Supporting Information

Ugi-derived Dehydroalanines as a Pivotal Template in the Diversity Oriented Synthesis of Aza-polyheterocycles

Ma. Carmen García–González, Eduardo Hernández-Vázquez, Raúl E. Gordillo-Cruz and Luis D. Miranda*

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México D.F. 04510, México

lmiranda@unam.mx

Table of contents:

<table>
<thead>
<tr>
<th>1. Materials and Methods</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Experimental section</td>
<td>S2</td>
</tr>
<tr>
<td>3. NMR-spectra</td>
<td>S26</td>
</tr>
<tr>
<td>4. X-Ray diffraction studies</td>
<td>S89</td>
</tr>
<tr>
<td>5. References</td>
<td>S92</td>
</tr>
</tbody>
</table>

1. Materials and Methods

Infrared spectra were measured on a Nicolet Magna 750 FT-IR spectrometer; absorptions are given in wavenumbers (cm⁻¹). Mass spectra were obtained on a JEOL JMS-AX505HA spectrometer. NMR spectroscopy: ¹H and ¹³C NMR spectra were recorded on a Varian Gemini-200 and JEOL Eclipse-300 spectrometers, Measurements were carried out at RT. Chemical shifts (δ) are reported in parts per million (ppm) relative to Si(CH₃)₄ for ¹H and ¹³C NMR experiments were carried out in CDCl₃. Coupling constants (J) are reported in hertz (Hz), peak multiplicity is indicated as follows: s= singlet, d= doublet, t= triplet, m= multiplet, bs: broad signal for proton spectra. X-ray diffraction: X-ray diffraction studies were realized on a Bruker AXS diffractometer with an area detector, Mo Kα radiation, λ=0.71078 Å. Solution and refinement have been carried out by Simon Hernández. Full crystallographic data were submitted as CIF files with the Cambridge Crystallographic Data Center, CCDC Nos. 912003, 912004 and 912005.
2. Experimental section

Ugi adducts were prepared as described in the literature, from 2-benzoyloxyacetaldehyde, the corresponding amines, the appropriate carboxylic acid and an isonitrile, all Ugi products were used without further purification. The elimination procedure also was synthesized according the previous report. The amines were synthesized according literature procedure, carboxylic acid were prepared from oxidation of corresponding aldehydes. The substituted 2-bromobenzylamines were synthesized according to a previously two-step protocol.

Heck reaction

Method A. To a mixture of the corresponding dehydroalanine (1.0 equiv) in degassed DMA, PdCl₂(PPh₃)₂ (10% mol) and NaOAc (2 equiv), was added. The resulting solution was refluxed under an argon atmosphere and stirred until TLC indicated full conversion. The mixture was extracted with ethyl acetate (3X20 mL). The organic layers were dried over Na₂SO₄ and the solvent evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel with a mixture of hexanes:EtOAc as eluent, affording the corresponding compound.

Method B. To a round flask with stir bar was charged with corresponding dehydroalanine (0.108 mmol), PdCl₂(PPh₃)₂ (0.0108 mmol), Cu(OAc)₂ (0.0216 mmol), NaOAc (0.216 mmol) in 3 ml of DMA, previously degassed. Then the mixture reaction was stirred and heated to 162 °C until starting materials have disappeared. The reaction mixture was diluted with EtOAc and washed with water (3X10 mL). The organic layer was then washed with brine and dried with Na₂SO₄. Organic solvent was removed and the crude product was purified by flash chromatographic on silica gel, to afford pure compound cyclic.

One-pot synthesis of pyrazinoisoquinolines. To a solution of 0.46 mmol of the corresponding Ugi adduct in 7.5 mL of acetonitrile, 1.378 mmol of Cs₂CO₃ were added. The mixture was refluxed under argon atmosphere and monitored by TLC. After 2 h of stirring, the solvent was evaporated under reduced pressure and the residue was diluted with ethyl acetate (20 mL); the solution was washed with water (2 x 10 mL), and saturated NaCl solution (2 x 10 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude DKP was then dissolved in 15 mL of toluene and 0.069 mmol of Pd(AcO)₂, 0.138 mmol of PPh₃, and 0.92 mmol of K₂CO₃ were added. The solution was degasificated by bubbling argon for 30 min. After that, the mixture was allowed to reflux for
6–12 h until the completion of the reaction. Then, the mixture was diluted with 20 mL of AcOEt and sequentially washed with water (2 x 15 mL) and with a saturated NaCl solution (2 x 10 mL). The organic layer was evaporated and the product was finally purified by silica gel flash column chromatography silica gel with a mixture of hexanes:EtOAc as eluent, affording the corresponding compound.

Compound 9a, N-allyl-N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-benzamide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (55%, two steps), m.p. 120–121 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.78 (d, J = 7.8 Hz, 1H), 7.42–7.29 (m, 2H), 7.02 (t, J = 7.8 Hz, 1H), 6.10–5.99 (m, 1H), 5.77 (s, 1H), 5.65 (s, 1H), 5.55 (s, 1H), 5.35–5.13 (m, 2H), 4.31 (d, J = 6.0 Hz, 2H), 1.31 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 169.7, 162.7, 142.7, 141.5, 139.4, 132.4, 130.4, 127.8, 127.7, 120.4, 119.4, 94.1, 51.7, 51.3, 28.6. HRMS (FAB+, M+) calculated for C$_{17}$H$_{22}$N$_2$O$_2$I [M+1], 413.0722; found 413.0726. IR ν (cm$^{-1}$): 3357, 2975, 1646, 1624, 1518, 1389.

Compound 9b, N-allyl-N-(1-cyclohexylcarbamoyl-vinyl)-2-iodo-benzamide, was purified by flash column chromatography (eluent 85:15 hexane/EtOAc). The product was obtained as a white solid (57%, two steps), m.p. 102–104 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.77 (d, J = 7.8 Hz, 1H), 7.25–7.21 (m, 2H), 7.15–6.98 (m, 1H), 6.09–5.98 (m, 2H), 5.86 (s, 1H), 5.57 (s, 1H), 5.28–5.25 (m, 1H), 4.29 (d, J = 3.0 Hz, 2H), 3.77–3.71 (m, 1H), 1.85–1.61 (m, 5H), 1.37–1.13 (m, 5H). 13C NMR (75 MHz, CDCl$_3$) δ: 169.9, 162.4, 141.6, 141.5, 139.3, 132.1, 130.4, 127.7, 127.6, 121.7, 119.5, 94.0, 50.9, 48.9, 32.8, 25.3, 24.9. HRMS (FAB+, M+) calculated for C$_{19}$H$_{23}$N$_2$O$_2$I [M], 438.0807; found 438.0804. IR ν (cm$^{-1}$): 3352, 2926, 1673, 1623, 1527, 1397.
Compound 9c, \(N\text{-allyl-}N[1\text{-}(2,6\text{-dimethylphenyl carbamoyl)}\text{-vinyl)}\text{-2-iodo-benzamide}\), was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (65 %, two steps), m.p. 153–155 °C. \(^1\text{H NMR}\) (300 MHz, CDCl\(_3\)) \(\delta\) : 7.85–7.78 (m, 1H), 7.59–7.55 (m, 1H), 7.42–7.31 (m, 2H), 7.09–7.05 (m, 3H), 6.27 (s, 1H), 6.01 (s, 1H), 5.65 (s, 1H), 5.33–5.17 (m, 3H), 4.35 (s, 1H), 4.02 (d, \(J = 6.0\) Hz, 1H), 2.30 (s, 3H), 2.11 (s, 3H). \(^{13}\text{C NMR}\) (75 MHz, CDCl\(_3\)) \(\delta\) : 170.9, 162.7, 142.1, 141.0, 139.4, 135.7, 133.3, 132.0, 130.8, 128.4, 127.8, 123.6, 119.8, 119.4, 119.0, 94.2, 50.3, 18.6. \(\text{HRMS (FAB+)}\) calculated for \(C_{21}H_{21}N_2O_2I\) [\(M^+\)], 460.0643; found 460.0648. \(\text{IR }\nu\) (cm\(^{-1}\)) : 3269, 1654, 1625, 1523, 1383.

Compound 9d, \(N\text{-allyl-2-bromo-N(1-tert-butylcarbamoyl-vinyl)-5-methoxy-benzamide}\), was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (52 %, two steps), m.p. 123–125 °C. \(^1\text{H NMR}\) (300 MHz, CDCl\(_3\)) \(\delta\) : 7.36 (d, \(J = 8.7\) Hz, 1H), 6.84 (d, \(J = 3.0\) Hz, 1H), 6.74 (dd, \(J = 3.0, 8.7\) Hz, 1H), 6.08–5.94 (m, 1H), 5.77 (s, 1H), 5.71 (s, 1H), 5.51 (s, 1H), 5.34–5.08 (m, 2H), 4.29 (s, 2H), 3.73 (s, 3H), 1.31 (s, 9H). \(^{13}\text{C NMR}\) (75 MHz, CDCl\(_3\)) \(\delta\) : 168.3, 162.7, 158.5, 142.6, 133.5, 132.3, 120.3, 119.2, 116.8, 113.9, 110.1, 99.0, 55.5, 51.7, 51.1, 28.5. \(\text{HRMS (FAB+, }M^+)\) calculated for \(C_{19}H_{24}N_2O_3Br\) [\(M+1\)], 395.0981; found 395.0970. \(\text{IR }\nu\) (cm\(^{-1}\)) : 3360, 2970, 1651, 1619, 1516, 1393.

Compound 9e, \(N\text{-allyl-2-bromo-N(1-tert-butylcarbamoyl-vinyl)-4,5-dimethoxy-benzamide}\), was purified by flash column chromatography (eluent 60:40 hexane/EtOAc). The product was obtained as a white solid (58 %, two steps), m.p. 104–106 °C. \(^1\text{H NMR}\) (300 MHz, CDCl\(_3\)) \(\delta\) : 7.36 (d, \(J = 8.7\) Hz, 1H), 5.97 (bs, 1H), 5.77 (s, 1H), 5.65 (s, 1H), 5.40 (s, 1H), 5.32–5.22 (m, 2H), 4.29 (s, 2H), 3.86 (s, 3H), 3.79 (s, 3H), 1.30 (s, 9H). \(^{13}\text{C NMR}\) (75 MHz, CDCl\(_3\)) \(\delta\) : 168.3, 163.0, 150.0, 147.9, 143.0, 132.5, 129.7, 118.7 (2C), 115.0, 111.6, 110.5, 56.1, 55.9, 51.5, 50.8, 28.4. \(\text{HRMS (FAB+},\)
M^+ calculated for $\text{C}_{19}\text{H}_{28}\text{N}_2\text{O}_4\text{Br} \ [\text{M}+1]$, 425.1068; found 425.1076. \text{IR } \nu \ (\text{cm}^{-1})$: 3357, 2966, 1645, 1622, 1506, 1210.

Compound 9f, N-allyl-2-bromo-N-(1-cyclohexycarbamoyl-vinyl)-4,5-dimethoxy-benzamide, was purified by flash column chromatography (eluent 65:35 hexane/EtOAc) the product was obtained as a white solid (64 %, two steps), m.p. 124–126 °C. $^1\text{H NMR}$ (300 MHz, CDCl$_3$) δ: 6.92 (s, 1H), 6.85 (s, 1H), 5.98 (s, 2H), 5.75 (s, 1H), 5.43 (s, 1H), 5.30–5.23 (m, 2H), 4.28 (s, 1H), 3.90–3.85 (m, 4H), 3.75 (s, 3H), 1.80–1.60 (m, 5H), 1.37–1.13 (m, 5H). $^{13}\text{C NMR}$ (75 MHz, CDCl$_3$) δ: 168.5, 162.8, 150.1, 148.0, 142.2, 132.3, 130.0, 120.0, 119.0, 115.1, 111.3, 110.6, 56.2, 56.0, 50.7, 48.8, 32.9, 25.4, 24.8. \text{HRMS} (FAB+, M$^+$) calculated for $\text{C}_{21}\text{H}_{27}\text{N}_2\text{O}_4\text{Br} \ [\text{M}]$, 450.1154; found 450.1154. \text{IR } \nu \ (\text{cm}^{-1})$: 3318, 2929, 1625, 1506, 1400, 1256, 1212.

