Pd-Catalyzed Carbonylative Cycloamidation of Ketoimines for Synthesis of Pyrido [1, 2-a] Pyrimidin-4-Ones

Ying Xie, Tengfei Chen, Shaomin Fu, Huanfeng Jiang, and Wei Zeng*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China

Supporting Information

Table of Contents

1. General experimental information ... 2
 1.1. Table 1. Catalyst screening for Pd(II)-catalyzed carbonylative Csp³-H amidation of ketoimines ... 2
 1.2. Table 2. The effect of the oxidant on the Pd(II)-catalyzed carbonylative Csp³-H amidation of ketoimines ... 3
 1.3. Table 3. The effect of the base on the Pd(II)-catalyzed carbonylative Csp³-H amidation of ketoimines ... 3
 1.4. Table 4. The effect of the solvent on the Pd(II)-catalyzed carbonylative Csp³-H amidation of ketoimines ... 4
 1.5. Table 5. The effect of the reaction temperature on the Pd(II)-catalyzed carbonylative Csp³-H amidation of ketoimines .. 4
 1.6. General procedure for the synthesis of ketoimines .. 5
 1.7. General procedure for synthesis of pyrido [1, 2-a] pyrimidin-4-ones derivatives (2a-2x) ... 7

2. Controlled experiments for mechanism studies .. 13

3. References ... 16

4. ¹H NMR and ¹³C NMR spectrum for all isolated products 17
1. General experimental information

1.1. General methods

All reactions were carried out in flame-dried sealed tubes with magnetic stirring. Unless otherwise noted, all experiments were performed under argon atmosphere. All reagents were purchased from TCI, Acros or Strem. Solvents were treated with 4 Å molecular sieves or sodium and distilled prior to use. Purifications of reaction products were carried out by flash chromatography using Qingdao Haiyang Chemical Co. Ltd silica gel (40-63 mm). Infrared spectra (IR) were recorded on a Brucker TENSOR 27 FTIR spectrophotometer and are reported as wavelength numbers (cm\(^{-1}\)). Infrared spectra were recorded by preparing a KBr pellet containing the title compound. \(^1\)H NMR and \(^{13}\)C NMR spectra were recorded with tetramethylsilane (TMS) as internal standard at ambient temperature unless otherwise indicated on a Bruker Avance DPX 600 fourier Transform spectrometer operating at 400 MHz for \(^1\)H NMR and 100 MHz for \(^{13}\)C NMR. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (bs), doublet (d), triplet (t). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). Low resolution mass spectra were recorded using a Waters HPLC/ZQ4000 Mass Spectrometer. High resolution mass spectra (HRMS) were recorded on an IF-TOF spectrometer (Micromass). Gas chromatograph mass spectra were obtained with a SHIMADZU model GCMS-QP5000 spectrometer. Crystal data were collected on a Bruker D8 Advance employing graphite monochromated Mo - Kα radiation (\(\lambda = 0.71073 \text{Å} \)) at 293 (2) K and operating in the \(\varphi\)-oscan mode. The structure was solved by direct methods SHELXS-97.

1.1. Table 1. Catalyst screening for Pd(II)-catalyzed carbonylative Csp\(^3\)-H amidation of ketoimines\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Yield (%) (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(TFA)_2</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>PdCl_2(CH_2CN)_2</td>
<td>trace</td>
</tr>
</tbody>
</table>
The reactions were carried out using ketoimine 1a (0.1 mmol), KI (0.1 mmol) and CO (balloon pressure) with Pd catalyst (10 mol %) in the presence of MnO₂ (0.1 mmol) and K₂CO₃ (0.1 mmol) in DMF (1.0 mL) at 80 °C for 24 h in a sealed reaction tube, followed by flash chromatography on SiO₂. b Isolated yield.

1.2. Table 2. The effect of the oxidant on the Pd(II)-catalyzed carbonylative Csp³-H amidation of ketoimines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxidant</th>
<th>Yield (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BQ</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>Phl(OAc)_2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Na₂S₂O₈</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>AgOAc</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>MnO₂</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Cu(OAc)_2</td>
<td>36</td>
</tr>
</tbody>
</table>

The reactions were carried out using ketoimine 1a (0.1 mmol), KI (0.1 mmol) and CO (balloon pressure) with Pd(OAc)₂ (10 mol %) in the presence of oxidant (0.1 mmol) and K₂CO₃ (0.1 mmol) in DMF (1.0 mL) at 80 °C for 24 h in a sealed reaction tube, followed by flash chromatography on SiO₂. b Isolated yield.

1.3. Table 3. The effect of the base on the Pd(II)-catalyzed carbonylative Csp³-H amidation of ketoimines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Yield (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cs₂CO₃</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>NaOAc</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>NaHCO₃</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>K₂CO₃</td>
<td>36</td>
</tr>
</tbody>
</table>
The reactions were carried out using ketoimine 1a (0.1 mmol), KI (0.1 mmol) and CO (balloon pressure) with Pd(OAc)$_2$ (10 mol %) in the presence of Cu(OAc)$_2$ (0.1 mmol) and base (0.1 mmol) in DMF (1.0 mL) at 80 °C for 24 h in a sealed reaction tube, followed by flash chromatography on SiO$_2$. b Isolated yield.

