Supporting Information

Department of Pharmacology and Pharmaceutical Sciences, School of life sciences and School of Medicine, Tsinghua University, Beijing 100084, China
yrao@mail.tsinghua.edu.cn

SUPPORTING INFORMATION

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials and Methods</td>
<td>S2</td>
</tr>
<tr>
<td>Optimization of the reaction conditions.</td>
<td>S2</td>
</tr>
<tr>
<td>General procedure for synthesis of carbamates</td>
<td>S4</td>
</tr>
<tr>
<td>General procedure for palladium-catalyzed the synthesis of Ortho-iodinated carbamates</td>
<td>S4</td>
</tr>
<tr>
<td>Mechanistic study</td>
<td>S5</td>
</tr>
<tr>
<td>Applications</td>
<td>S9</td>
</tr>
<tr>
<td>References</td>
<td>S11</td>
</tr>
<tr>
<td>Data of products</td>
<td>S12</td>
</tr>
</tbody>
</table>
Materials and Methods

All commercial materials (Alfa Aesar, Aladdin, J&K Chemical LTD.) were used without further purification. All solvents were analytical grade. The 1H-NMR and 13C-NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl$_3$ using TMS or solvent peak as a standard. All 13C-NMR spectra were recorded with complete proton decoupling. Low-resolution mass spectral analyses were performed with a Waters AQUITY UPLC$^\text{TM}$/MS. All reactions were carried out in oven-dried sealed tube. Analytical TLC was performed on Yantai Chemical Industry Research Institute silica gel 60 F254 plates and flash column chromatography was performed on Qingdao Haiyang Chemical Co. Ltd silica gel 60 (200-300 mesh). The rotavapor was BUCHI’s Rotavapor R-3.

Optimization of the reackntion conditions.

I Effects of various hypervalent iodine reagents

![Chemical reaction diagram](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>iodine reagents</th>
<th>conditions</th>
<th>yield(%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)$_2$</td>
<td>Togni's reagents I</td>
<td>TFOH, DCE, rt</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)$_2$</td>
<td>Togni's reagents</td>
<td>TFOH, DCE, rt</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)$_2$</td>
<td>Phl(OAc)$_2$</td>
<td>TFOH, DCE, rt</td>
<td>NR</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)$_2$</td>
<td>I(III)-OMe</td>
<td>TFOH, DCE, rt</td>
<td>70b</td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)$_2$</td>
<td>I(III)-OAc</td>
<td>TFOH, DCE, rt</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Pd(OAc)$_2$</td>
<td>I(III)-OH</td>
<td>TFOH, DCE, rt</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>Pd(OAc)$_2$</td>
<td>I(III)-OTs</td>
<td>TFOH, DCE, rt</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>Pd(OAc)$_2$</td>
<td>DMP</td>
<td>TFOH, DCE, rt</td>
<td>43</td>
</tr>
<tr>
<td>9</td>
<td>Pd(OAc)$_2$</td>
<td>NaIO$_3$</td>
<td>TFOH, DCE, rt</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>Pd(OAc)$_2$</td>
<td>KIO$_3$</td>
<td>TFOH, DCE, rt</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>Pd(OAc)$_2$</td>
<td>NaIO$_4$</td>
<td>TFOH, DCE, rt</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>Pd(OAc)$_2$</td>
<td>KIO$_4$</td>
<td>TFOH, DCE, rt</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Pd(OAc)$_2$</td>
<td>NIS</td>
<td>TFOH, DCE, rt</td>
<td>10%+62%SP</td>
</tr>
<tr>
<td>14</td>
<td>Pd(OAc)$_2$</td>
<td>I$_2$+Phl(OAc)$_2$</td>
<td>TFOH, DCE, rt</td>
<td>78%SP</td>
</tr>
<tr>
<td>15</td>
<td>Pd(OAc)$_2$</td>
<td>I$_2$</td>
<td>TFOH, DCE, rt</td>
<td>NR</td>
</tr>
<tr>
<td>16</td>
<td>Pd(OAc)$_2$</td>
<td>[Hydroxy(tosyloxy)iodo]benzene</td>
<td>TFOH, DCE, rt</td>
<td>n.t.</td>
</tr>
<tr>
<td>17</td>
<td>Pd(OAc)$_2$</td>
<td>Diphenyliodinum iodide</td>
<td>TFOH, DCE, rt</td>
<td>NR</td>
</tr>
<tr>
<td>18</td>
<td>Pd(OAc)$_2$</td>
<td>Diphenyliodinum chloride</td>
<td>TFOH, DCE, rt</td>
<td>NR</td>
</tr>
</tbody>
</table>

aNMR yield using 4-Nitrobenzaldehyde as internal standard. bIsolated yield.

DCE=1,2-dichloroethane. TFOH=trifluoromethanesulfonic acid.
n.t. meant no target product.

SP was para-iodinated product of 1

II Effects of reaction temperature
III Effects of solvents

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>iodine reagents</th>
<th>conditions</th>
<th>yield(%)(^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OH</td>
<td>TfOH, DCE, 40°C</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OH</td>
<td>TfOH, DCE, 60°C</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OH</td>
<td>TfOH, DCE, 80°C</td>
<td><10%</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OMe</td>
<td>TfOH, DCE, 40°C</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OMe</td>
<td>TfOH, DCE, 60°C</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OMe</td>
<td>TfOH, DCE, 80°C</td>
<td>30</td>
</tr>
</tbody>
</table>

\(^{a}\)Conversion ratio determined by \(^1\)H NMR using 4-Nitrobenzaldehyde as internal standard.