Compound 9g, 6-bromo-benzo[1,3]dioxole-5-carboxylic acid allyl-(1-tert-butylcarbamoyl-vinyl)-amide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (78 %, two steps), m.p. 147–149 °C. $^1\text{H NMR}$ (300 MHz, CDCl$_3$) δ: 6.92 (s, 1H), 6.73 (s, 1H), 6.02 (s, 1H), 5.84 (s, 2H), 5.73 (s, 1H), 5.50 (s, 1H), 5.33–5.24 (m, 2H), 4.28 (d, J = 6.0 Hz, 2H), 1.32 (s 9H). $^{13}\text{C NMR}$ (75 MHz, CDCl$_3$) δ: 168.1, 162.7, 149.0, 147.0, 142.7, 132.3, 130.7, 120.0, 119.3, 112.7, 111.3, 108.6, 102.1, 51.7, 51.5, 28.5. \text{HRMS} (FAB+, M$^+$) calculated for $\text{C}_{18}\text{H}_{22}\text{N}_2\text{O}_4\text{Br} \ [\text{M}+1]$, 409.0762; found 409.0763. \text{IR } \nu \ (\text{cm}^{-1})$: 3396, 2974, 1669, 1620, 1525, 1441, 1242.

Compound 10a, was purified by flash column chromatography (eluent 95:5 hexane/EtOAc). The product was obtained as a white solid (85 %), m.p. 155–158 °C. $^1\text{H NMR}$ (300 MHz, CDCl$_3$) δ: 7.90–7.73 (m, 3H), 7.60–7.44 (m, 3H), 6.20 (s, 1H), 5.11 (dd, J = 1.2, 10.8 Hz, 2H), 4.48 (t, J = 15.9 Hz, 1H), 3.99–3.86 (m, 1H), 3.52 (dd, J = 1.2, 15.3 Hz, 1H), 2.27 (dd, J = 1.8, 15.0 Hz, 1H), 1.78 (d, J = 1.2 Hz,
2H), 1.25 (d, J = 4.2 Hz, 1H). 13C NMR (75 MHz, CDCl$_3$) δ: 176.7, 173.1, 169.1, 168.7, 147.9, 146.8, 146.6, 140.6, 133.3, 133.1, 130.4, 129.2, 129.1, 124.5, 124.2, 123.5, 123.1, 109.7, 82.7, 76.3, 55.1, 51.4, 51.3, 47.8, 41.3, 28.6, 28.5, 14.5. HRMS (FAB+, M+) calculated for C$_{17}$H$_{21}$N$_2$O$_2$ [M+1], 285.1611; found 285.1603. IR ν (cm$^{-1}$): 3316, 2925, 1708, 1662, 1520, 1358, 1221, 703.

Compound 10b, 2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxilic acid cyclohexylamide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (81%), m.p. 148 – 151 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.82 – 7.75 (m, 2H), 7.61 – 7.48 (m, 2H), 6.44 – 6.11 (m, 1H), 5.11 (d, J = 11.1 Hz, 1H), 4.50 (t, J = 16.3 Hz, 1H), 3.92 (t, J = 16.3 Hz, 1H), 3.56 (s, 1H), 3.54 (d, J = 14.7 Hz, 1H), 2.32 (d, J = 15.6 Hz, 1H), 1.58 – 0.89 (m, 10H). 13C NMR (75 MHz, CDCl$_3$) δ: 173.1, 168.7, 146.5, 133.3, 133.1, 129.3, 124.5, 124.2, 123.6, 123.2, 109.8, 55.1, 48.6, 47.8, 41.3, 32.6, 25.3, 24.8, 24.7. HRMS (FAB+, M+) calculated for C$_{19}$H$_{23}$N$_2$O$_2$ [M+1], 311.1770; found 311.1760. IR ν (cm$^{-1}$): 3318, 2931, 1709, 1665, 1525, 1321.

Compound 10c, 2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxilic acid (2,6-dimethylphenyl)-amide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (75%), m.p. 189 – 193 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.80 – 7.78 (m, 3H), 7.61 – 7.53 (m, 2H), 7.07 – 6.98 (m, 3H), 5.19 (dd, J = 3, 9 Hz, 2H), 4.60 (d, J = 15 Hz, 1H), 4.07 (dd, J = 1.8, 15 Hz, 1H), 2.38 (d, J = 0.9, 15 Hz, 1H), 1.95 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ: 172.9, 168.2, 146.4, 146.3, 135.3, 133.2, 132.7, 130.6, 129.5, 128.2, 127.5, 124.4, 123.3, 110.3, 76.4, 48.0, 41.2, 17.9. HRMS (FAB+, M+) calculated for C$_{21}$H$_{23}$N$_2$O$_2$ [M+1], 333.1594; found 333.1603. IR ν (cm$^{-1}$): 3277, 2920, 1702, 1677, 1497, 1365.

Compound 10d, 7-methoxy-2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxilic acid tert-butyl-amide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product
was obtained as a white solid (76 %), m.p. 113–116 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 7.63 (dd, \(J = 0.6, 8.4 \text{ Hz}, 1\)H), 7.26 (d, \(J = 2.7 \text{ Hz}, 1\)H), 7.12 (dd, \(J = 2.7, 8.4 \text{ Hz}, 1\)H), 6.17 (s, 1H), 5.10 (dd, \(J = 2.4, 10.8 \text{ Hz}, 2\)H), 4.49 (d, \(J = 15.6 \text{ Hz}, 1\)H), 3.91–3.85 (m, 4H), 3.49 (dd, \(J = 1.2, 15 \text{ Hz}, 1\)H), 2.24 (d, \(J = 15 \text{ Hz}, 1\)H), 1.24 (s, 9H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 173.1, 169.0, 160.8 146.7, 139.3, 131.9, 124.1, 121.1, 109.7, 106.9, 76.0, 55.7, 51.4, 47.8, 41.4, 28.5. HRMS (FAB+, M+) calculated for C\(_{18}\)H\(_{23}\)N\(_2\)O\(_3\) \([\text{M}+1]\), 315.1715; found 315.1709. IR \(\nu\) (cm\(^{-1}\)): 3327, 2967, 1708, 1673, 1489.

Compound 10e, 7,8-dimethoxy-2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxilic acid tert-butylamide, was purified by flash column chromatography (eluent 60:40 hexane/EtOAc). The product was obtained as a white solid (72 %), m.p. 161–164 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 7.23 (s, 1H), 7.20 (s, 1H), 6.27 (s, 1H), 5.10 (dd, \(J = 1.6, 10.9 \text{ Hz}, 2\)H), 4.47 (d, \(J = 15.6 \text{ Hz}, 1\)H), 3.97 (s, 1H), 3.93 (s, 1H), 3.64 (d, \(J = 1.2 \text{ Hz}, 1\)H), 2.26 (d, \(J = 15.0 \text{ Hz}, 1\)H), 1.25 (s, 9H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 173.8, 169.1, 153.8, 150.6, 146.8, 141.4, 122.3, 109.6, 105.3, 105.0, 75.9, 56.5, 56.2, 51.4, 47.9, 41.5, 28.5. HRMS (FAB+, M+) calculated for C\(_{19}\)H\(_{25}\)N\(_2\)O\(_4\) \([\text{M}+1]\), 345.1808; found 345.1814. IR \(\nu\) (cm\(^{-1}\)): 3335, 2937, 1705, 1672, 1501, 1461, 1323.

Compound 10f, 7,8-dimethoxy-2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxilic acid cyclohexylamide, was purified by flash column chromatography (eluent 65:35 hexane/EtOAc). The product was obtained as a white solid (86 %), m.p. 170–172 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 7.23 (s, 1H), 7.20 (s, 1H), 6.32 (d, \(J = 6.0 \text{ Hz}, 1\)H), 5.10 (d, \(J = 9.0 \text{ Hz}, 2\)H), 4.48 (d, \(J = 15.0 \text{ Hz}, 1\)H), 1.89–1.60 (m, 6H), 1.34–0.91 (m, 5H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 173.8, 169.1, 153.8, 150.6, 146.8, 141.2, 122.4, 109.7, 105.3, 105.1, 75.7, 56.5, 56.3, 48.6, 48.0, 41.6, 33.1, 32.7, 25.4, 24.8, 24.7. HRMS (FAB+, M+) calculated for C\(_{21}\)H\(_{28}\)N\(_2\)O\(_4\) \([\text{M}+1]\), 371.1963; found 371.1971. IR \(\nu\) (cm\(^{-1}\)): 3388, 2933, 1705, 1672, 1501, 1461, 1323.
Compound 10g, 2-methylene-9-oxo-2,3-dihydro-1H,9H-5,7-dioxa-9-aza-cyclopenta[a]indacene-3a-carboxilic acid tert-butylamide, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a white solid (73 %), m.p. 185–188 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.16 (s, 1H), 7.14 (s, 1H), 6.25 (s, 1H), 6.08 (s, 2H), 5.09 (d, J =12.0 Hz, 2H), 4.46 (d, J =15.0 Hz, 1H), 3.85 (dd, J =1.8, 15.0 Hz, 1H), 3.45 (dd, J =1.2, 15.0 Hz, 1H), 2.25 (d, J =15.0 Hz, 1H), 1.26 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 173.0, 168.8, 152.4, 149.2, 146.6, 143.2, 124.2, 109.7, 103.5, 103.4, 102.2, 75.7, 51.4, 48.0, 41.5, 28.5. HRMS (FAB+, M+) calculated for C$_{18}$H$_{21}$N$_2$O$_4$ [M+1], 329.1497; found 329.1501. IR ν (cm$^{-1}$): 3336, 2968, 1696, 1672, 1521, 1465, 1344, 1290, 1149, 1038.

Compound 11a', N-but-3-enyl-N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-benzamide, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a white solid (77 %), m.p. 110–113 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.78 (d, J =8.1 Hz, 1H), 7.30–7.20 (m, 2H), 7.04–6.98 (m, 2H), 5.94–5.85 (m, 1H), 5.82 (s, 1H), 5.73 (s, 1H), 5.56 (s, 1H), 5.24–4.93 (m, 2H), 3.77 (t, J =6.8 Hz, 2H), 2.51 (q, J =6.9 Hz, 2H), 1.32 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 169.9, 162.6, 142.8, 141.6, 139.4, 134.8, 133.5, 127.7, 120.6, 117.3, 94.1, 51.8, 47.4, 31.7, 28.6. HRMS (FAB+, M+) calculated for C$_{18}$H$_{22}$N$_2$O$_2$I [M], 426.0796; found 426.0804. IR ν (cm$^{-1}$): 3360, 2975, 1669, 1644, 1625, 1517, 1396, 1363, 1319, 1219, 911, 743, 638.

Compound 11b', 2-bromo-N-but-3-enyl-N-(1-tert-butylcarbamoyl-vinyl)-5-methoxy-benzamide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (62 %), m.p. 115–117 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.36 (d, J=9.0 Hz, 1H), 6.80 (d, J=3.0 Hz, 1H), 6.73 (dd, J=3.0, 9.0 Hz, 1H), 5.93–5.80 (m, 3H), 5.20–4.96 (m, 2H), 3.81 (s, 1H), 3.72 (s, 3H), 3.39 (t, J=7.5 Hz, 1H), 2.48 (q, J=7.2 Hz, 2H), 1.32 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 168.4, 162.6, 158.5, 142.5, 134.8, 133.5, 120.6, 117.2, 116.7, 113.8, 110.1, 99.9, 55.4, 51.7, 41.1, 31.7, 28.5. HRMS (FAB+, M+)
calculated for C_{19}H_{25}N_{2}O_{3}Br [M], 408.1051; found 408.1049. IR ν (cm⁻¹): 3343, 2945, 1655, 1617, 1514, 1216.