1.4. Table 4. The effect of the solvent on the Pd(II)-catalyzed carbonylative Csp3-H amidation of ketoimines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yield (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>nr</td>
</tr>
<tr>
<td>2</td>
<td>1,4-dioxane</td>
<td>nr</td>
</tr>
<tr>
<td>3</td>
<td>DMSO</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>CH$_3$NO$_2$</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>DCE</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>CH$_3$CN</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>DMF</td>
<td>50</td>
</tr>
</tbody>
</table>

The reactions were carried out using ketoimine 1a (0.1 mmol), KI (0.1 mmol) and CO (balloon pressure) with Pd(OAc)$_2$ (10 mol %) in the presence of Cu(OAc)$_2$ (0.1 mmol) and DABCO (0.1 mmol) in solvent (1.0 mL) at 80 °C for 24 h in a sealed reaction tube, followed by flash chromatography on SiO$_2$. b Isolated yield.

1.5. Table 5. The effect of the reaction temperature on the Pd(II)-catalyzed carbonylative Csp3-H amidation of ketoimines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temp. (°C)</th>
<th>Yield (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>50</td>
</tr>
</tbody>
</table>
The reactions were carried out using ketoimine 1a (0.1 mmol), KI (0.1 mmol) and CO (balloon pressure) with Pd(OAc)$_2$ (10 mol %) in the presence of Cu(OAc)$_2$ (0.1 mmol) and base (0.1 mmol) in DMF (1.0 mL) at the given temperature for 24 h in a sealed reaction tube, followed by flash chromatography on SiO$_2$. b Isolated yield.

1.6. General procedure for the synthesis of ketoimines

The mixture of acetophenone derivatives (0.1 mmol, 1.0 equiv.) and substituted 2-aminopyridine (0.1 mmol, 1.0 equiv.) was stirred in toluene (3.0 mL) at 120 $^\circ$C for 24 h in the presence of molecular sieve (4Å) (0.40 g) and a catalytic amount of concentrated H$_2$SO$_4$ (10 mol %). The mixture was then filtered and the solvent was removed under reduced pressure to produce crude ketoimines, except that ketoimines 1a, 1b, 1e, 1g, 1h, 1j and 1y could be purified by flash chromatography to get pure starting material, the other crude ketoimines including 1c, 1d, 1f, 1i, 1k-1x could be directly used for synthetic purpose without further purification because these ketoimines are easily decomposed on silica gel. $^{[1]}

![Image of 1a]

(E)-N-(1-phenylethylidene)pyridin-2-amine (1a)$^{[1]}$: oil; 15 mg, 77% yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.45 (d, $J = 4.5$ Hz, 1H), 8.00 (d, $J = 7.7$ Hz, 2H), 7.66 (t, $J = 7.7$ Hz, 1H), 7.48 – 7.41 (m, 3H), 7.03 – 6.97 (m, 1H), 6.83 (d, $J = 8.0$ Hz, 1H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.69, 163.53, 148.86, 139.04, 137.70, 130.89, 128.33, 127.45, 118.85, 115.19, 18.15. MS (ESI): m/z = 196.09 [M]$^+$, IR (KBr): 2917, 2850, 1609, 1555, 987, 784 cm$^{-1}$.

![Image of 1b]

(E)-N-(1-(p-tolyl)ethylidene)pyridin-2-amine (1b)$^{[2]}$: white solid; m.p. 81-82.3 $^\circ$C. 15 mg, 71% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.45 (d, $J = 4.0$ Hz, 1H), 7.90 (d, $J = 8.2$ Hz, 2H), 7.69 – 7.62 (m, 1H), 7.24 (d, $J = 8.1$ Hz, 2H), 7.04 – 6.97 (m, 1H), 6.83 (d, $J = 8.0$ Hz, 1H), 2.41 (s, 3H), 2.26 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 167.48, 163.67, 148.84, 141.22, 137.65, 136.36, 129.04, 127.46, 118.71, 115.25, 21.41, 18.07. HR-MS (ESI) calcd for [M + 1]$^+$: C$_{14}$H$_{15}$N$_2$: 211.1230, found: 211.1229; IR (KBr): 2920, 2850, 1639, 1555, 987, 784 cm$^{-1}$.
(E)-N-(1-(4-methoxyphenyl)ethyldene)pyridin-2-amine (1e)[2]: oil; 14 mg, 62% yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.44 (d, $J = 4.1$ Hz, 1H), 7.98 (d, $J = 8.9$ Hz, 2H), 7.66 (td, $J = 7.8$, 1.8 Hz, 1H), 6.99 (dd, $J = 6.9$, 5.4 Hz, 1H), 6.94 (d, $J = 8.9$ Hz, 2H), 6.82 (d, $J = 8.0$ Hz, 1H), 3.86 (s, 3H), 2.24 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 166.66, 163.73, 161.88, 148.83, 137.63, 131.70, 129.21, 118.62, 115.33, 113.57, 55.36, 17.91. HR-MS (ESI) calcd for [M + H^+]: C$_{14}$H$_{15}$N$_2$O: 227.1179, found: 227.1178; IR (KBr): 3077, 2962, 2837, 1635, 1583, 1462, 1234, 1114, 812 cm$^{-1}$.