IV Effects of TfOH

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>iodine reagents</th>
<th>conditions</th>
<th>yield(%)(^{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OMe</td>
<td>no TfOH, DCE, rt</td>
<td>NR</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OMe</td>
<td>0.5 eq TfOH, DCE, rt</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OMe</td>
<td>1.0 eq TfOH, DCE, rt</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OMe</td>
<td>1.5 eq TfOH, DCE, rt</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OMe</td>
<td>2.0 eq TfOH, DCE, rt</td>
<td>70(^{b})</td>
</tr>
<tr>
<td>6</td>
<td>Pd(OAc)(_2)</td>
<td>I(III)-OMe</td>
<td>3.0 eq TfOH, DCE, rt</td>
<td>62</td>
</tr>
</tbody>
</table>

\(^{a}\)Conversion ratio determined by \(^1\)H NMR using 4-Nitrobenzaldehyde as internal standard.

\(^{b}\)Isolated yield
V Effects of other factors

\[\text{Br} \quad \begin{array}{c} \text{O} \\ \text{N} \end{array} \quad \text{1} \quad \begin{array}{c} \text{Different conditions} \\ \text{O} \\ \text{N} \end{array} \quad \text{Br} \quad \begin{array}{c} \text{O} \\ \text{N} \end{array} \quad \text{2} \]

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>iodine reagents</th>
<th>conditions</th>
<th>yield(%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)$_2$</td>
<td>I$_2$ + Phl(OAc)$_2$</td>
<td>K$_2$CO$_3$, DMF, 100°C</td>
<td>NRc</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)$_2$</td>
<td>I$_2$</td>
<td>CsOAc, NaHCO$_3$, 65°C</td>
<td>NRd</td>
</tr>
<tr>
<td>3</td>
<td>[Rh(Cp*Cl)$_2$]$_2$</td>
<td>NIS</td>
<td>AgSbF$_6$, PivOH, 120°C</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)$_2$</td>
<td>NIS</td>
<td>AcOH, 100°C</td>
<td>NRe</td>
</tr>
<tr>
<td>5</td>
<td>[Rh(Cp*Cl)$_2$]$_2$</td>
<td>I(III)-OMe</td>
<td>TIOH, DCE, rt</td>
<td>NR</td>
</tr>
<tr>
<td>6</td>
<td>PdCl$_2$</td>
<td>I(III)-OMe</td>
<td>TIOH, DCE, rt</td>
<td>NR</td>
</tr>
<tr>
<td>7</td>
<td>no Pd(OAc)$_2$</td>
<td>I(III)-OMe</td>
<td>TIOH, DCE, rt</td>
<td>NR</td>
</tr>
<tr>
<td>8</td>
<td>[Ru(p-cymene)$_2$Cl)$_2$</td>
<td>I(III)-OMe</td>
<td>TIOH, DCE, rt</td>
<td>trace</td>
</tr>
</tbody>
</table>

aConversion ratio determined by 1H NMR using 4-Nitrobenzaldehyde as internal standard.
bDMF as the solvent, 36h. dt-AmOH/DMF, 20h.eAcOH as the solvent, 12h.

General procedure

I Synthesis of carbamates$^[1]$

A mixture of the phenol (1.0 equiv) and Me$_2$NCOCl (1.5 equiv) and K$_2$CO$_3$ (1.5 equiv) in MeCN was refluxed for 6 h. The reaction mixture was cooled to room temperature and concentrated under a vacuum. The residue was dissolved in H$_2$O and extracted with dichloroethane. The organic fractions were combined and then washed successively with 1 N NaOH and water. Finally the organic layer was separated, dried over anhydrous Na$_2$SO$_4$, and concentrated under a vacuum to yield the corresponding carbamates.

II Synthesis of iodinated carbamates

Substituted carbamates (1.0 equiv), I-OMe or I-OTs (1.1-2.0 equiv), Pd(OAc)$_2$ (0.05 equiv) were dissolved in commercial dichloroethane in a 15 mL sealed tube. Following that, TfOH (0.5-3.0 equiv) was added into the reaction solution. Then the reaction mixture was stirred at room temperature for 1.5-18.5 h. The reaction was monitored by TLC. After completion of the reaction, saturated NaHCO$_3$ was added to quench the reaction. The reaction mixture was diluted with dichloromethane and washed once with saturated aqueous NaHCO$_3$. Then organic layer was dried over anhydrous Na$_2$SO$_4$ and concentrated on rotavapor under reduced pressure. Finally the residue was purified by silical gel column chromatography to give corresponding iodinated products.

III Synthesis of 1-Methoxy-1,2-benziodoxol-3-(1H)-one$^{[2,3]}$

\[\begin{array}{c} \text{O} \\ \text{OH} \end{array} \quad \text{NaIO}_4 \text{aq AcOH 30%} \quad 110°C \quad 4.0 \text{h} \quad \begin{array}{c} \text{O} \\ \text{OH} \end{array} \]

Step 1: Following the literature’s method, in a 100mL round-bottom flask, 2-iodobenzoic acid (5 g, 20 mmol) and NaIO$_4$ (4.53 g, 21 mmol, as oxidant) were
added into 30% HOAc/H2O solution (30 mL). Then the reaction was heated up to 110 °C and stirred for 4 h under reflux. After that, the flask was cooled down to room temperature and ice water (ca. 50 mL) was purged into the bottle. The mixture was kept stirring until the crystal precipitated (about 10 min). The crystals were filtered, washed with ice water, and dried in vacuo.

Step 2: In a 100 mL round-bottom flask, 1-hydroxy-1,2-benziodoxol-3-(1H)-one was subjected into Ac2O (14 mL) and the system was quickly heated up to 135 °C until the solid is completely dissolved. Then, the flask was cooled down to room temperature and put into a refrigerator under -20 °C until the crystals precipitated from the solution. Subsequently, the solid was filtered and washed with water for 3 times. Finally, the product was dried in vacuo to afford a white solid. After heating the above-obtained solid in MeOH (35 mL) to reflux for 15 min until a clear, colorless solution was obtained and cooling to ambient temperature followed by crystallization at -20 °C, filtration, washing with a minimal amount of MeOH, and drying under vacuum, the desired product was obtained as white crystals.