Compound 11c', N-but-3-enyl-N-[1-(2,6-dimethylphenylcarbamoyl)-vinyl]-2-iodo-benzamide, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a white solid (67 %), m.p. 152–154 °C. \(^1H\) NMR (300 MHz, CDCl₃) δ: 7.86–7.79 (m, 1H), 7.51–7.34 (m, 2H), 7.16–7.04 (m, 4H), 6.36 (s, 1H), 6.06–5.87 (m, 1H), 5.70 (d, J=1.2 Hz, 1H), 5.20–4.95 (m, 2H), 3.83 (s, 1H), 3.65 (d, J=6.0 Hz, 1H), 3.46 (s, 1H), 2.55 (d, J=6.0 Hz, 1H), 2.32 (s, 3H), 2.16 (s, 3H), 1.62 (s, 1H). \(^13C\) NMR (75 MHz, CDCl₃) δ: 170.1, 161.5, 141.5, 141.1, 139.3, 135.2, 134.6, 133.2, 130.3, 128.2, 127.6, 127.5, 127.2, 123.7, 117.2, 94.1, 46.4, 31.4, 18.5. HRMS (FAB+, M+) calculated for C_{22}H_{23}N_{2}O_{2}I [M], 475.0881; found 475.0883. IR ν (cm⁻¹): 3268, 2945, 1652, 1623, 1523, 1391, 1321, 767, 738, 656.

Compound 11d', 6-bromo-benzo[1,3]dioxole-5-carboxylic acid but-3-enyl-(1-tert-butylcarbamoyl-vinyl)amide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (54 %), m.p. 134–135 °C. \(^1H\) NMR (300 MHz, CDCl₃) δ: 6.91 (s, 1H), 6.71 (s, 1H), 5.97 (s, 2H), 5.91–5.80 (m, 3H), 5.23–5.04 (m, 2H), 3.73 (s, 2H), 2.46 (q, J=6.0 Hz, 2H), 1.33 (s, 9H). \(^13C\) NMR (75 MHz, CDCl₃) δ: 168.1, 162.5, 148.9, 146.8, 142.5, 134.8, 130.8, 120.1, 117.1, 112.6, 108.4, 102.0, 99.8, 51.7, 47.3, 31.6, 28.5. HRMS (FAB+, M+) calculated for C_{19}H_{24}N_{2}O_{4}Br [M+1], 423.0912; found 423.0919. IR ν (cm⁻¹): 3399, 1668, 1620, 1548, 1484, 1420, 1241, 1033, 908.608.

Compound 11a, 2-methylene-6-oxo-1,2,3,4-tetrahydro-6H-pyrido[2,1-a]isoindole-10b-carboxylic acid tert-butylamide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (74 %), m.p. 208–210 °C. \(^1H\) NMR (300 MHz, CDCl₃) δ: 7.86 (d, J=7.2 Hz, 1H), 7.67–7.48 (m, 3H), 5.60–5.48 (m, 1H), 5.03 (d, J=29 Hz, 1H), 4.08–3.97 (m, 1H), 3.83 (s, 1H), 3.78 (s, 1H), 3.48 (s, 1H), 3.39 (s, 1H), 3.17 (s, 1H), 2.17 (s, 3H), 1.36 (s, 9H).
4.74–4.63 (m, 1H), 3.75–3.43 (m, 2H), 2.36–2.04 (m, 1H), 1.94–1.67 (m, 3H), 1.21 (s, 9H).

\(^{13}\text{C}\) NMR (75 MHz, CDCl\(_3\), mixture) \(\delta\): 167.8, 166.9, 140.3, 132.5, 132.4, 128.9, 124.0, 123.9, 121.7, 121.6, 115.7, 113.0, 51.5, 42.1, 40.1, 39.0, 36.5, 33.7, 28.5, 28.4, 23.2.

HRMS (FAB+, M+) calculated for C\(_{18}\)H\(_{23}\)N\(_2\)O\(_2\) [M] = 299.1763; found 299.1760.

IR \(\nu\) (cm\(^{-1}\)):

3313, 2966, 1698, 1666, 1526, 1451, 1391, 1224.

Compound 11b, 8-methoxy-2-methylene-6-oxo-1,2,3,4-tetrahydro-6H-pyrido[2,1-a]isoindole-10b-carboxylic acid **tert-butylamide**, was purified by flash column chromatography (eluent 85:15 hexane/EtOAc). The product was obtained as a white solid (72 %), m.p. 193–196 °C.

\(\text{H}^1\) NMR (300 MHz, CDCl\(_3\) \(\delta\): 7.53 (d, \(J=8.4\) Hz, 1H), 7.30 (d, \(J=2.4\) Hz, 1H), 7.11 (dd, \(J=2.4, 8.4\) Hz, 1H), 5.62 (s, 1H), 5.06 (d, \(J=1.5\) Hz, 1H), 4.96 (d, \(J=1.5\) Hz, 1H), 4.68–4.61 (m, 1H), 3.86 (s, 3H), 3.70 (dd, \(J=1.5, 12.9\) Hz, 1H), 2.96 (ddd, \(J=3.9, 12.6, 16.8\) Hz, 1H), 2.37–2.31 (m, 1H), 2.17–2.04 (m, 1H), 1.77 (d, \(J=11.4\) Hz, 1H), 1.21 (s, 9H).

\(\text{C}^{13}\) NMR (75 MHz, CDCl\(_3\) \(\delta\): 168.4, 167.1, 160.5, 140.4, 139.2, 122.6, 120.5, 112.9, 106.7, 99.9, 69.9, 55.7, 51.5, 42.3, 40.1, 33.6, 28.5.

HRMS (FAB+, M+) calculated for C\(_{19}\)H\(_{25}\)N\(_2\)O\(_3\) [M+1] = 329.1857; found 329.1865.

IR \(\nu\) (cm\(^{-1}\)): 3301, 2952, 1695, 1668, 1528, 1486, 1391, 1274, 1026.

Compound 11b isomer, 8-methoxy-2-methyl-6-oxo-1,2-dihydro-6H-pyrido[2,1-a]isoindole-10b-carboxylic acid **tert-butylamide**, was purified by flash column chromatography (eluent 85:35 hexane/EtOAc). The product was obtained as a white solid (17 %), m.p. 170–173 °C.

\(\text{H}^1\) NMR (300 MHz, CDCl\(_3\) \(\delta\): 7.68 (d, \(J=8.4\) Hz, 1H), 7.30 (d, \(J=2.4\) Hz, 1H), 7.15 (dd, \(J=2.7, 8.4\) Hz, 1H), 7.03 (dd, \(J=2.7, 8.1\) Hz, 1H), 5.80 (s, 1H), 5.15 (d, \(J=8.1\) Hz, 1H), 3.87 (s, 3H), 3.10 (dd, \(J=3.9, 11.1\) Hz, 1H), 2.53–2.45 (m, 1H), 1.62 (s, 1H), 1.22 (s, 9H), 1.07 (d, \(J=6.9\) MHz, 3H).

\(\text{C}^{13}\) NMR (75 MHz, CDCl\(_3\) \(\delta\): 168.8, 167.2, 160.8, 138.5, 130.8, 124.0, 121.4, 120.0, 118.2, 106.6, 68.4, 55.7, 51.6, 38.9, 28.4, 27.2, 20.5.

HRMS (FAB+, M+) calculated for C\(_{19}\)H\(_{25}\)N\(_2\)O\(_3\) [M+1] = 329.1870; found 329.1865.

IR \(\nu\) (cm\(^{-1}\)): 3337, 2922, 1699, 1663, 1527, 1487, 1348, 1256, 1024.
Compound 11c, 2-methylene-6-oxo-1,2,3,4-tetrahydro-6H-pyrido[2,1-a]issoindole-10b-carboxylic acid (2,6-dimethylphenylamide), was purified by flash column chromatography (eluent 85:15 hexane/EtOAc). The product was obtained as a white solid (71%), m.p. 218–220 °C. **1H NMR** (300 MHz, CDCl₃) δ: 7.78 (d, J = 7.5 Hz, 1H), 7.70 (dd, J = 0.9, 7.5 Hz, 1H), 7.62–7.48 (m, 2H), 7.07–7.97 (m, 3H), 5.12 (s, 1H), 5.05 (s, 1H), 4.72 (dd, J = 6.0, 13.0 Hz, 1H), 3.85 (d, J = 13.0 Hz, 1H), 3.27 (ddd, J = 4.2, 13.0, 17.0 Hz, 1H), 2.45–2.18 (m, 2H), 1.90 (s, 6H), 1.70 (s, 1H). **13C NMR** (75 MHz, CDCl₃) δ: 168.5, 166.8, 146.4, 140.6, 135.6, 133.1, 132.7, 129.6, 129.3, 128.3, 127.6, 124.1, 122.2, 113.7, 70.9, 41.9, 40.6, 33.9, 18.3. **HRMS** (FAB+, M+) calculated for C₂₂H₂₃N₂O₄ [M+1], 347.1761; found 347.1760. **IR** ν (cm⁻¹): 3265, 2921, 1676, 1501, 1468, 1395.

Compound 11d, 6-methylene-9-oxo-5,6,7,8-tetrahydro-9H-1,3-dioxacycloocta-8a-aza-cyclopenta[b]fluorene-4b-carboxylic acid tert-butylamide, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (60%), m.p. 181–184 °C. **1H NMR** (300 MHz, CDCl₃) δ: 7.20 (s, 1H), 7.05 (s, 1H), 6.06 (s, 2H), 5.59 (d, J = 1.8 Hz, 1H), 5.03 (s, 1H), 4.95 (s, 1H), 4.63-4.56 (m, 1H), 3.64 (d, J = 1.5 Hz, 1H), 2.97-2.87 (m, 1H), 2.31 (d, J = 1.2 Hz, 1H), 1.78-1.74 (m, 2H), 1.22 (s, 9H). **13C NMR** (75 MHz, CDCl₃) δ: 168.2, 167.0, 151.9, 148.9, 142.9, 140.4, 123.3, 112.9, 103.4, 102.2, 102.1, 69.8, 51.5, 42.4, 40.2, 33.7, 28.5. **HRMS** (FAB+, M+) calculated for C₁₉H₂₉N₂O₄ [M+1], 343.1661; found 343.1658. **IR** ν (cm⁻¹): 3286, 2922, 1664, 1525, 1466, 1293, 1140, 1033.

Compound 12a, the spectroscopy characterization has been previously reported.¹
Compound 12b, \(N\text{-}benzyl-N\text{-}(1\text{-cyclohexylcarbamoyl-vinyl})\text{-}2\text{-}iodo\text{-}benzamide\). The product was obtained as a white solid (68\%), m.p. 160–162 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 7.76 (d, \(J=6\) Hz, 2H), 7.48-7.22(m, 6H), 7.03-6.97(m, 1H), 6.09(s, N-H), 5.76(s, 1H), 5.38(s, 1H), 4.94(s, 2H), 3.63-3.57(m, 1H), 2.04-0.91 (m, 10H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 170.0, 162.4, 141.7, 141.4, 139.3, 136.6, 130.4, 129.4, 128.7, 128.0, 127.7 (2C), 121.9, 94.1, 51.6, 48.8, 32.7, 25.7, 25.3, 25.0, 24.9. HRMS (FAB+, M+) calculated for C\(_{23}\)H\(_{25}\)IN\(_2\)O\(_2\) [M], 489.1039; found 489.1044. IR \(v\) (cm\(^{-1}\)): 3343, 2927, 2854, 1666, 1619, 1524, 695.

Compound 12c, \(N\text{-}benzyl-N\text{-}[1\text{-}(2,6\text{-}dimethylphenylcarbamoyl-vinyl})\text{-}2\text{-}iodo\text{-}benzamide\). The product was obtained as a white solid (45\%), m.p. 210–212 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\) + DMSO) \(\delta\): 9.20(bs, 1H), 7.79 (d, \(J=9\) Hz, 1H), 7.53-7.25(m, 8H), 7.09-7.06 (m, 4H), 5.92 (s, 1H), 5.35(s, 1H), 5.01 (bs, 2H), 2.17 (s. 6H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\) +DMSO) \(\delta\): 169.7, 161.3, 141.6, 140.1, 138.7, 136.2, 135.1, 133.7, 129.8, 128.5, 128.0, 127.6, 127.3, 127.1, 127.0, 126.8, 123.3, 93.9, 49.5, 18.0. HRMS (FAB+, M+) calculated for C\(_{25}\)H\(_{23}\)IN\(_2\)O\(_2\) [M], 511.0883; found 511.0884. IR \(v\) (cm\(^{-1}\)): 3280, 2921, 1665, 1623, 1522, 771.