(E)-N-(1-(4-chlorophenyl)ethyldene)pyridin-2-amine (1g)[2]: oil; 18 mg, 78% yield; 1H NMR (400 MHz, CDCl$_3$) δ 8.46 (d, $J = 4.1$ Hz, 1H), 8.02 (s, 1H), 7.87 (d, $J = 7.7$ Hz, 1H), 7.38 (t, $J = 7.8$ Hz, 1H), 7.07 – 7.01 (m, 1H), 6.84 (d, $J = 8.0$ Hz, 1H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 166.62, 163.20, 148.90, 137.90, 137.75, 131.54, 129.06, 125.62, 119.03, 115.15, 17.98. HR-MS (ESI) calcd for [M + H^+]: C$_{13}$H$_{12}$ClN$_2$: 231.0684, found: 231.0683; IR (KBr): 3081, 3050, 1688, 1586, 1425, 1366, 1235, 815, 789 cm$^{-1}$.

(E)-N-(1-(3-chlorophenyl)ethyldene)pyridin-2-amine (1h)[2]: oil; 15 mg, 65% yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.46 (d, $J = 4.7$ Hz, 1H), 8.02 (s, 1H), 7.87 (d, $J = 7.7$ Hz, 1H), 7.69 (d, $J = 7.6$ Hz, 1H), 7.45 (d, $J = 7.9$ Hz, 1H), 7.38 (t, $J = 7.8$ Hz, 1H), 7.07 – 7.01 (m, 1H), 6.84 (d, $J = 8.0$ Hz, 1H), 2.27 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 166.48, 163.04, 148.89, 140.78, 137.81, 134.57, 130.85, 129.60, 127.64, 125.61, 119.14, 115.16, 18.14. HR-MS (ESI) calcd for [M + H^+]: C$_{13}$H$_{12}$ClN$_2$: 231.0684, found: 231.0683; IR (KBr): 3067, 3004, 1688, 1586, 1425, 1366, 1235, 815, 789 cm$^{-1}$.
1j

\((E)\)-N-(1-(4-bromophenylethylidene)pyridin-2-amine (1j)\[^2\]: oil; 20 mg, 73\% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 8.46 (d, \(J = 4.7\) Hz, 1H), 7.95 (d, \(J = 8.5\) Hz, 2H), 7.69 (t, \(J = 7.2\) Hz, 1H), 7.41 (d, \(J = 8.2\) Hz, 2H), 7.03 (t, \(J = 5.8\) Hz, 1H), 6.83 (d, \(J = 8.0\) Hz, 1H), 2.26 (s, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) δ 166.48, 163.22, 148.90, 137.75, 137.45, 137.10, 128.84, 128.56, 119.01, 115.17, 18.01. HR-MS (ESI) calcd for [M]+: C\(_{13}\)H\(_{12}\)BrN\(_2\): 275.0178, found: 275.0177; IR (KBr): 1277, 1260, 1053, 1032, 1010, 766, 748 cm\(^{-1}\).

1y

\((E)\)-N-(1-phenylethylidene)aniline \[^3\]: oil; 16 mg, 82\% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.96 (d, \(J = 7.5\) Hz, 2H), 7.43 (d, \(J = 5.6\) Hz, 3H), 7.33 (t, \(J = 7.5\) Hz, 2H), 7.07 (t, \(J = 7.4\) Hz, 1H), 6.79 (d, \(J = 7.8\) Hz, 2H), 2.21 (s, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) δ 165.47, 151.77, 139.56, 130.49, 128.99, 128.56, 128.40, 127.22, 123.25, 119.41, 17.39. MS (ESI): m/z = 195.06 [M]+.

1.7 General procedure for synthesis of pyrido [1, 2-a]pyrimidin-4-ones derivatives (2a-2w)

To the solution of ketoimines 1 (0.1 mmol) in dry DMF (1.0 mL) were added Pd(OAc)\(_2\) (2.0 mg, 10 mol %), Cu(OAc)\(_2\) (18 mg, 0.1 mmol), DABCO (12 mg, 0.1 mmol) and KI (16 mg, 0. mmol) under CO atmosphere, and then the corresponding reaction mixture was stirred in a sealed tube at 100 °C for 24 h. After the starting materials were disappeared, then the mixture was cooled down to room temperature and added 1 mL of H\(_2\)O, then extracted with CH\(_2\)Cl\(_2\) (3 × 10 mL). The corresponding combined organic layers were dried over Na\(_2\)SO\(_4\) and concentrated under vacuum, and the resulting crude products were purified by flash chromatography on silical gel using 30\% (v/v) ethyl acetate in petroleum ether as eluent to afford the desired pyrido [1, 2-a]pyrimidin-4-ones 2.

