Electronic Supporting Information

Sulfonic acid functionalized ionic liquids for the dissolution of metal oxides and solvent extraction of metal ions

David Dupont†, Stijn Raiguel†, Koen Binnemans*†
1. Chemicals and materials

Chemicals for extraction and leaching experiments

NiO (97%), Y₂O₃ (99.99%), CrCl₃·6H₂O (98%), ZnCl₂ (98.5%), CuCl₂ anh. (99%), H₂SO₄ (96%), HCl (37%), 1,4-dioxane (99.9%), Al₂O₃ (99%), Cr₂O₃ (99%) and LaCl₃·7H₂O (99.99%) were purchased from Acros Organics (Geel, Belgium). La₂O₃ (99.99%), Fe₂O₃ (95%), TiO₂ (99%), GaCl₃ anh. (99.99%), NiCl₂ (98%), InCl₃ (97%), FeCl₃ (99%), YCl₃·6H₂O (99.9%), DyCl₃·6H₂O (99.9%), CoCl₂ (97%), MnO (99%) and LuCl₃·6H₂O (99.9%) were bought from Sigma-Aldrich (Diegem, Belgium). NdCl₃·6H₂O (99.9%) and Co₃O₄ (99.5%) were purchased from Strem Chemicals Inc. (Newburyport, USA), SnCl₂ (99%) from Merck (Overijse, Belgium) and WO₃ (99%) from ABCR Chemicals (Karlsruhe, Germany). CaCl₂·2H₂O (99.5%) and the 1000 mg·L⁻¹ gallium(III) and selenium(VI) standard solutions in HNO₃ (2–5 wt%) were obtained from Chem-Lab (Zedelgem, Belgium). Ethanol (Analytical reagent grade) was obtained from Fisher Scientific Limited (Loughborough, UK). CuO (99.9999%) and CoO (95%) were purchased from Alfa Aesar (Karlsruhe, Germany). A silicone solution in isopropanol was purchased from SERVA Electrophoresis GmbH (Germany). All chemicals were used as received without further purification.

Sc₂O₃ was kindly provided by Solvay (La Rochelle, France). ScCl₃·xH₂O was prepared by dissolving Sc₂O₃ in an excess of hydrochloric acid (two equivalents). The mixture was dried on a rotary evaporator to remove the water together with the excess of hydrochloric acid. This step was repeated several times until a crystalline material was obtained, the purity was verified with TXRF analysis.
Bistriflimic acid (80 wt% in H₂O) (99%) was purchased from IoLiTec (HeilBonn, Germany). Triethylamine (99%), trioctylphosphine (90%) and trimethylamine (33% in EtOH) were purchased from Acros Organics (Geel, Belgium). Triphenyl phosphine (98.5%), 1,3-propanesultone (98%), tri-n-butylphosphine (97%), trioctylamine (98%), trihexylamine (96%), tributylamine (99%), tripropylamine (98%), ethylacetate (99.7%), toluene (99%) and diethylether (99.8%) were obtained from Sigma Aldrich (Diegem, Belgium). Trihexyl phosphine (95%) was bought from TCI (Zwijndrecht, Belgium). Acetonitrile (HPLC grade) and sodium hydroxide (97%) were obtained from Fisher Scientific Limited (Loughborough, UK).
2. Equipment and characterization