1H NMR (300 MHz, CDCl3): δ (ppm) 4.26 (s, 3H), 7.64 – 7.76 (m, 2H), 7.88 (t, J = 7.7 Hz, 1H), 8.24 (d, J = 7.7 Hz, 1H)

IV Synthesis of 1-(p-Toluenesulfonyloxy)-1,2-benziodoxol-3(1H)-one[4]

To a stirred mixture of 2-iodosylbenzoic acid (3.17 g, 12 mmol) in acetic anhydride (6 mL), TsOH • H2O (4.56 g, 24 mmol) was added at room temperature. After 5 min stirring a slightly exothermic reaction began, and the mixture turned into a clear solution. The solution was additionally stirred for 30 min until a white microcrystalline precipitate formed. Then the reaction mixture was diluted with dry ether (20 mL), the precipitate was filtered, washed with anhydrous ether (3x20 mL), and dried in vacuo to afford analytically pure product yield 3.90 g (79%).

1H NMR (CDCl3/CF3COOH, 20:1): δ (ppm) 8.30 (d, 1H, J = 8 Hz), 8.09 (t, 1H, J = 8 Hz), 7.94 (d, 1H, J = 8 Hz), 7.80 (t, 1H, J = 8 Hz), 7.71 (d, 2H, J = 8 Hz), 2.40 (s, 3H).

V Mechanism studies

In NMR tube, I(III)-OMe(0.055 mmol, 15 mg) was dissolved in CDCl3 (0.4 mL), then TfOH(0.1 mmol, 9 μL) was added. After 1.0 h, the reaction mixture directly monitored by 1H NMR.
Then 1 uL of MeOH was added to confirm the peak of methanol.

In NMR tube, 2-fluorophenyl dimethylcarbamate (0.05 mmol, 9 mg), I-OMe (1.1 equiv, 15 mg) and Pd(OAc)$_2$ (0.05 equiv, 0.6 mg) were dissolved in CDCl$_3$. Following that, TfOH (2.0 equiv, 9 uL) was added into the reaction solution. The reaction mixtures was monitored by 1H NMR at different time points.
VI Intermolecular Competition Experiments

To two separated sealed tubes, following the general procedure I, o-tolyl dimethylcarbamate (36 mg, 0.20 mmol) or 2-chlorophenyl dimethylcarbamate (40 mg, 0.20 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol), I-OMe (61 mg, 0.22 mmol), TFOH (1.0 equiv, 18 uL) and DCE:TFEA = 0.6:0.4 ml was added. The mixture was stirred at room temperature. After 10 min, two reactions were quenched and added 4-nitrobenzaldehyde as internal standard. Then, the mixture was washed once with saturated aqueous NaHCO$_3$ and extracted with dichloromethane and concentrated on rotavapor under reduced pressure. The conversion ratio was determined by crude 1H-NMR. The ratio of (4) to (6) was 10.3.

VII Procedure for preliminary mechanistic study

1. Preparation of 2-deuterio phenyl dimethylcarbamate$^{[5,6,7]}$.

In an oven-dried 100-mL round-bottomed flask, a solution of 2-bromophenol (1g, 5.78 mmol) and Et$_2$O (15 mL) were cooled to 0 °C. After 5 min, t-BuLi (1.6 M, 8 mL, 12.7 mmol) was added dropwise over 10 min. The mixture was stirred for 3.5 h at 0 °C. Then, D$_2$O (500 mg, 24.9 mmol) was added via syringe. The mixture was then warmed to room temperature slowly overnight. The cloudy, white mixture was diluted
with H₂O (20 mL). The layers were separated. The organic layer was washed with H₂O (20 mL x 3), dried (Na₂SO₄), filtered and concentrated.

Following the general procedure I, the above compounds without further purification (5.78 mmol, 1.0 equiv), K₂CO₃ (1.2 g, 8.68 mmol), dimethylcarbamoyl chloride (6.4 mL, 6.94 mmol) and MeCN (15 mL) was added. The reaction mixture was refluxed for 4h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 10:1). Finally, desired product (670 mg) was isolated in 70% yield.

1H NMR (400 MHz, CDCl₃) δ (ppm) 7.37-7.34 (m, 2H), 7.19 (t, J = 7.40 Hz, 1H), 7.11 (d, J = 8.40 Hz, 1H), 3.10 (s, 3H), 3.01 (s, 3H); 13C NMR (100 MHz, CDCl₃) δ (ppm) 155.0, 151.6, 129.3, 129.2, 125.2, 121.8, 121.6 (JᵥCᵥ= 24.5 Hz), 36.8, 36.5; LRMS (ESI) calcd for C₉H₁₁DN₂O₂ [M+H]+: 167.09, found 167.12

2. Intramolecular experiments

Following the general procedure I, to a 15 mL sealed tube, 2-deuterio phenyl dimethylcarbamate (33 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and TfOH (0.5 equiv, 9 uL) in DCE (1 ml) was stirred at room temperature for 0.5 h. Then the mixture was quenched, washed once with satu.,rated aqueous NaHCO₃, extracted by dichloromethane and concentrated on rotavapor under reduced pressure. The conversion ratio was determined by crude ¹H-NMR. ¹H-NMR showed k₉/k₉D = 1.0.

VIII Deprotection of products in one pot.

After the completion of the first step, without purification, hydrazine hydride (1.0 mL) was added to the mixture as solvent and stirred at 80°C until the reaction finished. When the deprotection was finished, the mixture was acidified by conc. HCl, washed by water and extracted by dichloromethane. Then organic layer was dried over anhydrous Na₂SO₄ and concentrated on rotavapor under reduced pressure. Finally the residue was purified by silical gel column chromatography to give corresponding deprotected products. The yield was 50%.

