Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

Sulfonic acid functionalized ionic liquids for the dissolution of metal oxides and

solvent extraction of metal ions

David Dupont⁺, Stijn Raiguel⁺, Koen Binnemans^{*+}

1. Chemicals and materials

Chemicals for extraction and leaching experiments

NiO (97%), Y_2O_3 (99.99%), CrCl₃·6H₂O (98%), ZnCl₂ (98.5%), CuCl₂ anh. (99%), H₂SO₄ (96%), HCl (37%), 1,4-dioxane (99.9%), Al₂O₃ (99%), Cr₂O₃ (99%) and LaCl₃·7H₂O (99.99%) were purchased from Acros Organics (Geel, Belgium). La₂O₃ (99.99%), Fe₂O₃ (95%), TiO₂ (99%), GaCl₃ anh. (99.99%), NiCl₂ (98%), InCl₃ (97%), FeCl₃ (99%), YCl₃·6H₂O (99.9%), DyCl₃·6H₂O (99.9%), CoCl₂ (97%), MnO (99%) and LuCl₃·6H₂O (99.9%) were bought from Sigma-Aldrich (Diegem, Belgium). NdCl₃·6H₂O (99.9%) and Co₃O₄ (99.5%) were purchased from Strem Chemicals Inc. (Newburyport, USA), SnCl₂ (99%) from Merck (Overijse, Belgium) and WO₃ (99%) from ABCR Chemicals (Karlsruhe, Germany). CaCl₂·2H₂O (99.5%) and the 1000 mg·L⁻¹ gallium(III) and selenium(VI) standard solutions in HNO₃ (2–5 wt%) were obtained from Fisher Scientific Limited (Loughborough, UK). CuO (99.9999%) and CoO (95%) were purchased from SERVA Electrophoresis GmbH (Germany). All chemicals were used as received without further purification.

 Sc_2O_3 was kindly provided by Solvay (La Rochelle, France). $ScCl_3 \cdot xH_2O$ was prepared by dissolving Sc_2O_3 in an excess of hydrochloric acid (two equivalents). The mixture was dried on a rotary evaporator to remove the water together with the excess of hydrochloric acid. This step was repeated several times until a crystalline material was obtained, the purity was verified with TXRF analysis.

Chemicals for ionic liquid synthesis

Bistriflimic acid (80 wt% in H₂O) (99%) was purchased from IoLiTec (HeilBronn, Germany). Triethylamine (99%), trioctylphosphine (90%) and trimethylamine (33% in EtOH) were purchased from Acros Organics (Geel, Belgium). Triphenyl phosphine (98.5%), 1,3-propanesultone (98%), tri-*n*-butylphosphine (97%), trioctylamine (98%), trihexylamine (96%), tributylamine (99%), tripropylamine (98%), ethylacetate (99.7%), toluene (99%) and diethylether (99.8%) were obtained from Sigma Aldrich (Diegem, Belgium). Trihexyl phosphine (95%) was bought from TCI (Zwijndrecht, Belgium). Acetonitrile (HPLC grade) and sodium hydroxide (97%) were obtained from Fisher Scientific Limited (Loughborough, UK).