2a

2-Phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (2a)\[^4\]: white solid; 19 mg, 88\% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 9.04 (d, \(J = 7.1\) Hz, 1H), 8.10 – 8.06 (m, 2H), 7.70 (d, \(J = 3.7\) Hz, 2H), 7.48 (d, \(J = 4.9\) Hz, 3H), 7.12 – 7.06 (m, 1H), 6.90 (s, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) δ 162.13, 158.66, 151.07, 137.31, 136.14, 136.65, 128.83, 127.45, 127.31, 126.81, 115.18, 100.13. MS (ESI): m/z = 221.98 [M]+.
2-(\(\rho\)-Tolyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2b): white solid; 21 mg, 90% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.94 (d, \(J = 7.1\) Hz, 1H), 7.89 (d, \(J = 7.5\) Hz, 2H), 7.60 (d, \(J = 3.2\) Hz, 2H), 7.19 (d, \(J = 7.5\) Hz, 2H), 7.02 – 6.95 (m, 1H), 6.79 (s, 1H), 2.32 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 161.94, 158.62, 150.95, 141.01, 136.03, 134.38, 129.52, 127.33, 126.69, 115.01, 99.52, 21.44. MS (ESI): \(m/z = 235.99\) [M]'.

2-(\(m\)-Tolyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2c): white solid; 20 mg, 84% yield \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.04 (d, \(J = 7.1\) Hz, 1H), 7.91 (s, 1H), 7.85 (d, \(J = 7.7\) Hz, 1H), 7.71 (d, \(J = 3.7\) Hz, 2H), 7.37 (t, \(J = 7.6\) Hz, 1H), 7.29 (d, \(J = 7.3\) Hz, 1H), 7.13 – 7.06 (m, 1H), 6.89 (s, 1H), 2.44 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 162.21, 158.58, 150.98, 138.47, 137.21, 136.09, 131.41, 128.70, 128.05, 127.23, 126.71, 124.56, 115.12, 100.08, 21.53. MS (ESI): \(m/z = 235.99\) [M]'.

2-(O-toly1)-4H-pyrido[1,2-a]pyrimidin-4-one (2d): white solid; 16 mg, 68% yield; m.p. 160.2-161.5 °C. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.11 (d, \(J = 7.1\) Hz, 1H), 7.73 (q, \(J = 8.7\) Hz, 2H), 7.48 (d, \(J = 7.6\) Hz, 1H), 7.37 – 7.25 (m, 3H), 7.16 (t, \(J = 6.6\) Hz, 1H), 6.58 (s, 1H), 2.45 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 165.54, 158.10, 150.73, 138.69, 136.23, 135.84, 131.01, 129.23, 129.10, 127.22, 126.64, 126.03, 115.42, 104.35, 20.35. HR-MS (ESI) calcd for [M + 1]\(^+\): C\(_{15}\)H\(_{13}\)N\(_2\)O: 237.1022, found: 237.2020; IR (KBr): 1978, 1929, 1717, 1650, 1384, 1351, 1292, 1272, 1264, 1263, 1154, 1043, 2035. 751 cm\(^{-1}\).
2-(4-Methoxyphenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2e): white solid; 23 mg, 92% yield; 1H NMR (400 MHz, CDCl$_3$) δ 9.04 (d, $J = 7.1$ Hz, 1H), 8.08 (d, $J = 8.4$ Hz, 2H), 7.74 – 7.67 (m, 2H), 7.09 (t, $J = 6.4$ Hz, 1H), 7.01 (d, $J = 8.4$ Hz, 2H), 6.85 (s, 1H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 161.87, 161.57, 158.63, 150.96, 136.02, 129.59, 129.01, 127.28, 126.62, 114.88, 114.18, 98.82, 55.42. MS (ESI): m/z = 251.99 [M$^+$].

![Structure 2e](image)

2f
2-(4-Fluorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2f): white solid; 18 mg, 75% yield; 1H NMR (400 MHz, CDCl$_3$) δ 9.07 (d, $J = 7.1$ Hz, 1H), 8.10 (dd, $J = 8.1, 5.8$ Hz, 2H), 7.79 – 7.70 (m, 2H), 7.16 (dt, $J = 15.4, 7.7$ Hz, 3H), 6.86 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 165.76, 163.26, 160.94, 158.55, 151.05, 133.39, 129.54, 129.45, 127.32, 126.71, 115.93, 115.72, 115.23, 99.66. MS (ESI): m/z = 239.97 [M$^+$].

![Structure 2f](image)

2g
2-(4-Chlorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2g): white solid; 20 mg, 79% yield; 1H NMR (400 MHz, CDCl$_3$) δ 9.06 (d, $J = 7.1$ Hz, 1H), 8.10 (dd, $J = 8.1, 5.9$ Hz, 2H), 7.79 – 7.70 (m, 2H), 7.21 – 7.11 (m, 3H), 6.86 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 165.75, 160.92, 158.54, 151.04, 136.30, 133.36, 129.53, 129.45, 127.31, 126.70, 115.93, 115.71, 115.24, 99.65. MS (ESI): m/z = 255.98 [M$^+$].

![Structure 2g](image)

2h
2-(3-Chlorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2h): white solid; 16 mg, 62% yield; 1H NMR (400 MHz, CDCl$_3$) δ 9.05 (d, $J = 7.1$ Hz, 1H), 8.12 (s, 1H), 7.92 (d, $J = 7.2$ Hz, 1H), 7.79 – 7.70 (m, 2H), 7.46 – 7.39 (m, 2H), 7.14 (t, $J = 6.7$ Hz, 1H), 6.86 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 160.42, 158.46, 151.05, 139.07, 136.41, 134.95, 130.53, 130.00, 127.63, 127.29, 126.78, 125.40, 115.43, 100.20. MS (ESI): m/z = 255.98 [M$^+$].

