d, J = 4.8, 1H), 4.18 (d, J = 5.0, 1H), 3.84 (s, 3H); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 254 nm) t_R = 13.42 min, 17.84 min. [α]_D²⁵ = +132.6 (*c* 1.00, CHCl₃). The absolute stereochemistry was determined by comparing optical rotations with literature report ([α]_D²⁵ = +153.3 (*c* 1.00, CHCl₃), 91% ee).^{5,6}

Methyl (2'R,3S,4'R,5'R)-2-oxo-2',4'-diphenylspiro[indoline-3,3'-pyrrolidine]-5'-carboxylate

Yield (95%); ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.27 (m, 4H), 7.25-7.20 (m, 2H), 7.17-7.06 (m, 3H), 7.02 (t, J = 7.7, 1H), 6.95 (d, J = 7.4, 2H), 6.68 (t, J = 7.6, 1H), 6.55 (d, J = 7.7, 1H), 6.06 (d, J = 7.6, 1H), 4.72 (s, 1H), 4.59 (d, J = 4.1, 1H), 4.18 (d, J = 5.0, 1H), 3.84 (s, 3H), 3.74 (brs, 1H); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 254 nm) t_R = 23.51 min, 27.16 min.

Methyl (2'*R*,3*S*,4'*R*,5'*R*)-2'-(4-bromophenyl)-2-oxo-4'-phenylspiro[indoline-3,3'-pyrrolidine]-5'-carboxylate

Yield (93%); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.27 (m, 3H), 7.25-7.15 (m, 4H), 7.04 (t, *J* = 7.6, 1H), 6.84 (d, *J* = 8.4, 2H), 6.68 (t, *J* = 7.6, 1H), 6.58 (d, *J* = 7.8 Hz, 1H), 6.08-6.00 (m, 1H), 4.67 (s, 1H), 4.58 (d, *J* = 4.8, 1H), 4.17 (d, *J* = 4.9, 1H), 3.84 (s, 3H), 3.65 (brs, 1H). HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 254 nm) t_R = 28.96 min, 40.40 min.

Methyl (2'*R*,3*S*,4'*R*,5'*R*)-2'-(4-fluorophenyl)-2-oxo-4'-phenylspiro[indoline-3,3'-pyrrolidine]-5'-carboxylate

Yield (99%); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.27 (m, 3H), 7.24-7.20 (m, 2H), 7.13 (s, 1H), 7.03 (td, J = 7.7, 0.9, 1H), 6.98-6.90 (m, 2H), 6.80 (t, J = 8.7, 2H), 6.68 (td, J = 7.6, 0.7, 1H), 6.57 (d, J = 7.7, 1H), 6.03 (d, J = 7.6, 1H), 4.70 (s, 1H), 4.58 (d, J = 4.6, 1H), 4.18 (d, J = 4.8, 1H), 3.84 (s, 3H), 3.66 (brs, 1H); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 254 nm) t_R = 23.33 min, 28.32 min.

Methyl (2'*R*,3*S*,4'*R*,5'*R*)-2',4'-bis(4-chlorophenyl)-2-oxospiro[indoline-3,3'-pyrrolidine]- 5'carboxylate

Yield (95%); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 7.27 (d, J = 5.9, 2H), 7.16-7.05 (m, 5H), 6.90 (d, J = 8.2, 2H), 6.78 (t, J = 7.6, 1H), 6.60 (d, J = 7.8, 1H), 6.23 (d, J = 7.5, 1H), 4.65 (s, 1H), 4.52 (d, J = 4.7, 1H), 4.13 (d, J = 5.5, 1H), 3.83 (s, 3H), 3.58 (brs, 1H); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 254 nm) t_R = 26.06 min, 32.18 min.

Methyl (2'*R*,3*S*,4'*R*,5'*R*)-2'-(4-chlorophenyl)-2-oxo-4'-(*p*-tolyl)spiro[indoline-3,3'-pyrrolidine] -5'-carboxylate

Yield (88%); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (s, 1H), 7.13-7.02 (m, 7H), 6.89 (d, J = 8.4, 2H), 6.71 (t, J = 7.6, 1H), 6.57 (d, J = 7.7, 1H), 6.12 (d, J = 7.6, 1H), 4.68 (d, J = 8.0, 1H), 4.55 (s, 1H), 4.13 (d, J = 5.0, 1H), 3.83 (s, 3H), 2.34 (s, 3H), 3.64 (brs, 1H); HPLC (Chiralcel AD-H, *n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 254 nm)t_R= 19.48 min, 31.16 min.