2. Equipment and characterization

¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 300 spectrometer (operating at 300 MHz for ¹H, 75 MHz for ¹³C). The chemical shifts are noted in parts per million (ppm), referenced to tetramethylsilane for ¹H and ¹³C. The coupling constants are given in Hertz. Solutions were made in D₂O, CD₂Cl₂ or CD₃Cl. The spectra were analyzed with SpinWorks software. The elemental analysis of carbon, hydrogen and nitrogen was performed on a CE-instruments EA-1110 elemental analyzer. The viscosity of the ionic liquids was measured using an automatic Brookfield plate cone viscometer, Model LVDV-II CP (Brookfield Engineering Laboratories, USA). Melting points were determined on a Mettler-Toledo DSC 1 (STAR^e system) instrument at a heating rate of 10 °C min⁻¹ under a helium atmosphere. Thermogravimetric analysis (TGA) was done on a TA Instruments T500 thermogravimeter (heating rate: 5 °C min⁻¹ from room temperature to 400 °C, under a nitrogen atmosphere). A TMS-200 thermoshaker (Nemus Life) was used to shake samples during extraction experiments and a Heraeus Megafuge 1.0 centrifuge was used to accelerate phase separation. Total reflection X-ray fluorescence (TXRF) analysis was performed with a Bruker S2 Picofox TXRF spectrometer equipped with a molybdenum source. For the sample preparation, plastic microtubes were filled with a small amount of sample (100 mg), internal standard (Ga(III) or Se(VI) solution) and water (800 µL). To measure the ionic liquid, a smaller sample was taken (25 mg) and dissolved in 1,4-dioxane/water (800 µL). The microtubes were then vigorously shaken on a vibrating plate (IKA MS 3 basic). Finally, a 1 µL drop of this solution was put on a quartz plate, previously treated with a silicone/isopropanol solution (Serva®) to avoid spreading of the sample droplet on the quartz plate. The quartz plates were then dried for 30 min at 60 °C prior to analysis. Each sample was measured for 5 min.

3. Overview of the synthetic strategy and the synthesized ionic liquids

The synthetic strategy for was based on a 2-step reaction (Scheme S 1). First 1,3propanesultone was reacted with the appropriate trialkylamine or trialkylphoshine to obtain the sulfonate zwitterion. Then this zwitterion was reacted with the super acid HTf₂N to obtain the corresponding ionic liquid (IL). An overview of the synthesized ILs is given in Table S1.

Scheme S 1. Synthetic strategy for the synthesis of trialkylammonium- and trialkylphosphoniumpropanesulfonic acid bis(trifluoromethylsulfonyl)imide ionic liquids.

IL abbreviation	Full name
$[N_{111}C_3SO_3H][Tf_2N]$	Trimethylammoniumpropanesulfonic acid bistriflimide ^(a)
$[N_{222}C_3SO_3H][Tf_2N]$	Triethylammoniumpropanesulfonic acid bistriflimide ^(a)
$[N_{333}C_3SO_3H][Tf_2N]$	Tripropylammoniumpropanesulfonic acid bistriflimide ^(a)
$[\mathrm{N}_{444}\mathrm{C}_3\mathrm{SO}_3\mathrm{H}][\mathrm{Tf}_2\mathrm{N}]$	Tributylammoniumpropanesulfonic acid bistriflimide ^(a)
$[N_{666}C_3SO_3H][Tf_2N]$	Trihexylammoniumpropanesulfonic acid bistriflimide ^(a)
$[N_{888}C_3SO_3H][Tf_2N]$	Trioctylammoniumpropanesulfonic acid bistriflimide ^(a)
$[P_{444}C_3SO_3H][Tf_2N]$	Tributylphosphoniumpropanesulfonic acid bistriflimide ^(a)
$[P_{666}C_3SO_3H][Tf_2N]$	Trihexylphosphoniumpropanesulfonic acid bistriflimide ^(a)
$[P_{888}C_3SO_3H][Tf_2N]$	Trioctylphosphoniumpropanesulfonic acid bistriflimide ^(a)
[PPh ₃ C ₃ SO ₃ H][Tf ₂ N]	Triphenylphosphoniumpropanesulfonic acid bistriflimide ^(a)