![Structure 2h](image)
2-(2-Chlorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2i): white solid; 14 mg, 54% yield; m.p. 202.3-203.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.12 (d, J = 7.1 Hz, 1H), 7.82 – 7.72 (m, 2H), 7.67 – 7.61 (m, 1H), 7.49 (dd, J = 8.4, 4.4 Hz, 1H), 7.39 (dd, J = 8.9, 4.3 Hz, 2H), 7.20 (t, J = 6.7 Hz, 1H), 6.78 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.18, 157.94, 151.05, 137.67, 136.33, 132.20, 130.80, 130.45, 127.34, 127.03, 126.75, 115.62, 105.28. HR-MS (ESI) calcd for [M + 1]⁺: C₁₄H₁₀ClN₂O: 257.0476, found: 257.0475; IR (KBr): 1902, 1674, 1415, 1190, 748 cm⁻¹.

4-(4-Oxo-4H-pyrido[1,2-a]pyrimidin-2-yl)benzonitrile (2j): white solid; 16 mg, 65% yield. m.p. 232.3-234 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.02 (d, J = 6.7 Hz, 1H), 8.14 (d, J = 8.0 Hz, 2H), 7.71 (dd, J = 14.7, 8.4 Hz, 4H), 7.13 (t, J = 6.1 Hz, 1H), 6.85 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.75, 158.43, 151.21, 141.51, 136.75, 132.55, 128.00, 127.40, 126.88, 118.49, 115.79, 114.00, 100.86, 99.99. HR-MS (ESI) calcd for [M + 1]⁺: C₁₅H₁₀N₃O: 248.0818, found: 248.0819; IR (KBr): 2221, 1733, 1559, 1250, 828 cm⁻¹.

Methyl 4-(4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl)benzoate (2k): white solid; 21 mg, 71% yield. m.p. 262.2-263.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, J = 7.0 Hz, 1H), 8.17 (s, 3H), 7.82 – 7.75 (m, 2H), 7.18 (t, J = 6.4 Hz, 1H), 6.96 (s, 1H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.65, 160.86, 158.54, 151.14, 141.46, 136.45, 131.84, 130.02, 127.42, 127.36, 126.88, 115.52, 110.83, 52.30. HR-MS (ESI) calcd for [M + 1]⁺: C₁₆H₁₃N₂O₃: 281.0921, found: 281.0923; IR (KBr): 1868, 1629, 1578, 1190, 829 cm⁻¹.
2-(4-Nitrophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2l): yellow solid; 17 mg, 64% yield; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.02 (d, \(J = 7.1\) Hz, 1H), 8.28 (d, \(J = 8.6\) Hz, 2H), 8.19 (d, \(J = 8.6\) Hz, 2H), 7.73 (dt, \(J = 17.4, 8.7\) Hz, 2H), 7.13 (d, \(J = 6.8\) Hz, 1H), 6.88 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 159.39, 158.39, 151.22, 149.10, 143.26, 136.83, 128.37, 127.41, 126.92, 123.94, 115.87, 101.16. MS (ESI): m/z = 266.94 [M]\(^+\).

![Image of 2l](image-url)

2m

2-(Benzod[1,3]dioxol-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (2m): white solid; 25 mg, 94% yield. m.p.212.3-223.8 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.98 (d, \(J = 7.1\) Hz, 1H), 7.69 – 7.56 (m, 3H), 7.54 (s, 1H), 7.04 (t, \(J = 6.5\) Hz, 1H), 6.85 (d, \(J = 8.1\) Hz, 1H), 6.74 (s, 1H), 5.98 (s, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 161.38, 158.59, 150.87, 149.92, 148.32, 136.13, 131.49, 127.29, 126.63, 122.22, 115.00, 108.51, 107.65, 101.59, 99.12. HR-MS (ESI) calcd for [M + 1]: C\(_{15}\)H\(_{11}\)N\(_2\)O\(_3\): 267.0764, found: 267.0764; IR (KBr): 1637, 1474, 1269, 755, 697 cm\(^{-1}\).

![Image of 2m](image-url)

2n

2-(Furan-2-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (2n): white solid; 11 mg, 52% yield. m.p.152.3-153 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.97 (d, \(J = 7.1\) Hz, 1H), 7.66 (dd, \(J = 11.9, 5.0\) Hz, 2H), 7.59 (d, \(J = 8.9\) Hz, 1H), 7.46 (d, \(J = 4.9\) Hz, 1H), 7.09 (t, \(J = 4.3\) Hz, 1H), 7.03 (t, \(J = 6.8\) Hz, 1H), 6.73 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 158.20, 156.86, 151.16, 142.54, 136.40, 130.25, 127.46, 115.02, 97.57. HR-MS (ESI) calcd for [M + 1]: C\(_{12}\)H\(_9\)N\(_2\)O\(_2\): 213.0659, found: 213.0658; IR (KBr): 1813, 1682, 1577, 1064, 727 cm\(^{-1}\).

