Electronic Supplementary Information

A general method for N-glycosylation of nucleobases promoted by

$(p$-Tol)$_2$SO/Tf$_2$O with thioglycoside as donor

Guang-jian Liu, Xiao-tai Zhang and Guo-wen Xing*

Department of Chemistry, Beijing Normal University, Beijing 100875, China.
Email: gwxing@bnu.edu.cn

Contents

1. General information S1
2. Characterization data for glycosyl donors S1–S3
3. Preparation of acceptors S4
4. General procedure for N-glycosylations of nucleobases S5
5. NMR data for coupling products S6–S17
6. References S18
7. NMR spectra for compounds S19–S53
1. General information
All the starting materials were purchased as reagent grade and used without further purification. Reactions were monitored with analytical thin-layer chromatography (TLC) on silica gel F254 glass plates and visualized under UV light (254nm) or by staining with acidic ceric ammonium molybdate or EtOH-H2SO4 (3%). All the N-glycosylation reactions were performed in flame-dried glass vessel under an inert argon atmosphere. Purification of products was performed by flash column chromatography on silica gel (200-300 mesh). 1H NMR(400MHz) and 13C NMR(100MHz) spectra were recorded on a Bruker Advanced III spectrometer. Chemical shifts for 1H were reported in δ-values (ppm) with tetramethylsilane as an internal standard. The δ values for 13C were calibrated with deuterated solvents (CDCl₃ δ = 77.16 ppm). Mass spectra were recorded using electrospray ionization (ESI).

2. Characterization data for glycosyl donors

\textit{p}-Tolyl 2,3,4,6-tetra-\textit{O}-acetyl-1-thio-\textbeta-D-galactopyranoside (1a)

\begin{center}
\includegraphics[width=0.2\textwidth]{structure1a.png}
\end{center}

1H NMR (400 MHz, CDCl₃) δ 7.41 (d, \(J = 8.1\) Hz, 2H, ArH), 7.13 (d, \(J = 7.9\) Hz, 2H, ArH), 5.41 (d, \(J = 2.5\) Hz, 1H, H-4), 5.22 (t, \(J = 10.0\) Hz, 1H, H-2), 5.04 (dd, \(J = 9.9, 3.3\) Hz, 1H, H-3), 4.65 (d, \(J = 10.0\) Hz, 1H, H-1), 4.19 (dd, \(J = 11.3, 6.9\) Hz, 1H, H-6), 4.11 (dd, \(J = 11.3, 6.3\) Hz, 1H, H-6), 3.91 (t, \(J = 6.6\) Hz, 1H, H-5), 2.35 (s, 3H, STol CH₃), 2.12 (s, 3H, Ac), 2.09 (s, 3H, Ac), 2.08 (s, 3H, Ac), 2.01 (s, 3H, Ac), 1.98 (s, 3H, Ac).

The spectroscopic data coincide with the previous report[1]

\textit{p}-Tolyl 2,3,4,6-tetra-\textit{O}-acetyl-1-thio-\textbeta-D-glucopyranoside (1b)

\begin{center}
\includegraphics[width=0.2\textwidth]{structure1b.png}
\end{center}

1H NMR (400 MHz, CDCl₃) δ 7.39 (d, \(J = 8.1\) Hz, 2H, ArH), 7.12 (d, \(J = 7.9\) Hz, 2H, ArH), 5.21 (t, \(J = 9.4\) Hz, 1H, H-3), 5.02 (t, \(J = 9.8\) Hz, 1H, H-4), 4.93 (t, \(J = 9.7\) Hz, 1H, H-2), 4.63 (d, \(J = 10.1\) Hz, 1H, H-1), 4.20 (m, 2H, H-6), 3.70 (ddd, \(J = 10.1, 4.8, 2.7\) Hz, 1H, H-5), 2.35 (s, 3H, STol CH₃), 2.09 (s, 3H, Ac), 2.08 (s, 3H, Ac), 2.01 (s, 3H, Ac), 1.98 (s, 3H, Ac).

The spectroscopic data coincide with the previous report[2]

\textit{p}-Tolyl 2,3,5-tri-\textit{O}-acetyl-1-thio-\textbeta-D-ribofuranoside (1c)

\begin{center}
\includegraphics[width=0.2\textwidth]{structure1c.png}
\end{center}

1H NMR (400 MHz, CDCl₃) δ 7.41 (d, \(J = 8.1\) Hz, 2H, ArH), 7.14 (d, \(J = 7.9\) Hz, 2H, ArH), 5.27 – 5.17 (m, 3H), 4.27 – 4.21 (m, 2H), 4.10 – 4.04 (m, 1H), 2.34 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H).

The spectroscopic data coincide with the previous report[3]
p-Toly1, 2, 3, 4, 5, 6-tetra-O-benzoyl-1-thio-β-D-glucopyranoside (1d)