Compound 12d, \(N\text{-}(1\text{-}tert\text{-}butylcarbamoyl-vinyl})\text{-}2\text{-}iodo\text{-}N\text{-}(4\text{-}methoxy-benzyl)\text{-}benzamide\). The product was obtained as a white solid (59\%), m.p. 115–118 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 7.75 (d, \(J=9\) Hz, 1H), 7.55 (dd, 1H, \(J=3\) Hz, \(J=9\) Hz, 1H), 7.42-7.24 (m, 4H), 7.03-6.97 (m, 1H), 6.88 (d, \(J=9\) Hz, 1H), 5.83 (s, 1H), 5.45 (s, 1H), 5.33 (bs, 1H), 4.89 (s, 2H), 3.81 (s, 3H), 1.17 (s, 9H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 169.9, 162.7, 141.7, 141.5, 141.5, 139.5, 131.0, 130.6, 129.1, 128.6, 127.8, 121.8, 114.3, 94.3, 55.5, 51.8, 51.3, 28.5. HRMS (FAB+, M+) calculated for C\(_{22}\)H\(_{25}\)IN\(_2\)O\(_3\) [M], 493.0988; found 493.0998. IR \(v\) (cm\(^{-1}\)): 3300, 2969, 1665, 1629, 1513, 685.
Compound 12e, **N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-(1-methyl-1H-pyrrol-2-ylmethyl)-benzamide**. The product was obtained as a white solid (58%), m.p. 170–172 °C. **1H NMR** (300 MHz, CDCl$_3$) δ: 7.74 (d, $J= 9$ Hz, 1H), 7.28-7.26 (m, 1H), 7.01-6.99 (m, 1H), 6.62(s, 1H), 6.14-6.04 (m, 2H), 5.75 (s, 1H), 5.47 (s, 1H), 5.23 (bs, 1H), 4.99 (s, 2H), 3.75 (s, 3H), 1.20 (s, 9H). **13C NMR** (75 MHz, CDCl$_3$) δ: 169.4, 163.0, 142.7, 141.6, 139.4, 130.4, 128.2, 127.8, 127.2, 123.6, 121.2, 111.6, 107.6, 94.1, 51.5, 42.8, 34.6, 28.4. **HRMS** (FAB+, M+) calculated for C$_{20}$H$_{24}$IN$_3$O$_2$ [M], 465.0913; found 465.0917. **IR** ν (cm$^{-1}$): 3366, 2966, 1667, 1618, 1519, 735.

Compound 12f, **N-(1-tert-butylcarbamoyl-vinyl)-N-furan-2-ylmethyl-2-iodo-benzamide**. The product was obtained as a yellow solid (51%), m.p. 118–120 °C. **1H NMR** (300 MHz, CDCl$_3$) δ: 7.76 (d, $J= 9$ Hz, 1H), 7.59-7.55 (m, 1H), 7.40-7.23 (m, 3H), 7.04-6.99 (m, 1H), 6.45-6.35 (m, 2H), 5.90 (s, 1H), 5.33 (s, 1H), 4.94 (s, 2H), 1.25 (s, 9H). **13C NMR** (75 MHz, CDCl$_3$) δ: 169.8, 162.6, 150.1, 142.5, 139.6, 130.7, 128.7, 128.3, 127.8, 121.4, 111.0, 110.4, 109.9, 94.1, 51.4, 28.6. **HRMS** (FAB+, M+) calculated for C$_{19}$H$_{21}$IN$_2$O$_3$ [M], 453.0675; found 453.0669. **IR** ν (cm$^{-1}$): 3373, 2962, 1665, 1619, 748.

Compound 12g, **N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-thiophen-2-ylmethyl-benzamide**. The product was obtained as a yellow solid (55%), m.p. 113–115 °C. **1H NMR** (300 MHz, CDCl$_3$) δ: 7.75 (d, $J= 9$ Hz, 1H), 7.58-7.02 (m, 4H), 7.11-6.96 (m, 2H), 5.89 (s, 1H), 5.55 (s, 1H), 5.32(bs, 1H), 5.07 (s, 2H), 1.18 (s, 9H). **13C NMR** (75 MHz, CDCl$_3$) δ: 197.7, 162.6, 145.0, 142.8, 141.1, 139.6, 138.7, 130.7, 128.8, 128.6, 128.2, 127.8, 127.1, 126.7, 121.8, 94.2, 51.7, 47.3, 28.4. **HRMS** (FAB+, M+) calculated for C$_{19}$H$_{21}$IN$_2$O$_2$S [M], 469.0447; found 469.0441. **IR** ν (cm$^{-1}$): 3394, 2963, 1666, 1616, 1518, 724.
Compound 12h, N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-(1-methyl-1H-indol-3-ylmethyl)-benzamide. The product was obtained as a pale oil (65 %). 1H NMR (300 MHz, CDCl$_3$) δ: 7.84 (d, J=7.8 Hz, 1H), 7.74 (d, J=7.8 Hz, 1H), 7.35-7.14 (m, 6H), 7.00-6.94 (m, 1H), 6.12 (s, 1H), 5.79 (s, 1H), 5.16 (s, 2H), 3.77 (s, 3H), 0.74 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 169.5, 162.6, 143.5, 141.5, 139.5, 137.1, 130.6, 129.9, 128.2, 127.6, 127.2, 122.7, 122.4, 120.4, 119.9, 109.6, 94.2, 51.0, 44.5, 33.0, 27.7. HRMS (FAB+, M+) calculated for C$_{24}$H$_{26}$IN$_3$O$_2$ [M], 515.1070; found 515.1066. IR ν (cm$^{-1}$): 3380, 1653, 1617, 1511, 740.

Compound 12i, 2-bromo-N-(1-tert-butylcarbamoyl-vinyl)-N-furan-2-ylmethyl-4,5-dimethoxy-benzamide. The product was obtained as a pale oil (80 %). 1H NMR (300 MHz, CDCl$_3$) δ: 7.38 (s, 1H), 6.92-6.88 (m, 2H), 6.41-6.36 (m, 2H), 5.76 (s, 1H), 5.63 (bs, 1H), 5.44 (s, 1H), 4.91 (s, 2H), 3.85 (s, 3H), 3.80 (s, 3H), 1.25 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 168.5, 162.9, 150.4, 148.1, 143.2, 142.4, 129.3, 119.9, 115.4, 112.2, 110.9, 109.9, 56.3, 56.2, 51.7, 45.0, 28.5. HRMS (FAB+, M+) calculated for C$_{21}$H$_{25}$BrN$_2$O$_5$ [M], 465.1025; found 465.1022. IR ν (cm$^{-1}$): 3355, 2968, 1664, 1624, 1508, 754.

Compound 12j, 2-bromo-N-(1-tert-butylcarbamoyl-vinyl)-4-methyl-N-thiophen-2-ylmethyl-benzamide. The product was obtained as a pale oil (71 %). 1H NMR (300 MHz, CDCl$_3$) δ: 7.59-7.56 (m, 1H), 7.39-7.26 (m, 3H), 7.13-6.96 (m, 3H), 6.00 (s, 1H), 5.51 (s, 1H), 5.07 (s, 2H), 2.29 (s, 3H), 1.16 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 168.7, 162.4, 145.1, 142.8, 141.5, 138.7, 134.2, 133.5, 131.0, 128.6, 128.3, 127.9, 127.1, 122.0, 120.1, 51.6, 47.4, 28.3, 21.1. HRMS (FAB+, M+) calculated for C$_{20}$H$_{22}$BrN$_2$O$_2$S [M], 435.0742; found 435.0746. IR ν (cm$^{-1}$): 3359, 2969, 1667, 1622, 1516, 755.
Compound 14a, 7-oxo-5,12-dihydro-7H-isooindolo[2,1-b]isoquinoline-11b-carboxylic acid tert-butylamide, was purified by flash column chromatography (eluent 90:10 hexane/EtOAc). The product was obtained as a white solid (61%), m.p. 208–210 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.89 (d, J = 9 Hz, 1H), 7.79 (d, J = 9 Hz, 1H), 7.62 (t, J = 9 Hz, 1H), 7.53 (t, J = 9 Hz, 1H), 7.23 (s, 4H), 5.65 (s, 1H, NH), 5.34 (d, J = 18 Hz, 1H), 4.55 (d, J = 18 Hz, 1H), 4.14 (d, J = 15 Hz, 1H), 2.61 (d, J = 15 Hz, 1H), 1.06 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 169.4, 167.6, 146.8, 132.7, 131.3, 130.3, 130.0, 129.5, 129.0, 127.4, 127.1, 126.3, 123.9, 122.1, 68.1, 51.5, 42.3, 37.4, 28.3. HRMS (FAB+, M+) calculated for C$_{21}$H$_{22}$N$_{2}$O$_{2}$ [M], 335.1758; found 335.1760. IR ν (cm$^{-1}$): 3324, 2968, 1698, 1672, 1526, 1361, 740.

Compound 14b, 7-oxo-5,12-dihydro-7H-isooindolo[2,1-b]isoquinoline-11b-carboxylic acid cyclohexylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (27%), m.p. 220–222 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.87 (d, J = 6 Hz, 1H), 7.77 (d, J = 9 Hz, 1H), 7.64-7.49 (m, 2H), 7.26-7.22 (m, 4H), 5.76 (d, J = 9 Hz, 1H), 5.35 (d, J = 18 Hz, 1H), 4.55 (d, J = 18 Hz, 1H), 4.17 (d, J = 15 Hz, 1H), 3.55-3.48 (m, 1H), 2.64 (d, J = 15 Hz, 1H), 1.59-0.82 (m, 10H). 13C NMR (75 MHz, CDCl$_3$) δ: 169.5, 167.7, 146.9, 132.8, 131.3, 130.4, 130.2, 129.6, 129.4, 127.6, 127.4, 126.6, 124.1, 122.3, 67.9, 48.8, 42.3, 37.3, 33.0, 32.6, 29.9, 25.4, 24.8. HRMS (FAB+, M+) calculated for C$_{23}$H$_{24}$N$_{2}$O$_{2}$ [M], 361.1916; found 361.1915. IR ν (cm$^{-1}$): 3317, 2929, 1693, 1666, 1530, 742.

Compound 14d, 2-methoxy-7-oxo-5,12-dihydro-7H-isooindolo[2,1-b]isoquinoline-11b-carboxylic acid tert-butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (33%), m.p. 175–178 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.88 (d, J = 6 Hz, 1H), 7.77 (d, J = 9 Hz, 1H), 7.65-7.51 (m, 2H), 7.13 (d, J = 9 Hz, 1H), 6.84-6.75 (m, 2H), 5.66 (bs, 1H) 5.27 (d, J = 15 Hz, 1H), 4.49 (d, J = 15 Hz, 1H), 4.08 (d, J = 15 Hz, 1H), 3.80 (s, 3H), 2.58 (d, J = 15 Hz, 1H), 1.08 (s, 9H).
\[13^C\text{ NMR} \ (75 \text{ MHz, CDCl}_3) \ \delta: \ 169.5, \ 167.7, \ 158.8, \ 146.9, \ 132.8, \ 132.7, \ 130.2, \ 129.3, \ 127.5, \ 124.1, \ 122.4, \ 122.2, \ 114.1, \ 113.8, \ 68.2, \ 55.4, \ 51.7, \ 41.9, \ 37.7, \ 28.5. \] HRMS (FAB+, M+) calculated for C\text{_{22}}H\text{_{26}}N\text{_{2}}O\text{_{3}} [M^+] , 365.1865; found 365.1867. IR \nu (\text{cm}^{-1}): IR: 3315, 2967, 1696, 1674, 1507, 756.