![Image of 2n](image-url)

2o

2-(Thiophen-2-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (2o): white solid; 14 mg, 61% yield. m.p.162.3-163.9 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.96 (d, \(J = 7.1\) Hz, 1H), 7.66 (dd, \(J = 11.9, 5.0\) Hz, 2H), 7.59 (d, \(J = 8.9\) Hz, 1H), 7.46 (d, \(J = 4.9\) Hz, 1H), 7.09 (t, \(J = 4.3\) Hz, 1H), 7.03 (t, \(J = 6.8\) Hz, 1H), 6.73 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 158.20, 156.86, 151.16, 142.54, 136.40, 130.25, 128.46, 127.58, 127.46, 126.34, 115.02, 97.65. HR-MS (ESI) calcd for [M + 1]: C\(_{12}\)H\(_9\)N\(_2\)S: 229.0430, found: 229.0429; IR (KBr): 1636, 1545, 1038, 939 909 cm\(^{-1}\).
2-(Pyridin-4-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (2p)[3]: white solid; 13 mg, 58% yield; 1H NMR (400 MHz, CDCl₃) δ 9.02 (d, J = 7.1 Hz, 1H), 8.71 (d, J = 5.0 Hz, 2H), 7.88 (d, J = 5.0 Hz, 2H), 7.72 (dd, J = 12.8, 7.6 Hz, 2H), 7.13 (t, J = 6.7 Hz, 1H), 6.89 (s, 1H); 13C NMR (100 MHz, CDCl₃) δ 158.40, 157.44, 150.29, 149.83, 149.54, 143.63, 135.70, 126.39, 125.93, 120.30, 119.93, 114.82, 99.94. MS (ESI): m/z = 222.97 [M]+.

2-(Pyridin-3-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (2q)[3]: white solid; 10 mg, 45% yield; m.p. 232.3-234 °C; 1H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 9.10 (d, J = 6.7 Hz, 1H), 8.73 (s, 1H), 8.39 (d, J = 7.4 Hz, 1H), 7.77 (t, J = 9.8 Hz, 2H), 7.45 (s, 1H), 7.19 (s, 1H), 6.93 (s, 1H); 13C NMR (100 MHz, CDCl₃) δ 159.62, 158.36, 151.31, 148.80, 136.60, 134.81, 127.38, 126.81, 123.58, 115.59, 100.28. MS (ESI): m/z = 222.96 [M]+.

3-Methyl-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (2r)[3]: white solid; 4 mg, 17% yield; 1H NMR (400 MHz, CDCl₃) δ 9.05 (d, J = 7.2 Hz, 1H), 7.66 (s, 2H), 7.59 (d, J = 6.9 Hz, 2H), 7.52 – 7.43 (m, 3H), 7.10 (d, m, 1H), 2.30 (s, 3H); 13C NMR (100 MHz, CDCl₃) δ 161.54, 159.25, 148.40, 139.27, 134.58, 128.90, 128.80, 128.32, 126.88, 126.56, 114.97, 111.87, 13.90. MS (ESI): m/z = 235.98 [M]+.

7-Methyl-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (2s)[3]: white solid; 19 mg, 80% yield; 1H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.95 (d, J = 5.2 Hz, 2H), 7.51 (d, J = 9.0 Hz, 1H), 7.44 (d, J = 9.1 Hz, 1H), 7.37 (d, J = 5.1 Hz, 3H), 6.77 (s, 1H), 2.28 (s, 3H); 13C NMR (100 MHz, CDCl₃) δ 161.50, 158.47, 149.89, 139.09, 137.30, 130.47, 128.74, 127.31, 126.12, 125.51, 124.64, 99.73, 18.31. MS (ESI): m/z = 235.99 [M]+.
7-Chloro-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (2t)[4]: white solid; 16 mg, 62% yield; \(^1 \)H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 8.91 (s, 1H), 7.93 (d, \(J = 3.8 \) Hz, 2H), 7.51 (s, 2H), 7.40 – 7.34 (m, 3H), 6.79 (s, 1H); \(^{13} \)C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \) 161.69, 157.55, 149.27, 137.33, 136.67, 130.85, 128.82, 127.66, 127.34, 125.03, 123.81, 103.44. MS (ESI): \(m/z = 255.98 \) [M+].

9-Methoxy-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (2u): white solid; 15 mg, 60% yield. m.p.192.3-193.9 °C; \(^1 \)H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 8.71 (d, \(J = 6.3 \) Hz, 1H), 8.11 (d, \(J = 6.3 \) Hz, 2H), 7.48 (s, 3H), 7.07 – 7.01 (m, 2H), 6.95 (s, 1H), 4.07 (s, 3H); \(^{13} \)C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \) 161.03, 158.75, 152.53, 145.44, 137.38, 130.56, 128.80, 127.53, 119.12, 114.17, 111.13, 100.97, 56.84. HR-MS (ESI) calcd for \([M + 1]^+\): C\textsubscript{15}H\textsubscript{13}N\textsubscript{2}O: 253.0972, found: 253.0971; IR (KBr): 1735, 1545, 1121, 1026, 938 cm-1.