References

- 1. J. Wang, H. Liu, Y. Fan, Y. Yang, Z. Jiang and C.-H. Tan, Chem. Eur. J., 2010, 16, 12534.
- 2. Y. Liu, W. Zhang, Angew. Chem., Int. Ed., 2013, 52, 2203.
- 3. Y. Luo, L. Ma, H. Zheng, L. Chen, R. Li, C. He, S. Yang, X. Ye, Z. Chen, Z. Li, Y. Gao, J. Han,
- G. He, L. Yang and Y. Wei, J. Med. Chem., 2010, 53, 273.
- 4. M. Wang, Z. Wang, Y.-H. Shi, X.-X. Shi, J. S. Fossey and W.-P. Deng, *Angew. Chem., Int. Ed.,* 2011, **50**, 4897.
- 5. A. P. Antonchick, C. Gerding-Reimers, M. Catarinella, M. Schürmann, H. Preut, S. Ziegler, D.

Rauh and H. Waldmann, Nat. Chem., 2010, 2, 735.

6. T.-L. Liu, Z.-Y. Xue, H.-Y. Tao and C.-J. Wang, Org. Biomol. Chem., 2011, 9, 1980.

Chiral HPLC Chromatograms

¹H NMR and ¹³C NMR spectra

¹H NMR spectrum of compound **3ab** (CDCl₃)

439 421 359 359 355 355 355 355 355 355 355 355	4.444 4.290 4.275 4.275 4.068 3.817 3.817 3.769	2.496 2.450 2.322 2.276	0.000
	44446	2000	Ĭ

¹³C NMR spectrum of compound **3ab** (CDCl₃)

¹H NMR spectrum of compound **3bb** (CDCl₃)

¹³C NMR spectrum of compound **3bb** (CDCl₃)

¹H NMR spectrum of compound **3cb** (CDCl₃)

¹³C NMR spectrum of compound **3cb** (CDCl₃)

¹H NMR spectrum of compound **3db** (CDCl₃)

¹³C NMR spectrum of compound **3db** (CDCl₃)

¹H NMR spectrum of compound **3eb** (CDCl₃)

|--|

¹³C NMR spectrum of compound **3eb** (CDCl₃)

¹H NMR spectrum of compound **3fb** (CDCl₃)

¹³C NMR spectrum of compound **3fb** (CDCl₃)

¹H NMR spectrum of compound **3gb** (CDCl₃)

4440 3322 3322 333344 333344 33333 33344 0046 0046 0064 0064	449 275 070 820 768 768	496 450 316 270	
	44446	2000	c

¹³C NMR spectrum of compound **3gb** (CDCl₃)

¹H NMR spectrum of compound **3hb** (CDCl₃)

¹³C NMR spectrum of compound **3hb** (CDCl₃)

¹H NMR spectrum of compound **3ib** (CDCl₃)

¹³C NMR spectrum of compound **3ib** (CDCl₃)

¹H NMR spectrum of compound **3jb** (CDCl₃)

¹³C NMR spectrum of compound **3jb** (CDCl₃)

¹H NMR spectrum of compound **3kb** (CDCl₃)

¹³C NMR spectrum of compound **3kb** (CDCl₃)

¹H NMR spectrum of compound **3lb** (CDCl₃)

¹³C NMR spectrum of compound **3lb** (CDCl₃)

¹H NMR spectrum of compound **3mb** (CDCl₃)

¹³C NMR spectrum of compound **3mb** (CDCl₃)

¹H NMR spectrum of compound **3nb** (CDCl₃)

¹³C NMR spectrum of compound **3nb** (CDCl₃)

¹H NMR spectrum of compound **3ad** (CDCl₃)

¹³C NMR spectrum of compound **3ad** (CDCl₃)

¹H NMR spectrum of compound **3ae** (CDCl₃)

¹³C NMR spectrum of compound **3ae** (CDCl₃)

¹H NMR spectrum of compound **3af** (CDCl₃)

¹³C NMR spectrum of compound **3af** (CDCl₃)

¹H NMR spectrum of compound **3ag** (CDCl₃)

¹³C NMR spectrum of compound **3ag** (CDCl₃)

¹H NMR spectrum of compound **3ah** (CDCl₃)

¹³C NMR spectrum of compound **3ah** (CDCl₃)

¹H NMR spectrum of compound **3ai** (CDCl₃)

¹³C NMR spectrum of compound **3ai** (CDCl₃)

¹H NMR spectrum of compound **3aj** (CDCl₃)

¹³C NMR spectrum of compound **3aj** (CDCl₃)

¹H NMR spectrum of compound **3ak** (CDCl₃)

¹³C NMR spectrum of compound **3ak** (CDCl₃)

¹H NMR spectrum of compound **6** (CDCl₃)

	$\alpha = \alpha = \alpha = \alpha = \alpha$	00000	0
			0
044444666666666666666666666666666666666	MMNNNOON N	4400	0
			0
	44444499		1

¹³C NMR spectrum of compound **6** (CDCl₃)

¹H NMR spectrum of compound 7 (CDCl₃)

¹³C NMR spectrum of compound 7 (CDCl₃)

¹H NMR spectrum of compound 8 (CDCl₃)

¹³C NMR spectrum of compound 8 (CDCl₃)