Table S1. Overview of the ionic liquids synthesized in this work

^(a)Bistriflimide = bis(trifluoromethylsulfonyl)imide

4. Synthesis of ionic liquids

4.1 $[N_{111}C_3SO_3H][Tf_2N]$

1,3-Propanesultone (0.115 mol, 14.037 g) and trimethylamine (0.147 mol, 8.69 g) (as a 33% in ethanol solution) were dissolved in acetone at 0 °C. The solution was then stirred for 24 h at room temperature to obtain the sulfonate zwitterion $[N_{111}C_3SO_3]$ as a white powder precipitate. The acetone and excess trimethylamine were removed using a rotary evaporator under reduced pressure. The yield was 100% (0.115 mol, 20.87 g). A stoichiometric amount of the super acid HTf₂N (0.115 mol, 32.33 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid $[N_{111}C_3SO_3H][Tf_2N]$, in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [N₁₁₁C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ , D₂O): 3.36 (2H, m, CH₂), 3.02 (9H, s, 3 CH₃), 2.86 (2H, t, 7.0 Hz, CH₂), 2.13 (2H, m, CH₂). ¹³C NMR (75 MHz, δ , CD₃Cl): 125.51 (CF₃), 121.28 (CF₃), 117.04 (CF₃), 112.27 (CF₃), 64.64 (CH₂), 52.73 (CH₃), 47.17 (CH₂), 18.44 (CH₂). CHN analysis: (calculated for C₈H₁₆F₆N₂O₇S₃): C 20.06% (20.78%), H 3.94% (3.49%), N 5.87% (6.06%).

Glass transition temperature (-48 °C)

Density: $1.57 \text{ g} \cdot \text{cm}^{-3} (25 \text{ °C})$

Viscosity 3230 cP (30 °C) / 180 cP (80 °C)

Degradation temperature: $\approx 275 \ ^{\circ}\text{C}$

4.2 [N₂₂₂C₃SO₃H][Tf₂N]

Triethylamine (0.154 mol, 15.56 g) and 1,3-propanesultone (0.123 mol, 15.032 g) were dissolved in acetone at 0 °C. The solution was then stirred overnight at room temperature to obtain the sulfonate zwitterion $[N_{222}C_3SO_3]$ as a white powder precipitate. The precipitate was filtered off and washed with acetone to remove the excess trimethylamine. The precipitate was then dried using a rotary evaporator under reduced pressure. The yield was 37% (0.045 mol, 10.050 g). A stoichiometric amount of the super acid HTf₂N (0.045 mol, 14.00 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid $[N_{222}C_3SO_3H][Tf_2N]$, in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [N₂₂₂C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ , D₂O): 3.20 (6H, m, 3 CH₂), 2.85 (2H, t, 7.5 Hz, CH₂), 2.01 (2H, m, CH₂), 1.15 (9H, t, 7.0 Hz, 3 CH₃). ¹³C NMR (75 MHz, δ , D₂O): 125.55 (CF₃), 121.31 (CF₃), 117.03 (CF₃), 112.84 (CF₃), 54.61 (CH₂), 52.66 (CH₂), 47.18 (CH₂), 17.18 (CH₂), 6.54 (CH₃). CHN analysis: (calculated for C₁₁H₂₂F₆N₂O₇S₃): C 26.86% (26.19%), H 4.23% (4.40%), N 5.05% (5.55%).

Glass transition temperature (-57 °C)

Density: 1.55 g·cm⁻³ (25 °C)

Viscosity 1463 cP (30 °C) / 79 cP (80 °C)

Degradation temperature: $\approx 275 \text{ °C}$

4.3 [N₃₃₃C₃SO₃H][Tf₂N]

Tripropylamine (0.173 mol, 24.85 g) and 1,3-propanesultone (0.163 mol, 19.918 g) were refluxed in acetonitrile for 24 h to obtain the sulfonate zwitterion $[N_{333}C_3SO_3]$ (homogeneous solution). The acetonitrile was removed using a rotary evaporator under reduced pressure. The zwitterion was then washed with toluene and dried again using a rotary evaporator. The yield was 100% (0.163 mol, 43.33 g).

A stoichiometric amount of the super acid HTf_2N (0.165 mol, 46.34 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [N₃₃₃C₃SO₃H][Tf₂N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [N₃₃₃C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ , D₂O): 3.28 (2H, m, CH₂), 3.09 (6H, m, CH₂), 2.84 (2H, t, 7.0 Hz, CH₂), 2.03 (2H, m, CH₂), 1.60 (6H, m, 3 CH₂), 0.84 (9H, t, 7.0 Hz, 3 CH₃). ¹³C NMR (75 MHz, δ , D₂O): 125.54 (CF₃), 121.34 (CF₃), 117.11 (CF₃), 112.86 (CF₃), 59.94 (CH₂), 57.44 (3 CH₂), 47.18 (CH₂), 17.33 (CH₂), 14.76 (CH₂), 9.69 (3 CH₃). CHN analysis: (calculated for C₁₄H₂₈F₆N₂O₇S₃·2H₂O): C 28.65% (28.86%), H 5.84% (5.54%), N 4.77% (4.81%).