1H NMR (400 MHz, CDCl₃) δ (ppm) 7.65 (d, J = 7.88 Hz, 1H), 7.46 (d, J = 7.96 Hz, 1H), 6.56 (t, J = 7.92 Hz, 1H), 5.90 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ (ppm) 151.6, 138.7, 132.9, 123.5, 108.8, 83.4; LRMS (ESI) calcd for C₉H₉BrIO [M-H]⁻: 297.90, found 296.92

IX Applications
1. Sequential Suzuki coupling and C-H iodination reactions
In an oven-dried 25-mL round-bottom flask, a mixture of compound 3 (150 mg, 0.5 mmol), 4-fluorophenylboronic acid (139 mg, 1.0 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol), PPh$_3$ (6 mg, 0.02 mmol), K$_3$PO$_4$ (213 mg, 1.0 mmol) was dissolved in toluene (1 ml) under argon. The mixture was stirred overnight at 100 °C. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 10:1). The Suzuki coupling product was isolated in 67% yield as white solid. Then Following the general procedure II, a mixture of 4'-fluoro-[1,1'-biphenyl]-2-yl dimethylcarbamate (26 mg, 0.10 mmol), I-OMe (31 mg, 0.22 mmol), Pd(OAc)$_2$ (1.2 mg, 0.01 mmol) and TfOH (1.5 equiv, 14 μL) in DCE (1 ml) was stirred at room temperature for 2.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 21 (25 mg) was isolated in 65% yield as a colorless oil.

1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.80 (d, $J = 8.00$ Hz, 1H), 7.38 (dd, $J = 7.20, 6.00$ Hz, 2H), 7.30 (d, $J = 7.60$ Hz, 1H), 7.08 (t, $J = 8.4$ Hz, 2H), 7.01 (t, $J = 8.00$ Hz, 1H), 3.00 (s, 3H), 2.88 (s, 3H); 19F-NMR (400 MHz, CDCl$_3$) -114.66 (s, 3F); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 162.5 (d, $J_{C-F} = 239$ Hz, 1C), 153.1, 149.0, 138.7, 136.2, 133.7 (d, $J_{C-F} = 3$ Hz, 1C), 131.0, 130.7 (d, $J_{C-F} = 8$ Hz, 2C), 127.6, 115.2 (d, $J_{C-F} = 22$ Hz, 2C), 93.2, 37.0, 36.7; LRMS (ESI) calcd for C$_{15}$H$_{13}$FINO$_2$ [M+H]$^+$: 386.18, found 385.90

2. sp3C-H arylation reaction8

In an oven-dried 25-mL round-bottom flask, a mixture of compound 3 (87 mg, 0.3 mmol), N-(quinolin-8-yl)propionamide (20 mg, 0.1 mmol), K$_2$CO$_3$ (7 mg, 0.25 mmol) were dissolved in 2-Methyl-2-butanol:H$_2$O=0.8:0.2 ml. The mixture was stirred for 48 h at 100 °C. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 4:1). Finally, compound 25 (22 mg) was isolated in 60% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 8.80-8.75 (m, 2H), 8.13 (d, $J = 8.20$ Hz, 1H), 7.55-7.48 (m, 2H), 7.44-7.41 (m, 1H), 7.32 (d, $J = 7.36$ Hz, 1H), 7.25-7.21 (m, 1H), 7.16-7.10 (m, 2H), 3.16 (s, 3H), 3.10 (t, $J = 8.32$ Hz, 2H), 3.02 (s, 3H), 2.84 (t, $J = 7.44$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 170.8, 154.9, 149.8, 148.2, 138.3, 136.4, 134.5, 132.9, 130.0, 128.0,
127.5, 127.4, 125.8, 122.9, 121.7, 121.5, 116.6, 38.5, 36.9, 36.6, 26.2; LRMS (ESI) calcd for C$_{21}$H$_{21}$N$_3$O$_3$ [M+H]$^+$: 364.42, found 363.38

3. Cyanation reaction9

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{O}
\end{array}
\xrightarrow{\text{DDQ, Cu(OAc)$_2$, Ag$_2$O, NMP}}
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{CN}
\end{array}
\]

Under air, a reaction tube was charged with compound 3 (58 mg, 0.2 mmol), DDQ (45.2 mg, 0.2 mmol), Cu(OAc)$_2$ (36.3 mg, 0.2 mol), Ag$_2$O (46.3 mg, 0.3 mmol) and NMP (2 mL). The mixture was stirred at 120 $^\circ$C for 22 h. After the completion of the reaction, the reaction mixture was diluted with dichloromethane and washed once with saturated aqueous NaHCO$_3$. Then organic layer was dried over anhydrous Na$_2$SO$_4$ and concentrated on rotavapor under reduced pressure. Finally the residue was purified by silica gel column chromatography to give compound 26 (32 mg) in 85% yield as a colorless oil.$^1^1$H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.65–7.58 (m, 2H), 7.40 (d, $J = 8.32$ Hz, 1H), 6.89 (d, $J = 7.76$ Hz, 1H), 3.18 (s, 3H), 3.04 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 153.4, 153.3, 134.0, 133.1, 125.6, 123.5, 115.7, 106.9, 37.1, 36.8; LRMS (ESI) calcd for C$_{10}$H$_{10}$N$_2$O$_2$ [M+H]$^+$: 191.21, found 191.66

References
Date of products

6-bromo-2-iodophenyl dimethylcarbamate (2)

Following the general procedure II, a mixture of 2-bromophenyl dimethylcarbamate (49 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol) and TfOH (2.0 equiv, 36 uL) in DCE (1 ml) was stirred at room temperature for 4 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 2 (52 mg) was isolated in 70% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.74 (d, $J = 7.92$ Hz, 1H), 7.56 (d, $J = 8.00$ Hz, 1H), 6.81 (t, $J = 7.92$ Hz, 1H), 3.20 (s, 3H), 3.06 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 152.4, 149.4, 138.4, 133.5, 128.4, 117.4, 92.8, 37.2, 36.9; LRMS (ESI) calcd for C$_9$H$_9$BrINO$_2$ [M+H]$^+$: 370.99, found 371.71.