Compound 14e, 1-methyl-9-oxo-4,10-dihydro-1\text{H},9\text{H}-1,9a-diaza-cyclopenta[\text{b}]fluorene-4a-carboxylic acid tert-butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (52 %), m.p. 215–218 °C. \[^1H\text{ NMR} \ (300 \text{ MHz, CDCl}_3) \ \delta: \ 7.84 \ (d, J= 6 \text{ Hz, 1H}), \ 7.68 \ (d, J= 6 \text{ Hz, 1H}), \ 7.49-7.61 \ (m, 2H), \ 6.54 \ (d, J=2.7 \text{ Hz, 1H}), \ 5.96 \ (d, J= 2.7 \text{ Hz, 1H}), \ 5.58 \ (bs, 1H), \ 5.29 \ (d, J=15 \text{ Hz, 1H}), \ 4.26 \ (d, J= 15 \text{ Hz, 1H}), \ 4.06 \ (d, J=15 \text{ Hz, 1H}), \ 3.56 \ (s, 3H), \ 2.42 \ (d, J=15 \text{ Hz, 1H}), \ 1.14 \ (s, 9H). \] \[^{13}C\text{ NMR} \ (75 \text{ MHz, CDCl}_3) \ \delta: \ 169.2, \ 167.8, \ 147.2, \ 132.8, \ 129.6, \ 129.1, \ 124.0, \ 122.3, \ 121.9, \ 121.7, \ 113.8, \ 106.5, \ 69.4, \ 51.7, \ 37.1, \ 33.4, \ 30.7, \ 28.7. \] HRMS (FAB+, M+) calculated for C\text{_{20}}H\text{_{24}}N\text{_{3}}O\text{_{2}} [M^+] , 338.1869; found 338.1867. IR \nu (\text{cm}^{-1}): 3316, 2922, 1690, 1665, 1522, 730.

Compound 14f, 9-oxo-4,10-dihydro-9\text{H}-1-oxa-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (62 %), m.p. 204–206 °C. \[^1H\text{ NMR} \ (300 \text{ MHz, CDCl}_3) \ \delta: \ 7.82 \ (d, J=7.5 \text{ Hz, 1H}), \ 7.70-7.48 \ (m, 3H), \ 7.35 \ (d, J=18 \text{ Hz, 1H}), \ 6.29 \ (d, J=18 \text{ Hz, 1H}), \ 5.72 \ (bs, 1H), \ 5.31 \ (d, J=18 \text{ Hz, 1H}), \ 4.30 \ (d, J=18 \text{ Hz, 1H}), \ 4.08 \ (d, J=15 \text{ Hz, 1H}), \ 2.38(d, J=15 \text{ Hz, 1H}), \ 1.17 \ (s, 9H). \] \[^{13}C\text{ NMR} \ (75 \text{ MHz, CDCl}_3) \ \delta: \ 169.0, \ 167.4, \ 146.6, \ 144.3, \ 142.9, \ 133.04, \ 129.4, \ 129.3, \ 124.1, \ 121.8, \ 114.7, \ 110.4, \ 69.1, \ 51.9, \ 38.0, \ 29.6, \ 28.6. \] HRMS (FAB+, M+) calculated for C\text{_{19}}H\text{_{28}}N\text{_{2}}O\text{_{3}} [M] , 325.1552; found 325.1552. IR \nu (\text{cm}^{-1}): 3329, 2962, 1697, 1667, 1523, 730.
Compound 14g, 9-oxo-4,10-dihydro-9H-1-thia-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide, was purified by flash column chromatography (elucent 70:30 hexane/EtOAc). The product was obtained as a white solid (56 %), m.p. 228–230 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.84 (d, $J=6$ Hz, 1H), 7.71 (d, $J=6$ Hz, 1H), 7.64-7.49 (m, 2H), 7.21 (d, $J=5.1$ Hz, 1H), 6.83 (d, $J=5.1$, 1H), 5.69 (bs, 1H), 5.47 (d, $J=17.7$ Hz), 4.51 (d, $J=16.8$, 1H), 4.25 (d, $J=15$ Hz, 1H), 2.44 (d, $J=15$ Hz, 1H), 1.14 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 168.8, 167.5, 146.8, 132.9, 132.1, 129.7, 129.4, 129.3, 127.2, 124.5, 124.2, 121.9, 68.5, 51.8, 39.4, 33.2, 28.6. HRMS (FAB+, M+) calculated for C$_{19}$H$_{20}$N$_2$O$_2$S $[M]^+$, 340.1245; found 340.1251. IR ν (cm$^{-1}$): 3322, 2955, 1695, 1667, 1524, 690.

Compound 14h, 6-methyl-9-oxo-4,10-dihydro-9H-1-thia-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide, was purified by flash column chromatography (elucent 70:30 hexane/EtOAc). The product was obtained as a white solid (68 %), m.p. 233–235 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.70 (d, $J=6$ Hz, 1H), 7.51 (s, 1H), 7.31 (d, $J=6$ Hz, 1H), 5.78 (bs, 1H), 5.45 (d, $J=18$ Hz, 1H), 4.49 (d, $J=15$ Hz, 1H), 4.22 (d, $J=15$ Hz, 1H), 2.48 (s, 3H), 2.42 (d, $J=15$ Hz, 1H), 1.15 (s, 9H). 13C NMR (75 MHz, CDCl$_3$) δ: 168.9, 167.6, 147.2, 143.9, 132.1, 130.3, 129.5, 127.2, 127.1, 124.4, 123.9, 122.2, 68.3, 51.8, 39.3, 33.3, 28.6, 22.1. HRMS (FAB+, M+) calculated for C$_{20}$H$_{22}$N$_2$O$_2$S $[M]$, 355.1480; found 355.1486. IR ν (cm$^{-1}$): 3327, 2966, 2921, 1693, 1667, 1520, 694.

Compound 14i, 12-methyl-6-oxo-11,12-dihydro-5H-6H-5a,12-diaza-indeno[1,2-b]fluorene-10b-carboxylic acid tert-butylamide, was purified by flash column chromatography (elucent 70:30 hexane/EtOAc). The product was obtained as a white solid (61 %), m.p. 238–240 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.88 (d, $J=9$ Hz, 1H), 7.73 (d, $J=6$Hz, 1H), 7.60-7.50 (m, 3H), 7.31-7.10 (m, 3H), 5.77 (bs, 1H), 5.52 (d, $J=15$ Hz, 1H), 4.51 (d, $J=15$ Hz, 1H), 4.43 (d, $J=15$ Hz, 1H), 3.68 (s, 3H), 2.60 (d, $J=18$ Hz, 1H), 1.12 (s, 9H).
13C NMR (75 MHz, CDCl$_3$) δ: 168.8, 167.4, 146.7, 137.9, 132.8, 131.2, 129.9, 124.8, 124.1, 121.7, 121.5, 119.4, 117.8, 109.3, 104.2, 68.7, 51.8, 36.9, 29.4, 29.2, 28.5.

HRMS (FAB+, M+) calculated for C$_{24}$H$_{25}$N$_3$O$_2$ [M] 387.1947; found 387.1946. IR ν (cm$^{-1}$): 3332, 2973, 1694, 1669, 1522, 742.

Compound 14j, 6,7-dimethoxy-9-oxo-4,10-dihydro-9H-1-oxa-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide, was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (39 %), m.p. 243–245 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.36 (d, J = 3Hz, 1H), 7.26 (s, 1H), 7.11 (s, 1H), 6.28 (d, J = 3 Hz, 1H), 5.86 (bs, 1H), 4.28 (d, J = 18 Hz, 1H), 4.03 (d, J = 18 Hz, 1H), 3.97 (s, 3H), 3.93 (s, 3H), 2.36 (d, J = 15 Hz, 1H), 1.18 (s, 9H).

13C NMR (75 MHz, CDCl$_3$) δ: 168.8, 167.4, 153.3, 150.2, 144.3, 142.5, 140.4, 121.2, 114.2, 110.1, 106.0, 103.4, 68.2, 56.4, 56.1, 51.4, 37.6, 29.4, 28.3. HRMS (FAB+, M+) calculated for C$_{21}$H$_{24}$N$_2$O$_5$ [M], 385.1763; found 385.1768. IR ν (cm$^{-1}$): 3314, 2924, 1692, 1668, 1500.

Compound 17a, 1-(2,6-dimethyl-phenyl)-4-(2-iodobenzoyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 96:14 hexane/EtOAc). The product was obtained as a yellow solid (79 %), m.p. 147–150 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.85 (d, J = 8 Hz, 1H), 7.40 (t, J = 5.1, 6.9 Hz, 1H), 7.25–7.09 (m, 5H), 6.17 (s, 1H), 4.87 (s, 2H), 4.41 (s, 1H), 3.87 (s, 1H), 2.16 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ: 168.5, 157.7, 140.9, 139.6, 137.8, 135.4, 135.3, 130.9, 128.8, 128.7 (2C), 128.5, 128.4, 118.1, 94.7, 44.1, 17.7. HRMS (FAB+, M+) calculated for C$_{21}$H$_{20}$IN$_2$O$_2$ [M+1], 459.0581; found 459.0570. IR ν (cm$^{-1}$): 1679, 1654, 1628, 1404, 1350, 1299, 1163, 988, 774.
Compound 17b, 4-(2-bromo-4-methyl-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 8:2 hexane/EtOAc). The product was obtained as light yellow oil (39%). 1H NMR (300 MHz, CDCl$_3$) δ: 7.39 (s, 1H), 7.24–7.14 (m, 5H), 6.12 (s, 1H), 4.86 (s, 2H), 4.38 (s, 1H), 3.86 (s, 1H), 2.36 (s, 3H), 2.15 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ: 166.9, 159.5, 141.9, 141.7, 137.9, 136.2, 135.3, 135.1, 133.6, 133.5, 128.9, 128.8, 128.7, 128.6, 128.4, 119.2, 112.8, 106.2, 29.7, 21.1, 17.8, 16.4. HRMS (FAB+, M+) calculated for C$_{22}$H$_{22}$N$_2$O$_2$Br $[\text{M+1}]$, 425.0874; found 425.0865. IR v (cm$^{-1}$): 1662, 1640, 1357, 1309, 1165.

Compound 17c, 4-(2-bromo-5-methoxy-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a light yellow solid (59%), m.p. 106–110 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.42 (d, J = 8.1 Hz, 1H), 7.24–7.14 (m, 3H), 6.87–6.82 (m, 2H), 6.13 (s, 1H), 4.94 (s, 1H), 4.67 (s, 1H), 4.42 (s, 1H), 3.87 (s, 1H), 3.78 (s, 3H), 2.15 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ: 166.6, 159.0, 157.6, 137.7, 137.2, 135.7, 135.2, 133.9, 128.8, 128.7, 128.5, 127.0, 117.4, 117.2, 114.2, 94.7, 55.5, 44.0, 17.5. HRMS (FAB+, M+) calculated for C$_{22}$H$_{22}$N$_2$O$_3$Br $[\text{M+1}]$, 441.0816; found 441.0814. IR v (cm$^{-1}$): 1688, 1624, 1569, 1471, 1415, 1308, 782.

Compound 17d, 4-(2-bromo-5-fluoro-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a white solid (54%), m.p. 133–136°C. 1H NMR (200 MHz, CDCl$_3$) δ: 7.51 (s, 1H), 7.27–7.03 (m, 5H), 6.16 (s, 1H), 4.91 (s, 2H), 4.67 (s, 1H), 4.43 (s, 1H), 3.90 (s, 1H), 2.15 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ: 165.5, 163.4, 160.1, 157.5, 137.6, 135.2, 134.8, 134.7, 128.8, 128.7, 128.5, 118.6, 118.4, 117.6, 99.9, 95.1, 44.1, 17.6. HRMS (FAB+, M+) calculated for C$_{21}$H$_{19}$N$_2$O$_2$BrF $[\text{M+1}]$, 429.0609; found 429.0614. IR v (cm$^{-1}$): 1681, 1644, 1617, 1464, 1425, 1307, 1211, 778.
Compound 17e, 1-(2-chloro-6-methyl-phenyl)-4-(2-iodobenzoyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a light yellow solid (66 %), m.p. 157–160 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 7.85 (d, J = 7.2 Hz, 1H), 7.38 (dd, J = 1.8, 7.2 Hz, 2H), 7.30–7.25 (m, 3H), 7.11 (t, J = 7.5 Hz, 1H), 6.15 (s, 1H), 4.91 (s, 2H), 4.47 (s, 1H), 3.88 (s, 1H), 2.23 (s, 3H). HRMS (FAB+, M+) calculated for C$_{20}$H$_{17}$N$_2$O$_2$ICl $[M+1]$, 479.0026; found 479.0023. IR ν (cm$^{-1}$): 1684, 1655, 1631, 1405, 1298, 1164, 988, 772, 737.