Glass transition temperature (-37 °C)

Density: 1.42 g·cm⁻³ (25 °C)

Viscosity 10000 cP (30 °C) / 229 cP (80 °C)

Degradation temperature: $\approx 275 \text{ °C}$

4.4 [N₄₄₄C₃SO₃H][Tf₂N]

Tributylamine (0.126 mol, 23.34 g) and 1,3-propanesultone (0.123 mol, 15.00 g) were refluxed in acetonitrile for 72 h to obtain the sulfonate zwitterion $[N_{444}C_3SO_3]$ (homogeneous solution). The acetonitrile was removed using a rotary evaporator under reduced pressure. The zwitterion was then washed with toluene and dried again using a rotary evaporator. The yield was 100% (0.123 mol, 37.821 g).

A stoichiometric amount of the super acid HTf_2N (0.126 mol, 35.352 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [N₄₄₄C₃SO₃H][Tf₂N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [N₄₄₄C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ , D₂O): 3.28 (2H, m, CH₂), 3.13 (6H, m, CH₂), 2.84 (2H, t, 7.0 Hz, CH₂), 2.03 (2H, m, CH₂), 1.56 (6H, m, 3 CH₂), 1.26 (6H, m, 3 CH₂), 0.84 (9H, t, 7.5 Hz, 3 CH₃). ¹³C NMR (75 MHz, δ , D₂O): ¹³C NMR (75 MHz, δ , D₂O): 125.81 (CF₃), 121.50 (CF₃), 117.27 (CF₃), 112.96 (CF₃), 58.24 (CH₂), 56.48 (3 CH₂), 47.15 (CH₂), 23.08 (CH₂), 19.00 (CH₂), 17.42 (CH₂), 12.71 (3 CH₃). CHN analysis: (calculated for C₁₇H₃₄F₆N₂O₇S₃·2H₂O): C 32.40% (32.69%), H 6.27% (6.13%), N 4.53% (4.48%).

Glass transition temperature (-40 °C)

Density: 1.35 g·cm⁻³ (25 °C)

Viscosity: > 15000 cP (30 °C) / 310 cP (80 °C)

Degradation temperature: $\approx 275 \text{ °C}$

4.5 [N₆₆₆C₃SO₃H][Tf₂N]

Trihexylamine (0.0619 mol, 16.674 g) and 1,3-propanesultone (0.0614 mol, 7.499 g) were refluxed in toluene for 24 h to obtain the sulfonate zwitterion $[N_{666}C_3SO_3]$ (homogeneous solution). The toluene was removed using a rotary evaporator under reduced pressure and a waxy residue was obtained. This residue was washed by stirring with diethyl ether and then filtering the resulting suspension. The product was further purified by recrystallization from ethyl acetate at -32 °C. This produced a white solid product with a yield of 34% (0.0212 mol, 8.170 g). A stoichiometric amount of the super acid HTf₂N (0.021 mol, 5.910 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid $[N_{666}C_3SO_3H][Tf_2N]$, in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [N₆₆₆C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ , CD₂Cl₂): 3.40 (2H, m, CH₂), 3.17 (8H, m, 4 CH₂), 2.20 (2H, m, CH₂), 1.66 (6H, m, 3 CH₂), 1.38 (18H, m, 9 CH₂), 0.94 (9H, t, 7.0 Hz, 3 CH₃). ¹³C NMR (75 MHz, δ , CD₃Cl): 125.91 (CF₃), 121.67 (CF₃), 122.07 (CF₃), 117.84 (CF₃), 58.98 (CH₂), 56.72 (CH₂), 47.38 (CH₂), 38.87 (CH₂), 30.87 (CH₂), 25.64 (CH₂), 22.54 (CH₂), 21.63 (CH₂), 17.32 (CH₂), 13.54 (CH₂). CHN analysis: (calculated for C₂₃H₄₆F₆N₂O₇S₃·8H₂O): C 32.78% (33.82%), H 6.03% (7.65%), N 4.04% (3.43%). The slightly large than usual deviations are due to the lower purity of the trihexylamine starting product (96%) which contains amines with different alkyl chain lengths as impurities.

