Supporting Information

Plasmonic rocks in Fenton reaction: catalytic sensing of organics in water via fullerene-decorated gold nanoparticles

Zheng-Nan Wei, a Zhi-Hong Mo, a,b Xiao-Li Pu a and Yi-Cong Xu a

a College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
b National Key Laboratory for New Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044, China.
*e-mail: zhihmo@cqu.edu.cn (Z.-H. Mo)
Materials and apparatus

Hydrogen tetrachloroaurate(III) trihydrate (HAuCl$_4$·3H$_2$O), 3-aminopropyltriethoxysilane (APTES) and potassium hydrogen phthalate were purchased from Sigma-Aldrich (USA). Fullerene (C$_{60}$) was purchased from Suzhou DCN Co., Ltd. (China). Polyvinyl pyrrolidone (PVP-K30) was purchased from Hefei TNJ Chemical Industry Co., Ltd. (China). Rhodamine B (RhB) was purchased from Tokyo Kasei Kogyo Co., Ltd. (Japan). Sodium citrate, carbon disulfide (CS$_2$) and other reagents were of analytical grade. Double-distilled water was used thoroughly. Phosphate buffer solutions (PB, 0.05M) with various pH values were prepared by mixing stock standard solutions of Na$_2$HPO$_4$ and NaH$_2$PO$_4$.

An UV–Vis spectrophotometer (UV-2450, Shimadzu) and a visible range micro-spectrometer (homemade) were used to carry out spectral measurement, transmission electron microscopy (TEM, TECRAI20, Philips) and field emission scanning electron microscopy (JSM-7800F, JEOL) were used for characterization of gold nanoparticles and films prepared.

Preparation of AuNPs and C$_{60}$ solution

Gold nanoparticles (AuNPs) with uniform size and monodispersion were prepared by the traditional Frens synthetic (citrate reduction) method.1 The average diameter of the particle was determined by TEM to be 10 ± 1 nm (see Fig. S1), the concentration of the particle was calculated from its absorption spectroscopy to be ca. 15 nM.2

C$_{60}$ solution (0.1 mg/mL) was prepared by the following: C$_{60}$ was first solved in CS$_2$ (1 mg/mL) and then mixed with ethanol (containing 0.1% PVP) at a volume ratio 1:10.

Fabrication of C$_{60}$@AuNPs film

A glass slide pre-treated with Pinranha solution was immersed in an ethanol solution of APTES (5%, v/v) at 60°C for 30 min. After washed by ethanol 3 times, the slide was immersed in the AuNPs solution at 30°C for 30 min. Next, the slide was washed by water 3 times, and immersed in an ethanol solution of APTES (1%, plus 1% HCl) at 60°C for 30 min, and then after washed by ethanol 3 times, immersed again in the AuNPs solution at 30°C for 30 min. The above process was repeated to obtain 10 layers of assembled AuNPs, and the slide was annealed at 500°C for 240 min to get the AuNPs film. Then, the C$_{60}$ solution (0.1 mg/mL) was spin-coated on the AuNPs film at 1000 rpm for 15 s, and the spin coating was repeated 5 times. Finally, the film was annealed at 500°C for 60 min to get the C$_{60}$@AuNPs film. The morphology of the AuNPs film and C$_{60}$@AuNPs film were determined by SEM (see Fig. S2 and S3).

Plasmonic monitoring of the Fenton reaction

As shown in Fig. S4, the C$_{60}$@AuNPs film was inserted into the measuring cell, of which a 3 mL solution of organics was filled. A 100 µL solution of 30 mM H$_2$O$_2$ was pipetted, and simultaneously, a homemade micro-spectrometer was used to measure and collect the plasmonic spectra of AuNPs at every 6 second.

References

Fig. S1 TEM image of the prepared 10 nm gold nanoparticles.

Fig. S2 SEM image of the prepared AuNPs film.

Fig. S3 SEM image of the prepared C$_{60}$/AuNPs film.
Fig. S4 Schematics of the measurement setup for plasmonic monitoring of the Fenton reaction.