1H NMR and 13C NMR spectra were recorded on a Bruker Avance 300 spectrometer (operating at 300 MHz for 1H, 75 MHz for 13C). The chemical shifts are noted in parts per million (ppm), referenced to tetramethylsilane for 1H and 13C. The coupling constants are given in Hertz. Solutions were made in D_2O, CD_2Cl_2 or CD_3Cl. The spectra were analyzed with SpinWorks software. The elemental analysis of carbon, hydrogen and nitrogen was performed on a CE-instruments EA-1110 elemental analyzer. The viscosity of the ionic liquids was measured using an automatic Brookfield plate cone viscometer, Model LVDV-II CP (Brookfield Engineering Laboratories, USA). Melting points were determined on a Mettler-Toledo DSC 1 (STAR* system) instrument at a heating rate of 10 °C min$^{-1}$ under a helium atmosphere. Thermogravimetric analysis (TGA) was done on a TA Instruments T500 thermogravimeter (heating rate: 5 °C min$^{-1}$ from room temperature to 400 °C, under a nitrogen atmosphere). A TMS-200 thermoshaker (Nemus Life) was used to shake samples during extraction experiments and a Heraeus Megafuge 1.0 centrifuge was used to accelerate phase separation. Total reflection X-ray fluorescence (TXRF) analysis was performed with a Bruker S2 Picofox TXRF spectrometer equipped with a molybdenum source. For the sample preparation, plastic microtubes were filled with a small amount of sample (100 mg), internal standard (Ga(III) or Se(VI) solution) and water (800 µL). To measure the ionic liquid, a smaller sample was taken (25 mg) and dissolved in 1,4-dioxane/water (800 µL). The microtubes were then vigorously shaken on a vibrating plate (IKA MS 3 basic). Finally, a 1 µL drop of this solution was put on a quartz plate, previously treated with a silicone/isopropanol solution (Serva®) to avoid spreading of the sample droplet on the quartz plate. The quartz plates were then dried for 30 min at 60 °C prior to analysis. Each sample was measured for 5 min.
3. Overview of the synthetic strategy and the synthesized ionic liquids

The synthetic strategy for was based on a 2-step reaction (Scheme S 1). First 1,3-propanesultone was reacted with the appropriate trialkylamine or trialkylphoshine to obtain the sulfonate zwitterion. Then this zwitterion was reacted with the super acid HTf$_2$N to obtain the corresponding ionic liquid (IL). An overview of the synthesized ILs is given in Table S1.

Scheme S 1. Synthetic strategy for the synthesis of trialkylammonium- and trialkylphosphoniumpropanesulfonic acid bis(trifluoromethylsulfonyl)imide ionic liquids.
Table S1. Overview of the ionic liquids synthesized in this work

<table>
<thead>
<tr>
<th>IL abbreviation</th>
<th>Full name</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{N}_{111}\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Trimethylammoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
<tr>
<td>([\text{N}_{222}\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Triethylammoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
<tr>
<td>([\text{N}_{333}\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Tripropylammoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
<tr>
<td>([\text{N}_{444}\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Tributylammoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
<tr>
<td>([\text{N}_{666}\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Trihexylammoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
<tr>
<td>([\text{N}_{888}\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Trioctylammoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
<tr>
<td>([\text{P}_{444}\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Tributylphosphoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
<tr>
<td>([\text{P}_{666}\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Trihexylphosphoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
<tr>
<td>([\text{P}_{888}\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Trioctylphosphoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
<tr>
<td>([\text{PPPh}_3\text{C}_3\text{SO}_3\text{H}])[\text{TF}_2\text{N}]</td>
<td>Triphenylphosphoniumpropanesulfonic acid bistriflimide(^{(a)})</td>
</tr>
</tbody>
</table>

\(^{(a)}\)Bistriflimide = bis(trifluoromethylsulfonyl)imide
4. Synthesis of ionic liquids

4.1 [N\textsubscript{111}C\textsubscript{3}SO\textsubscript{3}H][Tf\textsubscript{2}N]

1,3-Propanesultone (0.115 mol, 14.037 g) and trimethylamine (0.147 mol, 8.69 g) (as a 33% in ethanol solution) were dissolved in acetone at 0 °C. The solution was then stirred for 24 h at room temperature to obtain the sulfonate zwitterion [N\textsubscript{111}C\textsubscript{3}SO\textsubscript{3}] as a white powder precipitate. The acetone and excess trimethylamine were removed using a rotary evaporator under reduced pressure. The yield was 100% (0.115 mol, 20.87 g). A stoichiometric amount of the super acid HTf\textsubscript{2}N (0.115 mol, 32.33 g) was then added (as a 80 wt% solution in H\textsubscript{2}O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [N\textsubscript{111}C\textsubscript{3}SO\textsubscript{3}H][Tf\textsubscript{2}N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [N\textsubscript{111}C\textsubscript{3}SO\textsubscript{3}H][Tf\textsubscript{2}N]