Methyl 4-oxo-2-phenyl-4H-pyrido[1,2-a]pyrimidine-7-carboxylate (2v): white solid; 14 mg, 50% yield. m.p. 222.3-223.5 °C; \(^1 \)H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 9.72 (s, 1H), 8.20 (d, \(J = 9.2 \) Hz, 1H), 8.11 (s, 2H), 7.71 (d, \(J = 9.1 \) Hz, 1H), 7.52 (s, 3H), 6.96 (s, 1H), 4.00 (s, 3H); \(^{13} \)C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \) 164.14, 162.50, 158.39, 151.24, 136.75, 134.79, 131.50, 131.08, 129.92, 128.91, 127.53, 126.62, 118.67, 100.82, 52.83. HR-MS (ESI) calcd for \([M + 1]^+\): C\textsubscript{16}H\textsubscript{13}N\textsubscript{2}O\textsubscript{3}: 281.0921, found: 281.0922; IR (KBr): 1735, 1545, 1121, 1026, 938 cm-1.

2. Controlled experiments for mechanism studies
(a) Pd-catalyzed carbonylative Csp3-H amidation of ketoimines (1z) under our standard reaction conditions.

To the solution of ketoimines 1y (0.1 mmol) in dry DMF (1.0 mL) were added Pd(OAc)\textsubscript{2} (2.0 mg, 10 mol %), Cu(OAc)\textsubscript{2} (18 mg, 0.1 mmol), DABCO (12 mg, 0.1 mmol) and KI (16 mg, 0.1 mmol) and DMF/CO, 100 °C, 24h.
mmol) under CO atmosphere, and then the corresponding reaction mixture was stirred in a sealed tube at 100 °C for 24 h. After the starting materials were disappeared, then the reaction was cooled down to room temperature and added 1mL of H2O, then extracted with CH2Cl2 (3×10 mL). The resulting combined organic layers were dried over Na2SO4 and concentrated under vacuum, and the resulting crude products were purified by flash chromatography on silica gel using petroleum ether as eluent to afford the product 2x.\(^{(5)}\) \(^1\)H NMR (400 MHz, CDCl3) \(\delta\) 7.59 (d, \(J = 7.7\) Hz, 2H), 7.39 – 7.31 (m, 4H), 7.29 (d, \(J = 6.8\) Hz, 1H), 7.25 – 7.17 (m, 9H), 6.74 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl3) \(\delta\) 140.37, 135.19, 134.82, 132.74, 129.08, 128.72, 128.34, 128.14, 126.82, 126.56, 125.86, 125.70, 125.58, 125.15, 120.90, 108.77. MS (ESI): \(m/z = 295.03\) [M]+.

The possible reaction mechanism of the formation of 2x was shown as follows: At first, ketoimine (1y) could produce enamine 1y-a and ketone 1y-b via isomerization and hydrolysis process, respectively (Scheme a). Then ketone 1y-b was attacked nucleophically by 1y-a to give imine 1y-e followed by dehydration. 1y-e could be isomerized to alkene 1y-f which was further converted to 2x, possibly through Pd(II)-catalyzed C-H activation/cyclization cascade (Scheme b).

(b) H/D Exchange of N-(2-pyridyl) ketoimine (1a)

To the solution of ketoimine 1a (0.1 mmol) in dry DMF (1.0 mL) were added CD3OD (0.5 mL) Pd(OAc)2 (2.0 mg, 10 mol %) under air. The reaction mixture was stirred for 100 °C and then cooled down to room temperature. After removal of solvent the resulted crude was purified by flash column chromatography to give the desired compound d-1a\(^{(2)}\) (20% yield, as oil. \(^1\)H NMR (400 MHz, CDCl3) \(\delta\) 8.46 (d, \(J = 4.1\) Hz, 1H), 8.01 (d, \(J = 7.1\) Hz, 2H), 7.69 (t, \(J = 7.5\) Hz, 1H), 7.49 – 7.42 (m, 3H), 7.05 – 7.00 (m, 1H), 6.84 (d, \(J = 8.0\) Hz, 1H), 2.22 (dd, \(J = 16.4, 8.7\) Hz, 0.54H); \(^{13}\)C NMR (100 MHz, CDCl3) \(\delta\) 167.68, 163.53, 148.85, 139.02, 137.70, 130.89, 128.33, 127.44, 118.85, 115.18.

(c) Kinetic isotope effect of this transformation
A sample experimental set-up is run as follows: To the solution of ketoimine (1a: 20 mg, 0.1 mmol; or d-1a: 20 mg, 0.1 mmol) in dry DMF (2.0 mL) were added Pd(OAc)$_2$ (2 mg, 10 mol %), Cu(OAc)$_2$ (18 mg, 0.1 mmol), DABCO (12 mg, 0.1 mmol) and KI (16 mg, 0.1 mmol) under CO atmosphere, and then the corresponding reaction mixture was stirred in a sealed tube for 100 °C. The reaction mixture (0.4 mL) was extracted at 10 minutes intervals for the first 50 minutes. After solvent of the extraction mixture (0.4 mL) was removed under reduced pressure conditions and analyzed by 1H NMR spectrum (see Figure 1 and Figure 2). A sample plot of the initial rate data for reactions of both 1a and d-1a was shown in Figure 3. The reaction progress in the early stage (0-60 min) indicated a kinetic isotope effect of 1.58. Then above extraction mixture was combined, added 1.0 mL of H$_2$O. Then the mixture was extracted with DCM (3×10 mL), and the corresponding crude d-2a was purified by flash chromatography on silical gel using 30% ethyl acetate in petroleum ether as eluent. d-2a: 1H NMR (400 MHz, CDCl$_3$) δ 9.06 (d, $J = 6.9$ Hz, 1H), 8.09 (s, 2H), 7.72 (s, 2H), 7.48 (s, 3H), 7.11 (d, $J = 2.8$ Hz, 1H), 6.91 (s, 0.54H). 13C NMR (100 MHz, CDCl$_3$) δ 162.04, 158.62, 151.04, 137.27, 136.13, 130.63, 128.80, 127.42, 127.26, 126.77, 115.16, 100.07. HR-MS (ESI) calcd for [M + 1]$^+$: C$_{14}$H$_{10}$D$_2$N$_2$O: 224.0929, found: 224.0923.
Figure 1. The conversion of 1a was monitored by 1H NMR method