Glass transition temperature (-61 °C)

Density: $1.32 \text{ g} \cdot \text{cm}^{-3} (25 \text{ °C})$

Viscosity 1347 cP (30 °C) / 111 cP (80 °C)

Degradation temperature: $\approx 270 \ ^{\circ}\text{C}$

4.6 [N₈₈₈C₃SO₃H][Tf₂N]

Trioctylamine (0.0618 mol, 21.84 g) and 1,3-propanesultone (0.0614 mol, 7.449 g) were refluxed in toluene for 72 h to obtain the sulfonate zwitterion $[N_{888}C_3SO_3]$ (homogeneous solution). The toluene was removed using a rotary evaporator under reduced pressure and a waxy residue was obtained. This residue was washed by stirring with diethyl ether and then filtering the resulting suspension. The resulting white powder product was collected with a yield of 54% (0.0329 mol, 15.649 g).

A stoichiometric amount of the super acid HTf_2N (0.0399 mol, 11.22 g) was then added (as a 80 wt% solution in H_2O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [N₈₈₈C₃SO₃H][Tf₂N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [N₈₈₈C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ , CD₂Cl₂): 3.39 (2H, m, CH₂), 3.16 (8H, m, 4 CH₂), 2.22 (2H, m, CH₂), 1.67 (6H, m, 3 CH₂), 1.35 (30H, m, 15 CH₂), 0.92 (9H, t, 7.0 Hz, 3 CH₃). ¹³C NMR (75 MHz, δ , CD₃Cl): 125.86.09 (CF₃), 121.66 (CF₃), 117.42 (CF₃), 113.12 (CF₃), 58.93 (CH₂), 59.05 (CH₂), 56.64 (CH₂), 53.40 (CH₂), 47.59 (CH₂), 31.56 (CH₂), 30.78 (CH₂), 28.77 (CH₂), 26.43 (CH₂), 25.98 (CH₂), 23.47 (CH₂), 22.46 (CH₂), 21.62 (CH₂), 17.27 (CH₂), 13.86 (CH₃). CHN analysis: (calculated for C₂₉H₅₈F₆N₂O₇S₃·8H₂O): C 37.98% (38.65%), H 7.20% (8.28%), N 3.58% (3.11%).

Glass transition temperature (-61 °C)

Density: 1.17 g·cm⁻³ (25 °C)

Viscosity 1703 cP (30 °C) / 125 cP (80 °C)

Degradation temperature: $\approx 265 \ ^{\circ}\text{C}$

4.7 [PPh₃C₃SO₃H][Tf₂N]

Triphenylphosphine (0.0615 mol, 16.134 g) and 1,3-propanesultone (0.0615 mol, 7.517 g) were refluxed in toluene for 24 h to obtain the sulfonate zwitterion [PPh₃C₃SO₃] as an orange precipitate. The precipitate was washed with toluene and dried using a rotary evaporator. The resulting orange powder product was collected with a yield of 43% (0.0265 mol, 10.196 g). A stoichiometric amount of the super acid HTf₂N (0.0285 mol, 8.023 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [PPh₃C₃SO₃H][Tf₂N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [PPh₃C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ , D₂O): 7.59 (15H, m, 3 phenyl), 3.33 (2H, m, CH₃), 2.90 (2H, t, 7.0 Hz, CH₂), 1.96 (2H, m, CH₂). ¹³C NMR (75 MHz, δ , D₂O): 135.08 (phenyl), 133.49 (phenyl), 130.97 (phenyl), 121.01 (phenyl), 121.32 (CF₃), 118.02 (CF₃), 116.94 (CF₃), 113.81 (CF₃), 50.34 (CH₃), 20.28 (CH₂), 17.9 (CH₂). CHN analysis: (calculated for C₂₃H₂₂F₆NO₇PS₃·3H₂O): C 38.05% (38.39%), H 4.00% (3.92%), N 2.24% (1.95%).