2-iodophenyl dimethylcarbamate (3)

Following the general procedure II, a mixture of phenyl dimethylcarbamate (33 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol) and TfOH (0.5 equiv, 9 uL) in TFEA:DCE=0.2:0.8 ml was stirred at room temperature for 0.5 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 3 (37 mg) was isolated in 64% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.80 (d, $J = 7.88$ Hz, 1H), 7.34 (t, $J = 7.56$ Hz, 1H), 7.19 (d, $J = 8.00$ Hz, 1H), 6.94 (t, $J = 7.48$ Hz, 1H), 3.19 (s, 3H), 3.04 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 153.8, 151.8, 139.2, 129.4, 127.1, 123.5, 90.9, 37.0, 36.9; LRMS (ESI) calcd for C$_9$H$_{10}$INO$_2$ [M+H]$^+$: 292.09, found 292.20.

2-iodo-6-methylphenyl dimethylcarbamate (4)

Following the general procedure II, a mixture of o-tolyl dimethylcarbamate (36 mg, 0.20 mmol), I-OMe (61.0 mg, 0.22 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol) and TfOH (0.5 equiv, 9 uL) in TFEA (1 ml) was stirred at room temperature for 4.5 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 4 (39 mg) was isolated in 64% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.62 (d, $J = 7.92$ Hz, 1H), 7.17 (d, $J = 7.56$ Hz, 1H), 6.85 (t, $J = 7.72$ Hz, 1H), 3.20 (s, 3H), 3.05 (s, 3H), 2.24 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 153.2, 150.3, 136.8,
132.9, 131.2, 127.3, 92.1, 37.0, 36.8, 17.4; LRMS (ESI) calcd for C\textsubscript{10}H\textsubscript{12}INO\textsubscript{2} [M+H]+: 306.12, found 306.29.

![Image of a molecule]

2,6-diiodophenyl dimethylcarbamate (5)

Following the general procedure II, a mixture of 2-iodophenyl dimethylcarbamate (29 mg, 0.10 mmol), I-OMe (31 mg, 0.11 mmol), Pd(OAc)\textsubscript{2} (1.2 mg, 0.005 mmol) and TfOH (2.0 equiv, 18 uL) in DCE (1 ml) was stirred at room temperature for 2 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 5 (25 mg) was isolated in 60% yield as a white solid.

\(^1\text{H} \text{NMR} (400 MHz, CDCl}_3) \delta (ppm) 7.78 (d, J = 7.88 Hz, 2H), 6.65 (t, J = 7.88 Hz, 1H), 3.21 (s, 3H), 3.07 (s, 3H); \(^{13}\text{C} \text{NMR} (100 MHz, CDCl}_3) \delta (ppm) 152.3, 151.9, 139.5, 128.9, 91.5, 37.2, 37.0; LRMS (ESI) calcd for C\textsubscript{9}H\textsubscript{9}I\textsubscript{2}NO\textsubscript{2} [M+H]+: 417.99, found 417.68.

![Image of a molecule]

2-chloro-6-iodophenyl dimethylcarbamate (6)

Following the general procedure II, a mixture of 2-chlorophenyl dimethylcarbamate (40 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)\textsubscript{2} (2.3 mg, 0.01 mmol) and TfOH (2.0 equiv, 36 uL) in DCE (1 ml) was stirred at room temperature for 4 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 6 (39 mg) was isolated in 60% yield as a colorless oil.

\(^1\text{H} \text{NMR} (400 MHz, CDCl}_3) \delta (ppm) 7.70 (d, J = 7.92 Hz, 1H), 7.40 (d, J = 7.92 Hz, 1H), 6.89 (t, J = 8.00 Hz, 1H), 3.20 (s, 3H), 3.06 (s, 3H); \(^{13}\text{C} \text{NMR} (100 MHz, CDCl}_3) \delta (ppm) 152.5, 148.4, 137.6, 130.4, 128.4, 128.0, 93.0, 37.2, 36.9; LRMS (ESI) calcd for C\textsubscript{9}H\textsubscript{9}ClINO\textsubscript{2} [M+H]+: 326.54, found 325.81.

![Image of a molecule]

6-fluoro-2-iodophenyl dimethylcarbamate (7)

Following the general procedure II, a mixture of 2-fluorophenyl dimethylcarbamate (58 mg, 0.20 mmol), I-OMe (111 mg, 0.40 mmol), Pd(OAc)\textsubscript{2} (2.3 mg, 0.01 mmol) and TfOH (3.0 equiv, 54 uL) in DCE (1 ml) was stirred at room temperature for 12.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 7 (62 mg) was isolated in 62% yield as a colorless solid.