1H NMR (300 MHz, δ, D\textsubscript{2}O): 3.36 (2H, m, CH\textsubscript{2}), 3.02 (9H, s, 3 CH\textsubscript{3}), 2.86 (2H, t, 7.0 Hz, CH\textsubscript{2}), 2.13 (2H, m, CH\textsubscript{2}). 13C NMR (75 MHz, δ, CD\textsubscript{3}Cl): 125.51 (CF\textsubscript{3}), 121.28 (CF\textsubscript{3}), 117.04 (CF\textsubscript{3}), 112.27 (CF\textsubscript{3}), 64.64 (CH\textsubscript{2}), 52.73 (CH\textsubscript{3}), 47.17 (CH\textsubscript{2}), 18.44 (CH\textsubscript{2}). CHN analysis: (calculated for C\textsubscript{8}H\textsubscript{16}F\textsubscript{6}N\textsubscript{2}O\textsubscript{7}S\textsubscript{3}): C 20.06% (20.78%), H 3.94% (3.49%), N 5.87% (6.06%).

Glass transition temperature (-48 °C)

Density: 1.57 g⋅cm-3 (25 °C)

Viscosity 3230 cP (30 °C) / 180 cP (80 °C)

Degradation temperature: ≈ 275 °C
4.2 $[\text{N}_{222}\text{C}_3\text{SO}_3\text{H}][\text{Tf}_2\text{N}]$

Triethylamine (0.154 mol, 15.56 g) and 1,3-propanesultone (0.123 mol, 15.032 g) were dissolved in acetone at 0 °C. The solution was then stirred overnight at room temperature to obtain the sulfonate zwitterion $[\text{N}_{222}\text{C}_3\text{SO}_3]$ as a white powder precipitate. The precipitate was filtered off and washed with acetone to remove the excess trimethylamine. The precipitate was then dried using a rotary evaporator under reduced pressure. The yield was 37% (0.045 mol, 10.050 g). A stoichiometric amount of the super acid HTf$_2$N (0.045 mol, 14.00 g) was then added (as a 80 wt% solution in H$_2$O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid $[\text{N}_{222}\text{C}_3\text{SO}_3\text{H}][\text{Tf}_2\text{N}]$, in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid $[\text{N}_{222}\text{C}_3\text{SO}_3\text{H}][\text{Tf}_2\text{N}]$

1H NMR (300 MHz, δ, D$_2$O): 3.20 (6H, m, 3 CH$_2$), 2.85 (2H, t, 7.5 Hz, CH$_2$), 2.01 (2H, m, CH$_2$), 1.15 (9H, t, 7.0 Hz, 3 CH$_3$). 13C NMR (75 MHz, δ, D$_2$O): 125.55 (CF$_3$), 121.31 (CF$_3$), 117.03 (CF$_3$), 112.84 (CF$_3$), 54.61 (CH$_2$), 52.66 (CH$_2$), 47.18 (CH$_2$), 17.18 (CH$_2$), 6.54 (CH$_3$).

CHN analysis: (calculated for C$_{11}$H$_{22}$F$_6$N$_2$O$_7$S$_3$): C 26.86% (26.19%), H 4.23% (4.40%), N 5.05% (5.55%).

Glass transition temperature (-57 °C)
Density: 1.55 g·cm$^{-3}$ (25 °C)
Viscosity 1463 cP (30 °C) / 79 cP (80 °C)
Degradation temperature: ≈ 275 °C
4.3 [N\textsubscript{333}C\textsubscript{3}SO\textsubscript{3}H][\text{Tf}_2\text{N}]

Tripropylamine (0.173 mol, 24.85 g) and 1,3-propanesultone (0.163 mol, 19.918 g) were refluxed in acetonitrile for 24 h to obtain the sulfonate zwitterion [N\textsubscript{333}C\textsubscript{3}SO\textsubscript{3}] (homogeneous solution). The acetonitrile was removed using a rotary evaporator under reduced pressure. The zwitterion was then washed with toluene and dried again using a rotary evaporator. The yield was 100% (0.163 mol, 43.33 g).