Glass transition temperature (-39 °C)

Density: 1.50 g·cm⁻³ (25 °C)

Viscosity > 20000 cP (30 °C) / 482 cP (80 °C)

Degradation temperature: $\approx 319 \ ^{\circ}\text{C}$

4.8 [P₄₄₄C₃SO₃H][Tf₂N]

Tributylphosphine (0.124 mol, 25.10 g) and 1,3-propanesultone (0.121 mol, 14.798 g) were refluxed in acetonitrile for 72 h (N₂ atmosphere) to obtain the sulfonate zwitterion $[P_{444}C_3SO_3]$ (homogeneous solution). The acetonitrile was removed using a rotary evaporator under reduced pressure. The resulting (liquid) zwitterion was washed by stirring with diethyl ether and then decanting the resulting suspension. The resulting (liquid) product was collected with a yield of 100% (0.121 mol, 39.280 g).

A stoichiometric amount of the super acid HTf_2N (0.125 mol, 35.000 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [P₄₄₄C₃SO₃H][Tf₂N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [P₄₄₄C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ , CD₂Cl₂): 3.31 (2H, t, 7.0 Hz, CH₂), 2.39 (2H, m, CH₂), 2.13 (8H, m, 4 CH₂), 1.54 (12H, m, 6 CH₂), 1.00 (9H, t, 7.0 Hz 3 CH₃). ¹³C NMR (75 MHz, δ , CD₂Cl₂): 126.34 (CF₃), 122.11 (CF₃), 117.87 (CF₃), 113.63 (CF₃), 51.46 (CH₂), 51.23 (CH₂), 32.82 (CH₂), 24.24 (CH₂), 23.98 (CH₂), 23.61 (CH₂), 18.85 (CH₂), 18.26 (CH₂), 17.51 (CH₂), 17.08 (CH₂), 13.24 (CH₃). CHN analysis: (calculated for C₁₇H₃₄F₆NO₇PS₃·3H₂O): C 30.12% (30.95%), H 5.96% (6.11%), N 2.47% (2.12%).

Glass transition temperature (-50 °C)

Density: 1.36 g·cm⁻³ (25 °C)

Viscosity 1888 cP (30 °C) / 119 cP (80 °C)

Degradation temperature: $\approx 307 \ ^\circ C$

4.9 [P₆₆₆C₃SO₃H][Tf₂N]

Trihexylphosphine (00579 mol, 1.66 g) and 1,3-propanesultone (0.00589 mol, 0.720 g) were refluxed in toluene (90 °C) for 72 h (under N₂ atmopshere) to obtain the sulfonate zwitterion $[P_{666}C_3SO_3]$ (homogeneous solution). The toluene was removed using a rotary evaporator under reduced pressure. This produced a liquid product with a yield of 95% (0.00558 mol, 2.278 g). A stoichiometric amount of the super acid HTf₂N (0.00597 mol, 1.68 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid $[P_{666}C_3SO_3H][Tf_2N]$, in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [P₆₆₆C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ, CD₂Cl₂): 3.30 (2H, t, 7.0 Hz, CH₂), 2.40 (2H, m, CH₂), 2.14 (8H, m, 4 CH₂), 1.53 (12H, m, 6 CH₂), 1.37 (12H, m, 6 CH₂), 0.94 (9H, t, 7.0 Hz 3 CH₃). ¹³C NMR (75 MHz, δ, CD₂Cl₂): 126.45 (CF₃), 121.16 (CF₃), 117.90 (CF₃), 113.63 (CF₃), 51.53 (CH₂), 51.30 (CH₂), 44.58 (CH₂), 31.29 (CH₂), 31.18 (CH₂), 30.50 (CH₂), 30.36 (CH₂), 24.72 (CH₂), 24.07 (CH₂), 23.82 (CH₂), 22.65 (CH₂), 21.71 (CH₂), 21.02 (CH₂), 19.21 (CH₂), 18.58 (CH₂), 18.25 (CH₂), 17.62 (CH₂), 17.17 (CH₂), 13.99 (CH₃). CHN analysis: (calculated for C₂₃H₄₆F₆NO₇PS₃·3H₂O): C 37.14% (37.14%), H 6.74% (7.05%), N 2.12% (1.88%).