Compound 17f, 4-(2-bromo-4-methyl-benzoyl)-1-(2-chloro-6-methyl-phenyl)-3,6-dimethylene-piperazin-2-one, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a light yellow oil (69 %). 1H NMR (300 MHz, CDCl$_3$) δ: 7.39–7.36 (m, 2H), 7.24–7.15 (m, 4H), 6.13 (s, 1H), 4.97–4.61 (m, 3H), 4.43 (s, 1H), 3.86 (s, 1H), 2.36 (s, 3H), 2.22 (s, 3H). HRMS (FAB+, M+) calculated for C$_{21}$H$_{18}$N$_2$O$_2$ClBr $[M]$, 444.0239; found 444.0240. IR ν (cm$^{-1}$): 1636, 1454, 1353, 1301, 1164, 772.

Compound 17g, 1-(2,6-dimethyl-phenyl)-3,6-dimethylene-4-(4-nitro-benzoyl)-piperazin-2-one, was purified by flash column chromatography (eluent 75:25 hexane/EtOAc). The product was obtained as a yellow solid (64 %), m.p. 142–144 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 8.41 (t, J = 2.4 Hz, 1H), 8.35–8.30 (m, 1H), 7.84–7.80 (m, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.27–7.17 (m, 3H), 6.22 (s, 1H), 4.93 (s, 1H), 4.75 (s, 2H), 4.36 (d, J = 1.5 Hz, 1H), 3.90 (d, J = 1.5 Hz, 1H), 2.21 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ: 166.7, 157.5, 148.1, 137.8, 136.9, 135.6, 135.4, 134.8, 134.1, 129.7, 128.9 (2C), 125.6, 123.7, 118.7, 94.5, 45.7, 17.4. HRMS (FAB+, M+) calculated for C$_{21}$H$_{20}$N$_3$O$_4$ $[M+1]$, 378.1454; found 378.1454. IR ν (cm$^{-1}$): 1662, 1622, 1526, 1347, 1305, 854, 771, 702.
Compound 18a, 2-(2,6-dimethyl-phenyl)-3-methylene-3,4-dihydro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione, was purified by flash column chromatography (eluent 95:5 hexane/EtOAc). The product was obtained as a yellow solid (87%), m.p. 165–168 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 8.48 (d, J = 9 Hz, 1H), 7.73–7.59 (m, 3H), 7.25–7.16 (m, 4H), 5.06 (s, 2H), 4.63 (s, 1H), 4.08 (s, 1H), 2.16 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ: 160.6, 156.8, 136.6, 135.4, 135.1, 132.9, 130.0, 129.2, 128.9, 128.2, 128.0, 127.0, 111.3, 97.7, 43.1, 17.7. HRMS (FAB+, M+) calculated for C$_{21}$H$_{19}$N$_2$O$_2$ [M+1], 331.1452; found 331.1447. IR ν (cm$^{-1}$): 1647, 1629, 1455, 1431, 1373, 1309, 864, 758.

Compound 18b-exo, 2-(2,6-dimethyl-phenyl)-9-methyl-3-methylene-3,4-dihydro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione, was purified by flash column chromatography (eluent 9:1 hexane/EtOAc). The product was obtained as a yellow solid (78%), m.p. 240–243 °C. 1H NMR (300 MHz, CDCl$_3$) δ: 8.37 (d, J = 8.1 Hz, 1H), 7.61 (s, 1H), 7.50 (s, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.28–7.18 (m, 3H), 5.05 (s, 2H), 4.62 (d, J = 1.0 Hz, 1H), 4.08 (d, J = 1.0 Hz, 1H), 2.52 (s, 3H), 2.17 (s, 6H). 13C NMR (75 MHz, CDCl$_3$) δ: 160.6, 156.9, 143.7, 136.7, 135.6, 135.4, 135.2, 130.8, 130.0, 128.9, 128.8, 128.0, 127.9, 124.8, 113.3, 97.7, 43.0, 21.8, 17.7. HRMS (FAB+, M+) calculated for C$_{22}$H$_{21}$N$_2$O$_2$ [M], 345.1601; found 345.1603. IR ν (cm$^{-1}$): 1649, 1629, 1467, 1324, 1301, 827, 765.

Compound 18b-endo, 2-(2,6-dimethyl-phenyl)-3,9-dimethyl-2H-pyrazino[1,2-b]isoquinoline-1,6-dione, was purified by flash column chromatography (eluent 9:1 hexane/EtOAc). The product was obtained as a yellow solid (5%), m.p. 219–222 °C. 1H NMR (200 MHz, CDCl$_3$) δ: 8.46 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 3.6 Hz, 2H), 7.56 (s, 1H), 7.47 (d, J = 12.3 Hz, 1H), 7.29–7.17 (m, 3H), 2.54 (s, 3H), 2.16 (s, 6H), 1.77 (s, 3H). 13C NMR (50 MHz, CDCl$_3$) δ: 158.5, 157.4, 143.6, 135.8, 135.1, 130.4, 129.2, 129.0, 128.7, 128.2, 127.6, 123.4, 123.0, 108.2, 103.4, 21.9, 17.8, 17.2. HRMS (FAB+, M+) calculated for C$_{22}$H$_{20}$N$_2$O$_2$ [M], 344.1531; found 344.1525. IR ν (cm$^{-1}$): 1641, 1472, 1395, 1346, 1326, 905, 769,726.
Compound 18c, 2-(2,6-dimethyl-phenyl)-8-methoxy-3-methylene-3,4-dihydro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione, was purified by flash column chromatography (elucent 85:15 hexane/EtOAc). The product was obtained as a yellow solid (69%), m.p. 215–218 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ: 7.87 (d, \(J = 2.7\) Hz, 1H), 7.66–7.63 (m, 2H), 7.33(dd, \(J = 2.7, 8.7\) Hz, 1H), 7.26–7.17 (m, 3H), 5.08 (s, 2H), 4.63 (\(J = 1.5\) Hz, 1H), 4.08 (\(J = 1.5\) Hz, 1H), 3.98 (s, 3H), 2.17 (s, 6H).

\(^1^3\)C NMR (75 MHz, CDCl\(_3\)) δ: 160.7, 160.2, 156.9, 136.7, 135.6, 135.4, 129.0, 128.6, 127.8, 123.4, 111.5, 108.1, 99.9, 97.5, 55.8, 43.3, 17.7. HRMS (FAB+, M+) calculated for C\(_{22}\)H\(_{20}\)N\(_2\)O\(_3\) [M] \(\text{\[M\]} \approx 360.1\) 469; found 360.1 474.

IR ν (cm\(^{-1}\)): 1673, 1627, 1500, 1429, 1305, 1019.

Compound 18d, 2-(2,6-dimethyl-phenyl)-8-fluoro-3-methylene-3-methyl-2H-pyrazino[1,2-b]isoquinoline-1,6-dione, was purified by flash column chromatography (elucent 90:10 hexane/EtOAc). The product was obtained as a yellow solid (85%), m.p. 230–233 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ: 8.21 (dd, \(J = 3.3, 9.3\) Hz, 1H), 7.83–7.78 (m, 2H), 7.72 (d, \(J = 1.8\) Hz, 1H), 7.50 (ddd, \(J = 3.0, 8.4, 11.4\) Hz, 1H), 7.31–7.19 (m, 3H), 2.15 (s, 6H), 1.79 (d, \(J = 1.8\) Hz, 3H). \(^1^3\)C NMR (75 MHz, CDCl\(_3\)) δ: 164.1, 160.8, 157.2, 135.8, 135.0, 131.6, 130.7, 130.6, 129.3, 128.8, 124.3, 122.2, 121.9, 113.4, 113.1, 107.9, 107.9, 103.2, 17.7, 17.3. HRMS (FAB+, M+) calculated for C\(_{21}\)H\(_{17}\)N\(_2\)O\(_2\)F [M] \(\text{\[M\]} \approx 348.1\) 274; found 348.1 274. IR ν (cm\(^{-1}\)): 1687, 1645, 1494, 1332, 763.

Compound 18e, 2-(2chloro-6-methyl-phenyl)-3-methyl-2H-pyrazino[1,2-b]isoquinoline-1,6-dione, was purified by flash column chromatography (elucent 80:20 hexane/EtOAc). The product was obtained as a yellow solid (84%), m.p. 174–176 °C. \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ: 8.57 (d, \(J = 8.1\) Hz, 1H), 7.83–7.74 (m, 4H), 7.68–7.62 (m, 1H), 7.41–7.29 (m, 3H), 2.23 (s, 3H), 1.84 (s, 3H). \(^1^3\)C NMR (75 MHz, CDCl\(_3\)) δ: 160.5, 156.8, 138.5, 136.4, 135.0, 134.1, 132.9, 132.7, 130.2, 129.9, 129.8, 129.3, 128.2, 128.1, 128.0,
111.6, 98.1, 43.2, 18.1. HRMS (FAB+, M+) calculated for C_{20}H_{15}N_{2}O_{2}Cl [M+1], 350.0822; found 350.0822. IR v (cm⁻¹): 1643, 1596, 1462, 1409, 1332, 1147, 864, 762, 689.

Compound 18f-exo, 2-(2-chloro-6-methyl-phenyl)-9-methyl-3-methylene-3,4-dihydro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione was purified by flash column chromatography (elucent 80:20 hexane/EtOAc). The product was obtained as a yellow solid (52 %), m.p. 244–246 °C. \(^{1}H \) NMR (300 MHz, CDCl₃) δ: 8.37 (d, \(J = 8.4 \) Hz, 1H), 7.62 (s, 1H), 7.50–7.40 (m, 3H), 7.34–7.28 (m, 2H), 5.15 (d, \(J = 15.3 \) Hz, 1H), 5.01 (d, \(J = 15.3 \) Hz, 1H), 4.68 (d, \(J = 1.8 \) Hz, 1H), 4.11 (d, \(J = 1.8 \) Hz, 1H), 2.52 (s, 3H), 2.24 (s, 3H). \(^{13}C \) NMR (75 MHz, CDCl₃) δ: 160.5, 156.9, 143.7, 138.5, 136.5, 135.1, 134.1, 132.8, 130.9, 129.8(2C), 129.5, 128.2, 128.0, 127.9, 124.9, 111.6, 98.0, 43.1, 21.8, 18.1. HRMS (FAB+, M+) calculated for C_{21}H_{18}N_{2}O_{2}Cl [M+1], 365.1048; found 365.1057. IR v (cm⁻¹): 1674, 1634, 1462, 1323, 1299, 910, 768.

Compound 18f-endo, 2-(2-chloro-6-methyl-phenyl)-3,9-dimethyl-2H-pyrazino[1,2-b]isoquinoline-1,6-dione was purified by flash column chromatography (elucent 80:20 hexane/EtOAc). The product was obtained as a yellow solid (46 %), m.p. 239–243 °C. \(^{1}H \) NMR (300 MHz, CDCl₃) δ: 8.45 (d, \(J = 8.4 \) Hz, 1H), 7.76 (s, 1H), 7.73 (d, \(J = 1.2 \) Hz, 1H), 7.56 (s, 1H), 7.49–7.40 (m, 2H), 7.36–7.29 (m, 2H), 2.54 (s, 3H), 2.22 (s, 3H), 1.83 (d, \(J = 1.2 \) Hz, 3H). \(^{13}C \) NMR (75 MHz, CDCl₃) δ: 158.4 157.3, 143.6, 138.7, 135.0, 133.7, 133.3, 130.5, 130.2, 129.4, 128.7, 128.3, 127.9, 127.6, 123.2, 123.1, 108.6, 103.4, 21.9, 18.1, 17.0. HRMS (FAB+, M+) calculated for C_{22}H_{17}N_{2}O_{2}Cl [M], 364.0982; found 364.0979. IR v (cm⁻¹): 1648, 1619, 1457, 1395, 1347, 1322, 905, 770.

Compound 18g, 2-(2,6-dimethyl-phenyl)-3-methyl-9-nitro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione was purified by flash column chromatography (elucent 90:10 hexane/EtOAc). The product was obtained as a white solid (82 %), m.p. 243–245 °C. \(^{1}H \) NMR (300 MHz, CDCl₃) δ: 8.21 (dd, \(J = 2.7, 9.0 \) Hz, 1H), 7.83 (m, 2H), 7.72 (s, 1H), 7.50 (ddd, \(J = 2.7, 8.1, 8.7 \) Hz, 1H), 7.29 (t, \(J = 6.3 \) Hz, 1H), 7.22–7.19 (m, 2H), 2.15
Compound 22a, 2-tert-butyl-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (64 %), m.p. 104–106 °C. ¹H-NMR (400 MHz, CDCl₃) δ: 1.51 (s, 9H, CH₃), 4.13 (s, 2H, COCH₂N), 5.01 (s, 2H, ArCH₂), 6.98 (s, 1H, C=CH), 7.16–7.13 (m, 1H, ArH), 7.21–7.19 (m, 1H, ArH), 7.27–7.24 (m, 2H, ArH).