\(^1\text{H} \text{NMR} (400 MHz, CDCl}_3) \delta (ppm) 7.56 (d, J = 8.04 Hz, 1H), 7.15-7.11 (m, 1H), 6.93 (td, J\textsubscript{1} = 8.20 Hz, J\textsubscript{2} = 5.20 Hz, 1H), 3.19 (s, 3H), 3.05 (s, 3H); \(^{19}\text{F} \text{NMR} (400 MHz, CDCl}_3) \delta (ppm) -123.80 (s, 1F); \(^{13}\text{C} \text{NMR} (100 MHz, CDCl}_3) \delta (ppm) 152.5, 148.4, 137.6, 130.4, 128.4, 128.0, 93.0, 37.2, 36.9; LRMS (ESI) calcd for C\textsubscript{9}H\textsubscript{9}FINO\textsubscript{2} [M+H]+: 326.54, found 325.81.
(100 MHz, CDCl$_3$) δ (ppm) 154.9 (d, $J_{C\text{-}F} = 252$ Hz, 1C), 152.7, 140.4 (d, $J_{C\text{-}F} = 14$ Hz, 1C), 134.1 (d, $J_{C\text{-}F} = 3$ Hz, 1C), 128.0 (d, $J_{C\text{-}F} = 7$ Hz, 1C), 116.9 (d, $J_{C\text{-}F} = 19$ Hz, 1C), 92.7, 37.2, 36.9; LRMS (ESI) calcd for C$_9$H$_9$FNO$_2$ [M+H]$^+$: 310.08, found 309.97.

Ethyl 2-((dimethylcarbamoyl)oxy)-3-iodobenzoate (8)

Following the general procedure II, a mixture of ethyl 2-((dimethylcarbamoyl)oxy)benzoate (52 mg, 0.20 mmol), I-OTs (92.0 mg, 0.22 mmol), Pd(OAc)$_2$ (13.8 mg, 0.06 mmol) and TfOH (0.5 equiv, 9 uL) in DCE (1 ml) was stirred at 60°C for 3.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 8 (32 mg) was isolated in 45% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.98-7.95 (m, 2H), 7.01 (t, $J = 7.84$ Hz, 1H), 4.31 (q, $J = 7.16$ Hz, 2H), 3.20 (s, 3H), 3.05 (s, 3H), 1.34 (t, $J = 7.12$ Hz, 3H); 13C-NMR (100 MHz, CDCl$_3$) δ (ppm) 164.2, 153.3, 151.1, 143.2, 131.9, 127.0, 125.8, 94.1, 61.4, 37.0, 36.9, 14.2; LRMS (ESI) calcd for C$_{12}$H$_{14}$INO$_4$ [M+H]$^+$: 364.16, found 364.25.

2-iodo-5-methylphenyl dimethylcarbamate (9)

Following the general procedure II, a mixture of m-tolyl dimethylcarbamate (36 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol) in TFEA:DCE=0.4:0.6 ml was stirred at room temperature for 5.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 9 (40 mg) was isolated in 66% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.64 (d, $J = 8.04$ Hz, 1H), 7.01 (s, 1H), 6.76 (d, $J = 7.96$ Hz, 1H), 3.17 (s, 3H), 3.03 (s, 3H), 2.31 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 154.0, 151.6, 139.9, 138.7, 128.2, 124.2, 86.6, 37.0, 36.8, 21.1; LRMS (ESI) calcd for C$_{10}$H$_{12}$IINO$_2$ [M+H]$^+$: 306.12, found 306.19.

2,5-diiodophenyl dimethylcarbamate (10)

Following the general procedure II, a mixture of 3-iodophenyl dimethylcarbamate (58 mg, 0.20 mmol), I-OTs (92 mg, 0.22 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol) and TfOH (1.0 equiv, 18 uL) in TFEA (1 ml) was stirred at room temperature for 3.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 10 (61 mg) was isolated in 73% yield as a white solid. 1H NMR (400 MHz, CDCl$_3$) δ (ppm)
7.53 (d, J = 1.92 Hz, 1H), 7.49 (d, J = 8.32 Hz, 1H), 7.25 (dd, J = 8.32 Hz, J = 1.96 Hz, 1H), 3.16 (s, 3H), 3.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ (ppm) 153.4, 152.3, 140.3, 136.2, 132.6, 93.2, 90.6, 37.0, 36.9; LRMS (ESI) calcd for C9H10BrClN2O2 [M+H]+: 417.98, found 418.17.

5-bromo-2-iodophenyl dimethylcarbamate (11)
Following the general procedure II, a mixture of 3-bromophenyl dimethylcarbamate (49 mg, 0.20 mmol), I-OMe (84 mg, 0.30 mmol), Pd(OAc)2 (2.3 mg, 0.01 mmol) and TfOH (2.5 equiv, 45 uL) in DCE (1 ml) was stirred at room temperature for 6.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 11 (55 mg) was isolated in 74% yield as a colorless oil. 1H NMR (400 MHz, CDCl3) δ (ppm) 7.63 (d, J = 8.44 Hz, 1H), 7.37 (d, J = 2.04 Hz, 1H), 7.08 (dd, J = 8.44 Hz, J = 2.00 Hz, 1H), 3.17 (s, 3H), 3.04 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 153.3, 152.4, 139.9, 130.3, 126.9, 122.5, 89.2, 37.1, 36.9; LRMS (ESI) calcd for C9H9BrIINO2 [M+H]+: 370.99, found 371.86.

5-chloro-2-iodophenyl dimethylcarbamate (12)
Following the general procedure II, a mixture of 3-chlorophenyl dimethylcarbamate (40 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)2 (2.3 mg, 0.01 mmol) and TfOH (2.0 equiv, 36 uL) in DCE (1 ml) was stirred at room temperature for 2.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 12 (48 mg) was isolated in 74% yield as a colorless oil. 1H NMR (400 MHz, CDCl3) δ (ppm) 7.70 (d, J = 8.48 Hz, 1H), 7.23 (d, J = 2.20 Hz, 1H), 6.94 (dd, J = 8.48 Hz, J = 2.16 Hz, 1H), 3.17 (s, 3H), 3.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ (ppm) 153.3, 152.4, 139.6, 135.0, 127.4, 124.0, 88.3, 37.0, 36.9; LRMS (ESI) calcd for C9H9ClINO2 [M+H]+: 326.54, found 325.71.