A stoichiometric amount of the super acid HTf\textsubscript{2}N (0.165 mol, 46.34 g) was then added (as a 80 wt% solution in H\textsubscript{2}O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [N\textsubscript{333}C\textsubscript{3}SO\textsubscript{3}H][\text{Tf}_2\text{N}], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [N\textsubscript{333}C\textsubscript{3}SO\textsubscript{3}H][\text{Tf}_2\text{N}]

\(^1\text{H}\) NMR (300 MHz, \(\delta, \text{D}_2\text{O}\)): 3.28 (2H, m, CH\textsubscript{2}), 3.09 (6H, m, CH\textsubscript{2}), 2.84 (2H, t, 7.0 Hz, CH\textsubscript{2}), 2.03 (2H, m, CH\textsubscript{2}), 1.60 (6H, m, 3 CH\textsubscript{2}), 0.84 (9H, t, 7.0 Hz, 3 CH\textsubscript{3}). \(^{13}\text{C}\) NMR (75 MHz, \(\delta, \text{D}_2\text{O}\)): 125.54 (CF\textsubscript{3}), 121.34 (CF\textsubscript{3}), 117.11 (CF\textsubscript{3}), 112.86 (CF\textsubscript{3}), 59.94 (CH\textsubscript{2}), 57.44 (3 CH\textsubscript{2}), 47.18 (CH\textsubscript{2}), 17.33 (CH\textsubscript{2}), 14.76 (CH\textsubscript{2}), 9.69 (3 CH\textsubscript{3}). CHN analysis: (calculated for C\textsubscript{14}H\textsubscript{28}F\textsubscript{6}N\textsubscript{2}O\textsubscript{7}S\textsubscript{3}·2H\textsubscript{2}O): C 28.65% (28.86%), H 5.84% (5.54%), N 4.77% (4.81%).

Glass transition temperature (-37 °C)

Density: 1.42 g·cm\(^{-3}\) (25 °C)

Viscosity 10000 cP (30 °C) / 229 cP (80 °C)

Degradation temperature: \(\approx \) 275 °C
4.4 [N\text{444}C_3SO_3\text{H}][\text{Tf}_2\text{N}]

Tributylamine (0.126 mol, 23.34 g) and 1,3-propanesultone (0.123 mol, 15.00 g) were refluxed in acetonitrile for 72 h to obtain the sulfonate zwitterion [N\text{444}C_3SO_3] (homogeneous solution). The acetonitrile was removed using a rotary evaporator under reduced pressure. The zwitterion was then washed with toluene and dried again using a rotary evaporator. The yield was 100% (0.123 mol, 37.821 g).

A stoichiometric amount of the super acid HTf\text{2}N (0.126 mol, 35.352 g) was then added (as a 80 wt% solution in H\text{2}O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [N\text{444}C_3SO_3\text{H}][\text{Tf}_2\text{N}], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [N\text{444}C_3SO_3\text{H}][\text{Tf}_2\text{N}]

\text{1H NMR (300 MHz, } \delta, \text{D}_2\text{O): 3.28 (2H, m, CH}_2\text{), 3.13 (6H, m, CH}_2\text{), 2.84 (2H, t, 7.0 Hz, CH}_2\text{), 2.03 (2H, m, CH}_2\text{), 1.56 (6H, m, 3 CH}_2\text{), 1.26 (6H, m, 3 CH}_2\text{), 0.84 (9H, t, 7.5 Hz, 3 CH}_3\text{).}\text{ 13C NMR (75 MHz, } \delta, \text{D}_2\text{O): 13C NMR (75 MHz, } \delta, \text{D}_2\text{O): 125.81 (CF}_3\text{), 121.50 (CF}_3\text{), 117.27 (CF}_3\text{), 112.96 (CF}_3\text{), 58.24 (CH}_2\text{), 56.48 (3 CH}_2\text{), 47.15 (CH}_2\text{), 23.08 (CH}_2\text{), 19.00 (CH}_2\text{), 17.42 (CH}_2\text{), 12.71 (3 CH}_3\text{). CHN analysis: (calculated for C}_{17}H_{34}F_6N_2O_7S_3\cdot2H_2O): C 32.40% (32.69%), H 6.27% (6.13%), N 4.53% (4.48%).}