Glass transition temperature (-64 °C)

Density: 1.26 g·cm⁻³ (25 °C)

Viscosity 621 cP (30 °C) / 62 cP (80 °C)

Degradation temperature: $\approx 300 \ ^{\circ}\text{C}$

4.10 [P₈₈₈C₃SO₃H][Tf₂N]

Trioctylphosphine (0.0626 mol, 23.21 g) and 1,3-propanesultone (0.0615 mol, 7.510 g) were refluxed in toluene (90 °C) for 72 h (under N₂ atmosphere) to obtain the sulfonate zwitterion $[P_{888}C_3SO_3]$ (precipitate). The toluene was removed using a rotary evaporator under reduced pressure and the zwitterion powder was washed with diethyl ether. The resulting white powder product was collected with a yield of 90% (0.0552 mol, 27.182 g).

A stoichiometric amount of the super acid HTf_2N (0.0622 mol, 17.478 g) was then added (as a 80 wt% solution in H₂O) to the sulfonate zwitterion and the mixture was stirred for 2 h at 50 °C to obtain the sulfonic acid functionalized ionic liquid [P₈₈₈C₃SO₃H][Tf₂N], in quantitative yield. The product was dried using a Schlenk line.

Ionic liquid [P₈₈₈C₃SO₃H][Tf₂N]

¹H NMR (300 MHz, δ , CD₂Cl₂): 3.35 (2H, t, 7.0 Hz, CH₂), 2.39 (2H, m, CH₂), 2.13 (8H, m, 4 CH₂), 1.53 (12H, m, 6 CH₂), 1.33 (24H, m, 12 CH₂), 0.93 (9H, t, 7.0 Hz 3 CH₃). ¹³C NMR (75 MHz, δ , CD₂Cl₂): 126.34 (CF₃), 122.01 (CF₃), 117.86 (CF₃), 113.63 (CF₃), 51.59 (CH₂), 51.37 (CH₂), 32.03 (CH₂), 31.04 (CH₂), 30.83 (CH₂), 29.28 (CH₂), 29.04 (CH₂), 22.95 (CH₂), 21.76 (CH₂), 19.19 (CH₂), 18.57 (CH₂), 18.25 (CH₂), 17.62 (CH₂), 17.13 (CH₂), 14.18 (CH₃). CHN analysis: (calculated for C₂₉H₅₈F₆NO₇PS₃·3H₂O): C 41.55% (42.07%), H 7.40% (7.79%), N 2.01% (1.69%).

Glass transition temperature (-56 °C) Density: 1.20 g·cm⁻³ (25 °C) Viscosity 1916 cP (30 °C) / 116 cP (80 °C) Degradation temperature: ≈ 320 °C

5. Thermogravimetric analysis (TGA)

Thermogravimetric analysis (TGA) was carried out to determine the thermal stability of the different ionic liquids (Figure S 1). The measurements were done on a TA Instruments T500 thermogravimeter (heating rate: 5 °C min⁻¹ from room temperature to 400 °C, in a nitrogen atmosphere). Most of the ILs still contain around 5-10 wt% of hydration water even after extensive drying. This is also reflected in the molar equivalents of water that were determined by CHN analysis.

Figure S 1. Thermogravimetric analysis for the different synthesized ionic liquids (5 $^{\circ}$ C/min, N₂ atmosphere).

6. Effect of water on the viscosity of the ILs

Increasing amounts of water were added to the ionic liquid $[N_{111}C_3SO_3H][Tf_2N]$ to test the effect on the viscosity (50 °C) (Figure S 2).

Figure S 2. Effect of the water content (wt%) on the viscosity of the ionic liquid [N₁₁₁C₃SO₃H][Tf₂N]

at 50 °C.