5-fluoro-2-iodophenyl dimethylcarbamate (13)
Following the general procedure II, a mixture of 3-fluorophenyl dimethylcarbamate (58 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)2 (2.3 mg, 0.01 mmol) and TfOH (1.0 equiv, 18 uL) in TFEA:DCE=0.4:0.6 (1 ml) was stirred at room temperature for 11.5 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally,
compound 13 (38 mg) was isolated in 62% yield as a colorless solid. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.72 (dd, \(J = 8.76, 6.20\) Hz, 1H), 7.01 (dd, \(J_1 = 9.36\) Hz, \(J_2 = 2.80\) Hz, 1H), 6.73 (dd, \(J_1 = 8.56\) Hz, \(J_2 = 2.80\) Hz, 1H), 3.18 (s, 3H), 3.04 (s, 3H); \(^19\)F-NMR (400 MHz, CDCl\(_3\)) -111.60 (s, 1F); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 163.2 (d, \(J_{C-F} = 247\) Hz, 1C), 153.3, 152.6 (d, \(J_{C-F} = 11\) Hz, 1C), 139.3 (d, \(J_{C-F} = 9\) Hz, 1C), 114.6 (d, \(J_{C-F} = 22\) Hz, 1C), 111.7 (d, \(J_{C-F} = 25\) Hz, 1C), 83.9 (d, \(J_{C-F} = 4\) Hz, 1C), 37.0, 36.9; LRMS (ESI) calcd for C\(_9\)H\(_9\)FINO\(_2\) [M+H]\(^+\): 310.08, found 309.45.

2-iodo-5-(trifluoromethyl)phenyl dimethylcarbamate (14)
Following the general procedure II, a mixture of 3-(trifluoromethyl)phenyl dimethylcarbamate (47 mg, 0.20 mmol), I-OMe (84 mg, 0.30 mmol), Pd(OAc)\(_2\) (9.2 mg, 0.04 mmol) and TfOH (3.0 equiv, 54 uL) in DCE (1 ml) was stirred at rt for 4.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 14 (42 mg) was isolated in 58% yield as a colorless oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 7.93 (d, \(J = 8.24\) Hz, 1H), 7.46 (d, \(J = 1.24\) Hz, 1H), 7.19 (dd, \(J_1 = 8.20\) Hz, \(J_2 = 1.24\) Hz, 1H), 3.19 (s, 3H), 3.05 (s, 3H); \(^19\)F-NMR (400 MHz, CDCl\(_3\)) -62.85 (s, 3F); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 153.2, 152.2, 139.9, 132.1 (q, \(J_{C-F} = 33\) Hz, 1C), 123.6 (q, \(J_{C-F} = 4\) Hz, 1C), 123.5 (q, \(J_{C-F} = 271\) Hz, 1C), 120.5 (q, \(J_{C-F} = 4\) Hz, 1C), 95.5, 37.1, 36.9; LRMS (ESI) calcd for C\(_{10}\)H\(_9\)F\(_3\)INO\(_2\) [M+H]\(^+\): 360.09, found 359.52.

5-formyl-2-iodophenyl dimethylcarbamate (15)
Following the general procedure II, a mixture of 3-formylphenyl dimethylcarbamate (39 mg, 0.20 mmol), I-OTs (92 mg, 0.22 mmol), Pd(OAc)\(_2\) (2.3 mg, 0.01 mmol) and TfOH (3.0 equiv, 54 uL) in TFEA (1 ml) was stirred at room temperature for 12.5 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 15 (19 mg) was isolated in 30% yield as a colorless oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) (ppm) 9.94 (s, 1H), 8.00 (d, \(J = 8.08\) Hz, 1H), 7.67 (d, \(J = 1.72\) Hz, 1H), 7.44 (dd, \(J_1 = 8.08\) Hz, \(J_2 = 1.72\) Hz, 1H), 3.20 (s, 3H), 3.06 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) (ppm) 190.7, 153.4, 152.6, 140.2, 137.8, 127.1, 124.0, 99.6, 37.1, 36.9; LRMS (ESI) calcd for C\(_{10}\)H\(_9\)INO\(_3\) [M+H]\(^+\): 320.10, found 320.28.

Methyl 3-((dimethylcarbamoyloxy)-4-iodobenzoate (16)
Following the general procedure II, a mixture of methyl 3-((dimethylcarbamoyl)-
oxy)benzoate (45 mg, 0.20 mmol), I-OMe (84 mg, 0.30 mmol), Pd(OAc)$_2$ (4.6 mg, 0.02 mmol) and TfOH (2.5 equiv, 33 uL) in DCE (1 ml) was stirred at room temperature for 6.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 16 (50 mg) was isolated in 71% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.89 (d, $J = 8.24$ Hz, 1H), 7.81 (d, $J = 1.76$ Hz, 1H), 7.59 (dd, $J_1 = 8.20$ Hz, $J_2 = 1.76$ Hz, 1H), 3.89 (s, 1H), 3.19 (s, 3H), 3.05 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 166.0, 153.5, 152.0, 139.4, 131.8, 127.8, 124.2, 97.5, 52.5, 37.1, 36.9; LRMS (ESI) calcd for C$_{11}$H$_{12}$INO$_4$ [M+H]$^+$: 350.13, found 350.21.

2-iodo-4-methylphenyl dimethylcarbamate (17)
Following the general procedure II, a mixture of p-tolyl dimethylcarbamate (36 mg, 0.20 mmol), I-OMe (61.0 mg, 0.22 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol) and TfOH (1.0 equiv, 18 uL) in TFEA (1 ml) was stirred at room temperature for 4.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 17 (39 mg) was isolated in 64% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.61 (s, 1H), 7.13 (d, $J = 8.24$ Hz, 1H), 7.05(d, $J = 8.20$ Hz, 1H), 3.17 (s, 3H), 3.03 (s, 3H), 2.30 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 154.1, 149.6, 139.4, 137.1, 130.1, 122.9, 90.6, 37.0, 36.8, 20.5; LRMS (ESI) calcd for C$_{10}$H$_{12}$INO$_2$ [M+H]$^+$: 306.12, found 305.98.