Glass transition temperature (-40 °C)
Density: 1.35 g·cm\text{3} (25 °C)
Viscosity: > 15000 cP (30 °C) / 310 cP (80 °C)
Degradation temperature: \approx 275 °C
Trihexylamine (0.0619 mol, 16.674 g) and 1,3-propanesultone (0.0614 mol, 7.499 g) were refluxed in toluene for 24 h to obtain the sulfonate zwitterion \([N_{666}C_3SO_3^-] \) (homogeneous solution). The toluene was removed using a rotary evaporator under reduced pressure and a waxy residue was obtained. This residue was washed by stirring with diethyl ether and then filtering the resulting suspension. The product was further purified by recrystallization from ethyl acetate at -32 °C. This produced a white solid product with a yield of 34% (0.0212 mol, 8.170 g). A stoichiometric amount of the super acid \(HTf_2N \) (0.021 mol, 5.910 g) was then added (as a 80 wt% solution in \(H_2O \)) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid \([N_{666}C_3SO_3H][Tf_2N] \), in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid \([N_{666}C_3SO_3H][Tf_2N] \)

\[^1H\text{ NMR (300 MHz, } \delta, \text{ CD}_2\text{Cl}_2): 3.40 (2H, m, CH}_2\text{), 3.17 (8H, m, 4 CH}_2\text{), 2.20 (2H, m, CH}_2\text{), 1.66 (6H, m, 3 CH}_2\text{), 1.38 (18H, m, 9 CH}_2\text{), 0.94 (9H, t, 7.0 Hz, 3 CH}_3\text{).} \]

\[^{13}C\text{ NMR (75 MHz, } \delta, \text{ CD}_3\text{Cl): 125.91 (CF}_3\text{), 121.67 (CF}_3\text{), 122.07 (CF}_3\text{), 117.84 (CF}_3\text{), 58.98 (CH}_2\text{), 56.72 (CH}_2\text{), 47.38 (CH}_2\text{), 38.87 (CH}_2\text{), 30.87 (CH}_2\text{), 25.64 (CH}_2\text{), 22.54 (CH}_2\text{), 21.63 (CH}_2\text{), 17.32 (CH}_2\text{), 13.54 (CH}_2\text{).} \]

CHN analysis: (calculated for \(\text{C}_{23}\text{H}_{46}\text{F}_6\text{N}_{2}\text{O}_7\text{S}_3\cdot8\text{H}_2\text{O}): C 32.78\% (33.82\%), H 6.03\% (7.65\%), N 4.04\% (3.43\%).

The slightly large than usual deviations are due to the lower purity of the trihexylamine starting product (96%) which contains amines with different alkyl chain lengths as impurities.

Glass transition temperature (-61 °C)

Density: 1.32 g·cm\(^{-3}\) (25 °C)

Viscosity 1347 cP (30 °C) / 111 cP (80 °C)

Degradation temperature: \(\approx 270 °C \)
4.6 \([\text{N}_{888}\text{C}_3\text{SO}_3\text{H}]\text{[Tf}_2\text{N}]\)

Triocetylaine (0.0618 mol, 21.84 g) and 1,3-propanesultone (0.0614 mol, 7.449 g) were refluxed in toluene for 72 h to obtain the sulfonate zwitterion \([\text{N}_{888}\text{C}_3\text{SO}_3]^{-}\) (homogeneous solution). The toluene was removed using a rotary evaporator under reduced pressure and a waxy residue was obtained. This residue was washed by stirring with diethyl ether and then filtering the resulting suspension. The resulting white powder product was collected with a yield of 54% (0.0329 mol, 15.649 g).