¹³C-NMR (100 MHz, CDCl₃) δ: 27.7, 44.0, 47.0, 58.2, 115.1, 125.7, 127.1, 128.2, 128.9, 129.0, 129.1, 129.8, 159.2, 162.7.

IR ν (cm⁻¹): 3367, 3063, 2978, 2928, 1677, 1622, 1421, 1199.

MS (DART+) m/z: 271 (M+H); HRMS m/z calcd for C₁₆H₁₉N₂O₂ [M+H], 271.14465; found 271.14407.

Compound 22b, 2-cyclohexyl-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione was purified by flash column chromatography (eluent 70:30 hexane/EtOAc). The product was obtained as a white solid (71 %), m.p. 58–60 °C. ¹H-NMR (300 MHz, CDCl₃) δ: 1.46–1.36 (m, 7H, CH₂), 1.85–1.69 (m, 3H, CH₂), 4.04 (s, 2H, COCH₂N), 4.51 (br s, 1H, NCH), 5.03 (s, 2H, ArCH₂), 7.00 (s, 1H, C=CH), 7.15–7.13 (m, 1H, ArH), 7.28–7.23 (m, 3H, ArH).

¹³C-NMR (75.5 MHz, CDCl₃) δ: 25.5, 25.6, 29.3, 44.2, 45.2, 52.9, 115.7, 125.9, 127.2, 128.1, 128.3, 129.3, 129.4, 129.7, 157.8, 162.2.

IR ν (cm⁻¹): 2930, 2855, 1678, 1617, 1309, 1239, 1197, 1044, 758, 728. MS (DART+) m/z: 297 (M+H); HRMS m/z calcd for C₁₈H₂₁N₂O₂ [M+H], 297.16030; found 297.16023.

Compound 22c, 2-(2,6-dimethylphenyl)-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione was purified by flash column chromatography (eluent 85:15 hexane/EtOAc). The product was obtained as a colorless oil (72 %). ¹H-NMR (400 MHZ, CDCl₃) δ: 2.24 (s, 6H, CH₃), 4.25 (s, 2H, COCH₂N), 5.15 (s, 2H, ArCH₂), 7.11 (s 1H, C=CH), 7.21–7.16 (m, 4H, ArH), 7.32–7.26 (m, 3H, ArH).

¹³C-NMR (100 MHz, CDCl₃) δ: 17.7, 44.4, 51.3, 116.4, 125.9, 127.3, 127.5, 128.3, 128.8, 129.0, 129.3, 129.4,
129.5, 135.2, 137.1, 157.3, 161.6. **IR** ∙ (cm⁻¹): 3332, 3009, 2923, 1682, 1625, 1478, 1401. **MS (DART+)** m/z: 319 (M+H); **HRMS** m/z calcd for C₂₀H₁₉N₂O₂ [M+H], 319.14465; found 319.14454.

Compound 22d, 2-tert-butyl-8-methoxy-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione was purified by flash column chromatography (elucent 70:30 hexane/EtOAc). The product was obtained as a yellow solid (63 %). **¹H-NMR** (300 MHz, CDCl₃) δ: 1.51 (s, 9H, CH₃), 3.81 (s, 3H, CH₃O), 4.12 (s, 2H, COCH₂N), 4.99 (s, 2H, ArCH₂), 6.69 (d, J = 2.4 Hz, 1H, ArH), 6.78 (dd, J = 8.4 and 2.4 Hz, 1H, ArH), 6.95 (s, 1H, C=CH), 7.14 (d, J = 8.4 Hz, 1H, ArH). **¹³C-NMR** (75.5 MHz, CDCl₃) δ: 27.9, 44.2, 47.1, 55.5, 58.2, 112.0, 113.3, 115.3, 122.7, 127.0, 128.8, 131.1, 159.7, 160.6, 162.8. **IR** ∙ (cm⁻¹): 3368, 2970, 2933, 1675, 1618, 1418, 1198. **MS (DART+)** m/z: 300 (M+H); **HRMS** m/z calcd for C₁₇H₂₀N₂O₃ [M+H], 300.1474; found 300.1476.

Compound 22e, 2-tert-butyl-8-fluoro-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione was purified by flash column chromatography (elucent 70:30 hexane/EtOAc). The product was obtained as an off-white solid (63 %); m.p. 141–143 °C. **¹H-NMR** (300 MHz, CDCl₃) δ: 1.51 (s, 9H, CH₃), 4.14 (s, 2H, COCH₂N), 5.00 (s, 2H, ArCH₂), 6.86 (d, J = 8.7 Hz, 1H, ArH), 6.97–6.97 (comp, 2H, ArH and C=CH), 7.17 (dd, J = 8.25 and 5.4 Hz, 1H, ArH). **¹³C-NMR** (75.5 MHz, CDCl₃) δ: 27.8, 43.92 (d, J = 2.8 Hz), 47.1, 58.3, 113.4 (d, J = 30.7 Hz), 114.0 (d, J = 2.1 Hz), 115.2 (d, J = 29 Hz), 126.1 (d, J = 4.3 Hz), 128.5 (d, J = 3.9 Hz), 128.9 (d, J = 11.1 Hz), 131.5 (d, J = 10.7 Hz), 159.1, 162.7, 163.0 (d, J = 331.3). **IR** ∙ (cm⁻¹): 3308, 3064, 2971, 2921, 1675, 1618, 1404, 1198, 728. **MS (DART+)** m/z: (M+H) 289; **HRMS** m/z calcd for C₁₆H₁₈FN₂O₂ [M+H], 289.13523; found 289.13453.

Compound 22f, 9-(tert-butyl)-8,9-dihydro-5H-[1,3]dioxolo[4,5-g]pyrazino[1,2-b]isoquinoline-7,10-dione was purified by flash column chromatography (elucent 80:20 hexane/EtOAc). The product was obtained as a yellow solid (63 %); m.p. 103–105 °C. **¹H-NMR** (300 MHz, CDCl₃) δ: 1.51 (s, 9H, CH₃), 4.12 (s, 2H,
COCH$_3$N), 4.92 (s, 2H, ArCH$_2$), 5.97 (s, 2H, OOCH$_2$), 6.62 (s, 1H, ArH), 6.67 (s, 1H, ArH), 6.85 (s, 1H, C=CH). 13C-NMR (75.5 MHz, CDCl$_3$) δ: 27.8, 44.1, 47.1, 58.2, 101.5, 106.7, 107.3, 115.4, 123.6, 123.9, 127.5, 147.5, 148.5, 159.5, 162.8. IR ν (cm$^{-1}$) 2963, 2912, 1678, 1630, 1599, 1399, 1242, 1194, 1030, 928. MS (DART+) m/z: (M+H) 315; HRMS m/z calcd for C$_{17}$H$_{19}$N$_2$O$_4$ [M+H], 315.13448; found 315.13529.

Compound 22g, 2-(2,6-dimethylphenyl)-8-methoxy-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione was purified by flash column chromatography (eluent 80:20 hexane/EtOAc). The product was obtained as a yellow oil (50%). 1H-NMR (300 MHz, CDCl$_3$) δ: 2.42 (s, 6H, CH$_3$Ar), 4.01 (s, 3H, CH$_3$O), 4.42 (s, 2H, COCH$_2$N), 5.29 (s, 2H, ArCH$_2$), 6.93 (s, 1H, C=CH), 6.99 (dd, $J = 8.4$ and 2.4 Hz, 1H, ArH), 7.41–7.31 (m, 5H, ArH). 13C-NMR (75.5 MHz, CDCl$_3$) δ: 17.8, 44.7, 51.4, 55.6, 112.1, 113.5, 116.6, 122.2, 125.4, 128.8, 129.0, 129.1, 131.4, 135.3, 137.3, 157.7, 161.0, 161.6. IR ν (cm$^{-1}$): 2921, 2852, 1725, 1673, 1620, 1463, 1398, 1265, 1027, 910, 728. MS (DART+) m/z: 349 (M+H); HRMS m/z calcd for C$_{21}$H$_{21}$N$_2$O$_3$ [M+H], 349.15522; found 349.15438.
3. NMR Spectra

Compound 9a, N-allyl-N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-benzamide
Compound 9b, N-allyl-N-(1-cyclohexylcarbamoyl-vinyl)-2-iodo-benzamide

Compound 9c, N-allyl-N-[1-(2,6-dimethyl-phenylcarbamoyl)-vinyl]-2-iodo-benzamide
Compound 9d, N-allyl-2-bromo-N-(1-tert-butylcarbamoyl-vinyl)-5-methoxy-benzamide
Compound 9e, N-allyl-2-bromo-N-(1-tert-butylcarbamoyl-vinyl)-4,5-dimethoxy-benzamide
Compound 9f, N-allyl-2-bromo-N-(1-cyclohexycarbamoyl-vinyl)-4,5-dimethoxy-benzamide
Compound 9g, 6-bromo-benzo[1,3]dioxole-5-carboxylic acid allyl-(1-tert-butylocarbamoyl-vinyl)-amide

Single Pulse with Broadband Decoupling
Compound 10a, 9b-[1-(tert-butylamino)vinyl]-2-methyl-3,9b-dihydro-5H-pyrrolo[2,1-a]isoindol-5-one
Compound 10b, 2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxilic acid cyclohexylamide
Compound 10c, 2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxilic acid (2,6-dimethyl-phenyl)-amide

IR
Instituto de Química UNAM RG
Dr. L. Miranda - Carmen
Clave: CIGG-76-99
No registro: 2590
Experimento: 14C
Disuelvente: CDCl3
Bruker-Avance (F) 300 MHz
18-10-2011

1H NMR

13C NMR
Compound 10d, 7-methoxy-2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxilic acid tert-butyl-amide
Compound 10e, 7,8-dimethoxy-2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxilic acid tert-butylamide
Compound 10f, 7,8-dimethoxy-2-methylene-5-oxo-2,3-dihydro-1H,5H-pyrrolo[2,1-a]isoindole-9b-carboxylic acid cyclohexylamide

![Chemical Structure](image1)

![NMR Spectrum](image2)

1. Single Pulse with Broadband Decoupling
Compound 10g, 2-methylene-9-oxo-2,3-dihydro-1H,9H-5,7-dioxo-9a-aza-cyclopenta[ajindacene-3a-carboxilic acid tert-butylamide
Compound 11a’, N-but-3-enyl-N’-(1-tert-buty carbamoyl-vinyl)-2-i do-benzamide
Compound 11b', 2-bromo-N-but-3-enyl-N-(1-tert-butylocarbamoyl-vinyl)-5-methoxy-benzamide
Compound 11c', \(N \)-but-3-enyl-\(N \)-[1-(2,6-dimethyl-phenylcarbamoyl)-vinyl]-2-iodo-benzamide
Compound 11d', 6-bromo-benzo[1,3]dioxole-5-carboxylic acid but-3-enyl-(1-tert-butylcarbamoyl-vinyl)amide
Compound 11a, 2-methylene-6-oxo-1,2,3,4-tetrahydro-6H-pyrido[2,1-a]isoindole-10b-carboxylic acid tert-butylamide
Compound 11b, 8-methoxy-2-methylene-6-oxo-1,2,3,4-tetrahydro-6H-pyrido[2,1-a]isoindole-10b-carboxylic acid tert-butylamide

![Molecular structure of Compound 11b](image)