4-bromo-2-iodophenyl dimethylcarbamate (18)
Following the general procedure II, a mixture of 4-bromophenyl dimethylcarbamate (49 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol) and TfOH (1.0 equiv, 18 uL) in TFEA (1 ml) was stirred at room temperature for 8.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 18 (41 mg) was isolated in 55% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.92 (d, $J = 1.24$ Hz, 1H), 7.45 (d, $J = 8.64$ Hz, 1H), 7.06 (d, $J = 8.60$ Hz, 1H), 3.17 (s, 3H), 3.02 (s, 3H); 13C-NMR (100 MHz, CDCl$_3$) δ (ppm) 153.4, 151.1, 141.0, 134.0, 137.1, 130.1, 119.0, 91.7, 37.0, 36.9; LRMS (ESI) calcd for C$_9$H$_9$BrINO$_2$ [M+H]$^+$: 370.99, found 371.71.

4-chloro-2-iodophenyl dimethylcarbamate (19)
Following the general procedure II, a mixture of 4-chlorophenyl dimethylcarbamate (40 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol) and TfOH (1.5 equiv, 27 uL) in TFEA (1 ml) was stirred at room temperature for 4.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 19 (35 mg) was isolated in 55% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.77 (s, 1H), 7.31 (d, J = 8.64 Hz, 1H), 7.11 (d, J = 8.68 Hz, 1H), 3.17 (s, 3H), 3.03 (s, 3H); 13C-NMR (100 MHz, CDCl$_3$) δ (ppm) 153.5, 150.6, 138.3, 131.4, 129.4, 124.0, 91.1, 37.0, 36.8; LRMS (ESI) calcd for C$_9$H$_9$ClINO$_2$ [M+H]$^+$: 326.54, found 325.47.

2-benzoyl-6-iodophenyl dimethylcarbamate 20a

Following the general procedure II, a mixture of 2-benzoylphenyl dimethylcarbamate (54 mg, 0.20 mmol), I-OMe (84 mg, 0.30 mmol), Pd(OAc)$_2$ (9.6 mg, 0.04 mmol) and TfOH (3.0 equiv, 54 uL) in DCE (1 ml) was stirred at room temperature for 4.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 20a (32 mg) was isolated in 41% yield and compound 20b (15 mg) was isolated in 23% yield.

1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.98 (dd, J_1 = 7.88 Hz, J_2 = 1.04 Hz, 1H), 7.79 (d, J = 7.40 Hz, 2H), 7.57 (t, J = 7.36 Hz), 7.47-7.43 (m, 3H), 7.04 (t, J = 7.76 Hz), 2.88 (s, 3H), 2.82 (s, 3H); 13C-NMR (100 MHz, CDCl$_3$) δ (ppm) 194.1, 152.8, 149.6, 142.0, 137.3, 133.7, 133.1, 130.6, 130.1, 128.4, 126.8, 93.2, 36.9, 36.5; LRMS (ESI) calcd for C$_{16}$H$_{14}$INO$_3$ [M+H]$^+$: 396.20, found 396.28.

1H NMR (400 MHz, CDCl$_3$) δ (ppm) 8.00 (d, J = 7.68 Hz, 1H), 7.67 (d, J = 7.52 Hz, 2H), 7.63-7.60 (m, 2H), 7.52 (t, J = 7.36 Hz, 2H), 6.69 (t, J = 7.80 Hz, 1H); 13C-NMR (100 MHz, CDCl$_3$) δ (ppm) 201.3, 161.9, 145.8, 137.3, 134.0, 132.5, 129.4, 128.6, 120.5, 118.4, 86.6; LRMS (ESI) calcd for C$_{13}$H$_9$IO$_2$ [M-H]$^-$: 323.11, found 322.89.

4'-fluoro-4-iodo-[1,1'-biphenyl]-3-yl dimethylcarbamate (22)

Following the general procedure II, a mixture of 4'-fluoro-[1,1'-biphenyl]-3-yl dimethylcarbamate (52 mg, 0.20 mmol), I-OMe (61 mg, 0.22 mmol), Pd(OAc)$_2$ (2.3 mg, 0.01 mmol) and TfOH (1.0 equiv, 18 uL) in TFEA:DCE=0.2:0.8 ml was stirred at
room temperature for 2.0 h. After completion of the reaction, the residue was purified by silical gel column chromatography (Petroleum ether: Ethyl acetate = 9:1). Finally, compound 22 (46 mg) was isolated in 60% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ (ppm) 7.83 (d, J = 8.20 Hz, 1H), 7.51 (dd, J_1 = 8.56 Hz, J_2 = 5.36 Hz, 2H), 7.37 (d, J = 1.96 Hz, 1H), 7.13-7.08 (m, 3H), 3.21 (s, 3H), 3.06 (s, 3H); 19F-NMR (400 MHz, CDCl$_3$) -114.6 (s, 1F); 13C NMR (100 MHz, CDCl$_3$) δ (ppm) 162.9 (d, J_{C-F} = 245 Hz, 1C), 153.8, 152.2, 142.0, 139.4, 135.6 (d, J_{C-F} = 3 Hz, 1C), 128.8 (d, J_{C-F} = 8 Hz, 2C), 125.7, 122.1, 115.9 (d, J_{C-F} = 22 Hz, 2C), 89.3, 37.0, 36.9; LRMS (ESI) calcd for C$_{13}$H$_{13}$FNO$_2$ [M+H]$^+$: 386.18, found 386.29.
2 h

TfOH

MeOH

ppm