A stoichiometric amount of the super acid \(\text{HTf}_2\text{N}\) (0.0399 mol, 11.22 g) was then added (as a 80 wt% solution in \(\text{H}_2\text{O}\)) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid \([\text{N}_{888}\text{C}_3\text{SO}_3\text{H}]\text{[Tf}_2\text{N}]\), in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid \([\text{N}_{888}\text{C}_3\text{SO}_3\text{H}]\text{[Tf}_2\text{N}]\)

\(^1\text{H}\) NMR (300 MHz, \(\delta\), \(\text{CD}_2\text{Cl}_2\)): 3.39 (2H, m, \(\text{CH}_2\)), 3.16 (8H, m, 4 \(\text{CH}_2\)), 2.22 (2H, m, \(\text{CH}_2\)), 1.67 (6H, m, 3 \(\text{CH}_2\)), 1.35 (30H, m, 15 \(\text{CH}_2\)), 0.92 (9H, t, 7.0 Hz, 3 \(\text{CH}_3\)). \(^{13}\text{C}\) NMR (75 MHz, \(\delta\), \(\text{CD}_3\text{Cl}\)): 125.86.09 (CF\(_3\)), 121.66 (CF\(_3\)), 117.42 (CF\(_3\)), 113.12 (CF\(_3\)), 58.93 (CH\(_2\)), 59.05 (CH\(_2\)), 56.64 (CH\(_2\)), 53.40 (CH\(_2\)), 47.59 (CH\(_2\)), 31.56 (CH\(_2\)), 30.78 (CH\(_2\)), 28.77 (CH\(_2\)), 26.43 (CH\(_2\)), 25.98 (CH\(_2\)), 23.47 (CH\(_2\)), 22.46 (CH\(_2\)), 21.62 (CH\(_2\)), 17.27 (CH\(_2\)), 13.86 (CH\(_3\)). CHN analysis: (calculated for \(\text{C}_{29}\text{H}_{58}\text{F}_6\text{N}_2\text{O}_7\text{S}_3\cdot8\text{H}_2\text{O}\)): C 37.98% (38.65%), H 7.20% (8.28%), N 3.58% (3.11%).

Glass transition temperature (-61 °C)
Density: \(1.17 \text{ g cm}^{-3}\) (25 °C)
Viscosity 1703 cP (30 °C) / 125 cP (80 °C)
Degradation temperature: \(\approx 265 \text{ °C}\)
4.7 [PPh₃C₃SO₃H][Tf₂N]

Triphenylphosphine (0.0615 mol, 16.134 g) and 1,3-propanesultone (0.0615 mol, 7.517 g) were refluxed in toluene for 24 h to obtain the sulfonate zwitterion [PPh₃C₃SO₃] as an orange precipitate. The precipitate was washed with toluene and dried using a rotary evaporator. The resulting orange powder product was collected with a yield of 43% (0.0265 mol, 10.196 g).

A stoichiometric amount of the super acid HTf₂N (0.0285 mol, 8.023 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [PPh₃C₃SO₃H][Tf₂N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [PPh₃C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ, D₂O): 7.59 (15H, m, 3 phenyl), 3.33 (2H, m, CH₃), 2.90 (2H, t, 7.0 Hz, CH₂), 1.96 (2H, m, CH₂). ¹³C NMR (75 MHz, δ, D₂O): 135.08 (phenyl), 133.49 (phenyl), 130.97 (phenyl), 121.01 (phenyl), 121.32 (CF₃), 118.02 (CF₃), 116.94 (CF₃), 113.81 (CF₃), 50.34 (CH₃), 20.28 (CH₂), 17.9 (CH₂). CHN analysis: (calculated for C₂₃H₂₂F₆NO₇PS₃·3H₂O): C 38.05% (38.39%), H 4.00% (3.92%), N 2.24% (1.95%).

Glass transition temperature (-39 °C)

Density: 1.50 g·cm⁻³ (25 °C)

Viscosity > 20000 cP (30 °C) / 482 cP (80 °C)

Degradation temperature: ≈ 319 °C
4.8 \([P_{444}C_3SO_3H][Tf_2N]\)

Tributylphosphine (0.124 mol, 25.10 g) and 1,3-propanesultone (0.121 mol, 14.798 g) were refluxed in acetonitrile for 72 h (N\(_2\) atmosphere) to obtain the sulfonate zwitterion \([P_{444}C_3SO_3]^-\) (homogeneous solution). The acetonitrile was removed using a rotary evaporator under reduced pressure. The resulting (liquid) zwitterion was washed by stirring with diethyl ether and then decanting the resulting suspension. The resulting (liquid) product was collected with a yield of 100% (0.121 mol, 39.280 g).