![NMR spectrum of Compound 11b](image)
Compound 11b isomer, 8-methoxy-2-methyl-6-oxo-1,2-dihydro-6H-pyrido[2,1-a]isoindole-10b-carboxylic acid tert-butylamide
Compound 11c, 2-methylene-6-oxo-1,2,3,4-tetrahydro-6H-pyrido[2,1-a]isoindole-10b-carboxylic acid (2,6-dimethyl-phenyl-amide)
Compound 11d, 6-methylene-9-oxo-5,6,7,8-tetrahydro-9H-1,3-dioxa-8a-aza-cyclopenta[b]fluorene-4b-carboxylic acid tert-butylamide
Compound 12b, N-benzyl-N-(1-cyclohexylcarbamoyl-vinyl)-2-iodo-benzamide
Compound 12c, \(N\)-benzyl-\(N\prime\)-[1-(2,6-dimethyl-phenylcarbamoyl)-vinyl]-2-iodo-benzamide
Compound 12d, *N*-\((1\text{-tert-butylcarbamoyl-vinyl})\)-2-iodo-\(N\text{-}(4\text{-methoxy-benzyl})\)-benzamide
Compound 12e, \(N-(1\text{-}\text{tert}-\text{butylcarbamoyl}-\text{vinyl})-2\text{-}\text{iodo-}N-(1\text{-}\text{methyl}-1\text{H-pyrrol-2-ylmethyl})\text{-benzamide} \)
Compound 12f, \(N\)-(1-tert-butylcarbamoyl-vinyl)-\(N\)-furan-2-ylmethyl-2-iodo-benzamide

\[
\begin{array}{c}
\text{\includegraphics[width=0.2\textwidth]{compound_12f.png}}
\end{array}
\]
Compound 12g, \(N\)-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-thiophen-2-ylmethyl-benzamide
Compound 12h, N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-(1-methyl-1H-indol-3-ylmethyl)-benzamide

![N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-(1-methyl-1H-indol-3-ylmethyl)-benzamide structure](image)

![N-(1-tert-butylcarbamoyl-vinyl)-2-iodo-N-(1-methyl-1H-indol-3-ylmethyl)-benzamide NMR](image)
Compound 12i, 2-bromo-\(N\)-(1-tert-butylcarbamoyl-vinyl)-\(N\)-furan-2-ylmethyl-4,5-dimethoxy-benzamide

![Chemical Structure of Compound 12i](image)

![NMR Spectrum of Compound 12i](image)
Compound 12j, 2-bromo-N-(1-tert-butylcarbamoyl-vinyl)-4-methyl-N-thiophen-2-ylmethyl-benzamide
Compound 14a, 7-oxo-5,12-dihydro-7H-isoindolo[2,1-b]isoquinoline-11b-carboxylic acid tert-butylamide
Compound 14b, 7-oxo-5,12-dihydro-7H-isindolo[2,1-b]isoquinoline-11b-carboxylic acid cyclohexylamide
Compound 14d, 2-methoxy-7oxo-5,12-dihydro-[7H]isoindolo[2,1-b]isoquinoline-11b-carboxylic acid tert-butylamide
Compound 14e, 1-methyl-9-oxo-4,10-dihydro-1H,9H-1,9a-diaza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide
Compound 14f, 9-oxo-4,10-dihydro-9H-1-oxa-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide
Compound 14g, 9-oxo-4,10-dihydro-9H-1-thia-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide
Compound 14h, 6-methyl-9-oxo-4,10-dihydro-9H-1-thia-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide
Compound 14i, 12-methyl-6-oxo-11,12-dihydro-5H-6H-5a,12-diaza-indeno[1,2-b]fluorene-10b-carboxylic acid tert-butylamide

[Chemical structure and spectrum images]
Compound 14j, 6,7-dimethoxy-9-oxo-4,10-dihydro-9H-1-oxa-9a-aza-cyclopenta[b]fluorene-4a-carboxylic acid tert-butylamide
Compound 17a, 1-(2,6-dimethyl-phenyl)-4-(2-iodo-benzoyl)-3,6-dimethylene-piperazin-2-one
Compound 17b, 4-(2-bromo-4-methyl-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one
Compound 17c, 4-(2-bromo-5-methoxy-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one
Compound 17d, 4-(2-bromo-5-fluoro-benzoyl)-1-(2,6-dimethyl-phenyl)-3,6-dimethylene-piperazin-2-one
Compound 17e, 1-(2-chloro-6-methyl-phenyl)-4-(2-iodo-benzoyl)-3,6-dimethylene-piperazin-2-one

![Chemical structure](image1)

Compound 17f, 4-(2-bromo-4-methyl-benzoyl)-1-(2-chloro-6-methyl-phenyl)-3,6-dimethylene-piperazin-2-one

![Chemical structure](image2)

S71
Compound 17g, 1-(2,6-dimethyl-phenyl)-3,6-dimethylene-4-(4-nitro-benzoyl)-piperazin-2-one
Compound 18a, 2-(2,6-dimethyl-phenyl)-3-methylene-3,4-dihydro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione

[Chemical structure image]

1H
UNAM Instituto de Quimica ICH
Dr. L. D. Miranda/ Carmen Garcia
Clave:CQG-BS-23
Disolvente:CDCl3
Experimento 1H
Varian Unity 300 MHz (D)
No. de Registro 28
23-01-12

13C
UNAM Instituto de Quimica ICH
Dr. L. D. Miranda/ Carmen Garcia
Clave:CQG-BS-23
Disolvente:CDCl3
Experimento 13C
Varian Unity 75 MHz (D)
No. de Registro 28
23-01-12

[Chemical structure image]
Compound 18b-exo, 2-(2,6-dimethyl-phenyl)-9-methyl-3-methylene-3,4-dihydro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione

![NMR Spectrum](image)

![Carbon Spectrum](image)
Compound 18b-endo, 2-(2,6-dimethyl-phenyl)-3,9-dimethyl-2H-pyrazino[1,2-b]isoquinoline-1,6-dione
Compound 18c, 2-(2,6-dimethyl-phenyl)-8-methoxy-3-methylene-3,4-dihydro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione
Compound 18e, 2-(2-chloro-6-methyl-phenyl)-3-methyl-2H-pyrazino[1,2-b]isoquinoline-1,6-dione

INSTITUTO DE QUÍMICA, UNAM
Dr. Luis D. Miranda / Carmen García
Cave: 09581-66-F3
Diluent: CDC3
Harmonia: 1
Varian Unity 300 MHz (D)
18-05-12
No. Reg. 1165
Compound 18f-exo, 2-(2chlo-ro-6-methyl-phenyl)-9-methyl-3-methylene-3,4-dihydro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione
Compound 18f-endo, 2-(2chloro-6-methyl-phenyl)-3,9-dimethyl-2H-pyrazino[1,2-b]isoquinoline-1,6-dione
Compound 18g, 2-(2,6-dimethyl-phenyl)-3-methyl-9-nitro-2H-pyrazino[1,2-b]isoquinoline-1,6-dione
Compound 22a, 2-tert-butyl-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione
Compound 22b, 2-cyclohexyl-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione
Compound 22c, 2-(2,6-dimethylphenyl)-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione
Compound 22d, 2-tert-butyl-8-methoxy-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione
Compound 22e, 2-tert-butyl-8-fluoro-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione
Compound 22f. 9-(tert-butyl)-8,9-dihydro-5H-[1,3]dioxolo[4,5-g]pyrazino[1,2-b]isoquinoline-7,10-dione
Compound 22g, 2-(2,6-dimethylphenyl)-8-methoxy-2H-pyrazino[1,2-b]isoquinoline-1,4(3H,6H)-dione
4. X-Ray crystallographic

The X-ray diffraction analysis of 10a, 11a and 14a confirmed the N-heterocyclic structure, full crystallographic data were submitted as CIF files with the Cambridge Crystallographic Data Center, CCDC Nos. 912003 for 10a, 912004 for 11a, and 912005 for 14a. These data can be obtained free of change from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

4.1. Compound 10a (CCDC 912003)

Figure 1. ORTEP diagram of the molecular structure of compound 10a. Hydrogen atoms were omitted for clarity.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{17}H_{20}N_{2}O_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>284.35</td>
</tr>
<tr>
<td>Temperature</td>
<td>298(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>9.074(2) Å</td>
</tr>
<tr>
<td>α</td>
<td>105.491(4)°</td>
</tr>
<tr>
<td>b</td>
<td>9.586(2) Å</td>
</tr>
<tr>
<td>β</td>
<td>97.554(4)°</td>
</tr>
<tr>
<td>c</td>
<td>10.271(2) Å</td>
</tr>
<tr>
<td>γ</td>
<td>108.975(4)°</td>
</tr>
<tr>
<td>Volume</td>
<td>790.4(3) Å^{3}</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.195 Mg/m^{3}</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.079 mm^{-1}</td>
</tr>
<tr>
<td>F(000)</td>
<td>304</td>
</tr>
<tr>
<td>Crystal size / colour / shape</td>
<td>0.18 x 0.18 x 0.10 mm / Colorless / Prism</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.12 to 25.39°</td>
</tr>
<tr>
<td>Index ranges</td>
<td></td>
</tr>
<tr>
<td>-10<=h<=10, -11<=k<=11, -12<=l<=12</td>
<td></td>
</tr>
<tr>
<td>Reflections collected</td>
<td>6602</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2905 [R(int) = 0.0329]</td>
</tr>
<tr>
<td>Completeness to theta = 25.39°</td>
<td>99.7%</td>
</tr>
<tr>
<td>Measurement device</td>
<td></td>
</tr>
<tr>
<td>Bruker Smart APEX AXS CCD area detector 01-67</td>
<td></td>
</tr>
<tr>
<td>Absorption correction</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2905 / 97 / 222</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>0.828</td>
</tr>
<tr>
<td>Final R indices [l>2sigma(l)]</td>
<td>R1 = 0.0431, wR2 = 0.0977</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0941, wR2 = 0.1110</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.123 and -0.118 e.Å^{3}</td>
</tr>
</tbody>
</table>
4.2. Compound 11a (CCDC 912004)

![ORTEP diagram of the molecular structure of compound 11a](image)

Figure 2. ORTEP diagram of the molecular structure of compound 11a. Hydrogen atoms were omitted for clarity.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₁₈H₂₂N₂O₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>298.38</td>
</tr>
<tr>
<td>Temperature</td>
<td>298(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.1496(13) Å, b = 9.3085(13) Å, c = 19.945(3) Å</td>
</tr>
<tr>
<td></td>
<td>α = 90°, β = 95.325(2)°, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1691.3(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.172 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.077 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>640</td>
</tr>
<tr>
<td>Crystal size / colour / shape</td>
<td>0.36 x 0.22 x 0.15 mm / Colorless / Prism</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.05 to 25.35°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-10<=h<=11, -11<=k<=11, -23<=l<=24</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>3088 (R(int) = 0.0645)</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Completeness to theta = 25.35°</td>
<td></td>
</tr>
<tr>
<td>Measurement device</td>
<td>Bruker Smart APEX AXS CCD area detector</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3088 / 70 / 222</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.943</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0540, wR2 = 0.1274</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1136, wR2 = 0.1462</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.179 and -0.138 e.Å³</td>
</tr>
</tbody>
</table>
4.3. Compound 14a (CCDC-912005)

Figure 3. ORTEP diagram of the molecular structure of compound 14a. Hydrogen atoms were omitted for clarity.

Empirical formula
C$_{21}$H$_{22}$N$_2$O$_2$

Formula weight
334.41

Temperature
298(2) K

Wavelength
0.71073 Å

Crystal system
Triclinic

Space group
P -1

Unit cell dimensions
a = 9.2332(15) Å \hspace{1cm} \alpha = 105.017(3)°
b = 10.3088(17) Å \hspace{1cm} \beta = 100.269(3)°
c = 10.7141(18) Å \hspace{1cm} \gamma = 102.043(3)°

Volume
933.7(3) Å3

Z
2

Density (calculated)
1.189 Mg/m3

Absorption coefficient
0.077 mm$^{-1}$

F(000)
356

Crystal size / colour / shape
0.34 x 0.18 x 0.10 mm / Colorless / Prism

Theta range for data collection
2.03 to 25.38°

Index ranges
-11<=h<=11, -12<=k<=12, -12<=l<=12

Reflections collected
7775

Independent reflections
3415 [R(int) = 0.0371]

Completeness to theta = 25.38°
99.5 %

Measurement device
Bruker Smart APEX AXS CCD area detector 01-67

Absorption correction
None

Refinement method
Full-matrix least-squares on F2

Data / restraints / parameters
3415 / 1 / 232

Goodness-of-fit on F2
0.922

Final R indices [I>2sigma(I)]
R1 = 0.0462, wR2 = 0.1081

R indices (all data)
R1 = 0.0707, wR2 = 0.1180

Largest diff. peak and hole
0.144 and -0.199 e.Å3
5. References