Figure 2. The conversion of d-1a was monitored by 1H NMR method

Figure 3. The plot of initial rates for KIE measurements.

3. References
4. 1H NMR and 13C NMR spectrum for all isolated products.

1) (E)-N-(1-Phenylethylidene)pyridin-2-amine (1a) (Using CDCl$_3$ as solvent)
2) \((E)-N-(1\text{-}(p\text{-tolyl})\text{ethylidene})\text{pyridin-2-amine (1b)}:\) (Using CDCl\(_3\) as solvent)
3) (E)-N-(1-(4-methoxyphenyl)ethylidene)pyridin-2-amine (1e): (Using CDCl$_3$ as solvent)
4) (E)-N-(1-(4-chlorophenyl)ethylidene)pyridin-2-amine (1g): (Using CDCl$_3$ as solvent)
5) (E)-N-(1-(3-chlorophenyl)ethylidene)pyridin-2-amine (1h): (Using CDCl₃ as solvent)
6) \((E)\)-N-(1-(4-bromophenyl)ethylidene)pyridin-2-amine (1j): (Using CDCl₃ as solvent)
7) \((E)\)-N-(1-phenylethylidene)aniline (Iz) (Using CDCl₃ as solvent)
8) 2-Phenyl-4H-pyrrolo[1,2-a]pyrimidin-4-one (2a) (Using CDCl₃ as solvent)
9) 2-(P-tolyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2b) (Using CDCl₃ as solvent)
10) 2-(M-tolyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2c) (Using CDCl₃ as solvent)
11) 2-(O-tolyl)-4H-pyrido[1,2-alpyrimidin-4-one (2d) (Using CDCl₃ as solvent)
12) 2-(4-Methoxyphenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2e) (Using CDCl$_3$ as solvent)
13) 2-(4-Fluorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2f) (Using CDCl₃ as solvent)
14) 2-(4-Chlorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2g) (Using CDCl$_3$ as solvent)
15) 2-(3-Chlorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2h) (Using CDCl₃ as solvent)
16) 2-(2-Chlorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2i) (Using CDCl₃ as solvent)
17) 4-(4-Oxo-4H-pyrido[1,2-a]pyrimidin-2-yl)benzonitrile (2j) (Using CDCl$_3$ as solvent)
18) Methyl 4-(4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl)benzoate (2k) (Using CDCl₃ as solvent)
19) 2-(4-Nitrophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one (2l) (Using CDCl₃ as solvent)
20) 2-(Benzo[d][1,3]dioxol-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (2m) (Using CDCl₃ as solvent)
21) 2-(Furan-2-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (2n) (Using CDCl₃ as solvent)
22) 2-(Thiophen-2-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (2o) (Using CDCl₃ as solvent)
23) 2-(Pyridin-4-yl)-4H-pyrido[1,2-al]pyrimidin-4-one (2p) (Using CDCl₃ as solvent)
24) 2-(Pyridin-3-yl)-4H-pyrido[1,2-a]pyrimidin-4-one (2q) (Using CDCl₃ as solvent)
25) 3-Methyl-2-phenyl-4H-pyrido[1,2-a]pyrimdin-4-one (2r) (Using CDCl₃ as solvent)
26) 7-Methyl-2-phenyl-4H-pyrido[1,2-alpyrimidin-4-one (2s) (Using CDCl₃ as solvent)
27) 7-Chloro-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (2t) (Using CDCl₃ as solvent)
28) 9-Methoxy-2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-one (2u) (Using CDCl₃ as solvent)
29) Methyl 4-oxo-2-phenyl-4H-pyrido[1,2-a]pyrimidine-7-carboxylate (2v) (Using CDCl₃ as solvent)
30) H/D Exchange of N-pyridyl ketoimine (d-1a) (Using CDCl$_3$ as solvent)
31) ^1H and ^{13}C NMR spectrum for d-$2a$ (using CDCl$_3$ as solvent)
32) The crude 1H NMR spectrum for calculating KIE value (Using CDCl₃ as solvent)
 a. The crude 1H NMR spectrum for the reaction of 1a
b. The crude 1H NMR spectrum for the reaction of d-1a
33) 1, 2, 4-Triphenyl-1H-pyrrole (2x) (Using CDCl$_3$ as solvent)