A stoichiometric amount of the super acid HTf\(_2\)N (0.125 mol, 35.000 g) was then added (as a 80 wt% solution in H\(_2\)O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid \([P_{444}C_3SO_3H][Tf_2N]\), in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid \([P_{444}C_3SO_3H][Tf_2N]\)

\(^1\)H NMR (300 MHz, \(\delta, \text{CD}_2\text{Cl}_2\)): 3.31 (2H, t, 7.0 Hz, CH\(_2\)), 2.39 (2H, m, CH\(_2\)), 2.13 (8H, m, 4 CH\(_2\)), 1.54 (12H, m, 6 CH\(_2\)), 1.00 (9H, t, 7.0 Hz 3 CH\(_3\)). \(^{13}\)C NMR (75 MHz, \(\delta, \text{CD}_2\text{Cl}_2\)):

126.34 (CF\(_3\)), 122.11 (CF\(_3\)), 117.87 (CF\(_3\)), 113.63 (CF\(_3\)), 51.46 (CH\(_2\)), 51.23 (CH\(_2\)), 32.82 (CH\(_2\)), 24.24 (CH\(_2\)), 23.98 (CH\(_2\)), 23.61 (CH\(_2\)), 18.85 (CH\(_2\)), 18.26 (CH\(_2\)), 17.51 (CH\(_2\)), 17.08 (CH\(_2\)), 13.24 (CH\(_3\)). CHN analysis: (calculated for C\(_{17}\)H\(_{34}\)F\(_6\)NO\(_7\)PS\(_3\)·3H\(_2\)O): C 30.12% (30.95%), H 5.96% (6.11%), N 2.47% (2.12%).

Glass transition temperature (-50 °C)

Density: 1.36 g·cm\(^{-3}\) (25 °C)

Viscosity 1888 cP (30 °C) / 119 cP (80 °C)

Degradation temperature: \(\approx\) 307 °C
4.9 [P$_{66}$C$_3$SO$_3$H][Tf$_2$N]

Trihexylphosphine (0.00579 mol, 1.66 g) and 1,3-propanesultone (0.00589 mol, 0.720 g) were refluxed in toluene (90 °C) for 72 h (under N$_2$ atmosphere) to obtain the sulfonate zwitterion [P$_{66}$C$_3$SO$_3$] (homogeneous solution). The toluene was removed using a rotary evaporator under reduced pressure. This produced a liquid product with a yield of 95% (0.00558 mol, 2.278 g). A stoichiometric amount of the super acid HTf$_2$N (0.00597 mol, 1.68 g) was then added (as a 80 wt% solution in H$_2$O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [P$_{66}$C$_3$SO$_3$H][Tf$_2$N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [P$_{66}$C$_3$SO$_3$H][Tf$_2$N]

1H NMR (300 MHz, δ, CD$_2$Cl$_2$): 3.30 (2H, t, 7.0 Hz, CH$_2$), 2.40 (2H, m, CH$_2$), 2.14 (8H, m, 4 CH$_2$), 1.53 (12H, m, 6 CH$_2$), 1.37 (12H, m, 6 CH$_2$), 0.94 (9H, t, 7.0 Hz 3 CH$_3$). 13C NMR (75 MHz, δ, CD$_2$Cl$_2$): 126.45 (CF$_3$), 121.16 (CF$_3$), 117.90 (CF$_3$), 113.63 (CF$_3$), 51.53 (CH$_2$), 51.30 (CH$_2$), 44.58 (CH$_2$), 31.29 (CH$_2$), 31.18 (CH$_2$), 30.50 (CH$_2$), 30.36 (CH$_2$), 24.72 (CH$_2$), 24.07 (CH$_2$), 23.82 (CH$_2$), 22.65 (CH$_2$), 21.71 (CH$_2$), 21.02 (CH$_2$), 19.21 (CH$_2$), 18.58 (CH$_2$), 18.25 (CH$_2$), 17.62 (CH$_2$), 17.17 (CH$_2$), 13.99 (CH$_3$). CHN analysis: (calculated for C$_{23}$H$_{46}$F$_6$NO$_7$PS$_3$·3H$_2$O): C 37.14% (37.14%), H 6.74% (7.05%), N 2.12% (1.88%).

Glass transition temperature (-64 °C)

Density: 1.26 g·cm$^{-3}$ (25 °C)

Viscosity 621 cP (30 °C) / 62 cP (80 °C)

Degradation temperature: ≈ 300 °C
4.10 [P_{888}C_3SO_3H][Tf_2N]

Triocetylphosphine (0.0626 mol, 23.21 g) and 1,3-propanesultone (0.0615 mol, 7.510 g) were refluxed in toluene (90 °C) for 72 h (under N_2 atmosphere) to obtain the sulfonate zwitterion [P_{888}C_3SO_3] (precipitate). The toluene was removed using a rotary evaporator under reduced pressure and the zwitterion powder was washed with diethyl ether. The resulting white powder product was collected with a yield of 90% (0.0552 mol, 27.182 g).

A stoichiometric amount of the super acid HTf_2N (0.0622 mol, 17.478 g) was then added (as a 80 wt% solution in H_2O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [P_{888}C_3SO_3H][Tf_2N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [P_{888}C_3SO_3H][Tf_2N]

^1H NMR (300 MHz, δ, CD_2Cl_2): 3.35 (2H, t, 7.0 Hz, CH_2), 2.39 (2H, m, CH_2), 2.13 (8H, m, 4 CH_2), 1.53 (12H, m, 6 CH_2), 1.33 (24H, m, 12 CH_2), 0.93 (9H, t, 7.0 Hz 3 CH_3). ^13C NMR (75 MHz, δ, CD_2Cl_2): 126.34 (CF_3), 122.01 (CF_3), 117.86 (CF_3), 113.63 (CF_3), 51.59 (CH_2), 51.37 (CH_2), 32.03 (CH_2), 31.04 (CH_2), 30.83 (CH_2), 29.28 (CH_2), 29.04 (CH_2), 22.95 (CH_2), 21.76 (CH_2), 19.19 (CH_2), 18.57 (CH_2), 18.25 (CH_2), 17.62 (CH_2), 17.13 (CH_2), 14.18 (CH_3).

CHN analysis: (calculated for C_{29}H_{58}F_6NO_7PS_3·3H_2O): C 41.55% (42.07%), H 7.40% (7.79%), N 2.01% (1.69%).

Glass transition temperature (-56 °C)
Density: 1.20 g·cm^{-3} (25 °C)
Viscosity 1916 cP (30 °C) / 116 cP (80 °C)
Degradation temperature: ≈ 320 °C
5. Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) was carried out to determine the thermal stability of the different ionic liquids (Figure S 1). The measurements were done on a TA Instruments T500 thermogravimeter (heating rate: 5 °C min⁻¹ from room temperature to 400 °C, in a nitrogen atmosphere). Most of the ILs still contain around 5-10 wt% of hydration water even after extensive drying. This is also reflected in the molar equivalents of water that were determined by CHN analysis.

Figure S 1. Thermogravimetric analysis for the different synthesized ionic liquids (5 °C/min, N₂ atmosphere).
6. Effect of water on the viscosity of the ILs

Increasing amounts of water were added to the ionic liquid $\text{[N}_{111}\text{C}_{3}\text{SO}_{3}\text{H}]\text{[Tf}_2\text{N]}$ to test the effect on the viscosity (50 °C) (Figure S 2).

![Graph showing the effect of water content on viscosity](image)

Figure S 2. Effect of the water content (wt%) on the viscosity of the ionic liquid $\text{[N}_{111}\text{C}_{3}\text{SO}_{3}\text{H}]\text{[Tf}_2\text{N]}$ at 50 °C.