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{)} & \delta 8.04 - 8.01 (m, 2H), 8.00 - 7.97 (m, 2H), 7.93 - 7.89 (m, 2H), 7.77 - 7.73 (m, 2H), 7.64 - 7.50 (m, 3H), 7.49-7.38 (m, 9H), 7.23 (t, J = 7.8 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 5.99 (d, J = 3.2 Hz, 1H), 5.74 (t, J = 9.9 Hz, 1H), 5.59 (dd, J = 9.9, 3.3 Hz, 1H), 4.98 (d, J = 9.9 Hz, 1H), 4.65 (dd, J = 11.3, 6.8 Hz, 1H), 4.43 (dd, J = 11.3, 5.8 Hz, 1H), 4.37 (t, J = 6.4 Hz, 1H), 2.37 (s, 3H).
\end{align*}
\]

p-Toly1, 2, 3, 4, 6-tetra-O-benzoyl-1-thio-β-D-galactopyranoside (1e)

\[
\begin{align*}
\text{H NMR (500 MHz, CDCl}_3\text{)} & \delta 8.04 (d, J = 7.3 Hz, 2H, ArH), 7.98 (d, J = 7.4 Hz, 2H, ArH), 7.89 (d, J = 7.4 Hz, 2H, ArH), 7.79 (d, J = 7.4 Hz, 2H, ArH), 7.60 (t, J = 7.4 Hz, 1H, ArH), 7.57 - 7.31 (m, 11H, ArH), 7.30 - 7.23 (m, 2H, ArH), 6.94 (d, J = 7.9 Hz, 2H, ArH), 5.89 (t, J = 9.5 Hz, 1H, H-3), 5.59 (t, J = 9.8 Hz, 1H, H-4), 5.45 (t, J = 9.7 Hz, 1H, H-2), 4.98 (d, J = 10.0 Hz, 1H, H-1), 4.68 (d, J = 12.1, 2.5 Hz, 1H, H-6'), 4.47 (dd, J = 12.1, 5.8 Hz, 1H, H-6), 4.21 - 4.13 (m, 1H, H-5), 2.28 (s, 3H, PhCH3).
\end{align*}
\]

The spectroscopic data coincide with the previous report[4]

p-Toly1, 2, 3, 5-tri-O-benzoyl-1-thio-β-D-ribofuranoside (1f)

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{)} & \delta 8.04 (d, J = 8.0 Hz, 2H), 7.99 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 7.9 Hz, 2H), 7.59 - 7.49 (m, 3H), 7.48 - 7.30 (m, 8H), 7.05 (d, J = 7.8 Hz, 2H), 5.71 (t, J = 4.7 Hz, 1H), 5.63 (t, J = 5.2 Hz, 1H), 5.54 (d, J = 5.2 Hz, 1H), 4.67 - 4.59 (m, 2H), 4.48 (dd, J = 12.4, 4.5 Hz, 1H), 2.22 (s, 3H).
\end{align*}
\]

The spectroscopic data coincide with the previous report[3]

p-Toly1, 2, 3, 4, 6-tetra-O-benzyl-1-thio-β-D-galactopyranoside (1g)

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{)} & \delta 7.46 (d, J = 8.1 Hz, 2H, SPh), 7.40 - 7.23 (m, 20H,Bn), 6.98 (d, J = 8.0 Hz).
\end{align*}
\]
p-Tolyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-glucopyranoside (1h)

\[
\begin{align*}
\text{Bn} & \quad \text{STol} \\
\text{Bn} & \quad \text{OBn}
\end{align*}
\]

\[^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.48 (d, J = 8.1 Hz, 2H, ArH), 7.42 – 7.37 (m, 2H, ArH), 7.36 – 7.23 (m, 16H, ArH), 7.21 – 7.17 (m, 2H, ArH), 7.02 (d, J = 8.0 Hz, 2H, ArH), 4.89 (dd, J = 10.6, 3.6 Hz, 2H, Bn), 4.83 (dd, J = 10.8, 8.6 Hz, 2H, Bn), 4.72 (d, J = 10.3 Hz, 1H, Bn), 4.63 – 4.56 (m, 3H, Bn, H-1), 4.53 (d, J = 11.9 Hz, 1H, Bn), 3.78 (dd, J = 10.9, 1.9 Hz, 1H, H-6), 3.75 – 3.66 (m, 2H, H-4, H-6), 3.63 (t, J = 9.3 Hz, 1H, H-3), 3.48 (ddd, J = 9.5, 4.4, 2.0 Hz, 2H, H-2, H-5), 2.30 (s, 3H, PhCH₃).
\]

The spectroscopic data coincide with the previous report[5]

\[^1\text{C NMR (101 MHz, CDCl}_3\text{)} \delta 166.35, 166.28, 137.63, 137.63, 133.51, 133.28, 132.18, 131.63, 130.02, 129.92, 129.86, 129.78, 129.70, 128.63, 128.56, 88.40, 81.26, 75.00, 64.28, 39.75, 21.24. \]

ESI-MS for C_{26}H_{24}O_{5}SNa [M+Na]^+: 471.1, found: 471.3.

\[p\text{-Tolyl 3,5-di-O-benzoyl-1-thio-2-deoxy-β-D-ribofuranoside (1i)}
\]

\[
\begin{align*}
\text{BzO} & \quad \text{STol} \\
\text{BzO}
\end{align*}
\]

\[^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 8.14 – 8.10 (m, 2H), 8.04 – 8.00 (m, 2H), 7.62 – 7.53 (m, 2H), 7.50 – 7.40 (m, 6H), 7.11 (d, J = 7.9 Hz, 2H), 5.79 (dd, J = 7.7, 2.5 Hz, 1H), 5.50 (ddd, J = 7.5, 3.8, 2.5 Hz, 1H), 4.78 (q, J = 4.0 Hz, 1H), 4.62 (dd, J = 4.0, 2.2 Hz, 2H), 2.94 (dt, J = 15.0, 7.6 Hz, 1H), 2.36 (dt, J = 14.7, 2.5 Hz, 1H), 2.32 (s, 3H). \]

\[^1\text{C NMR (101 MHz, CDCl}_3\text{)} \delta 166.35, 166.28, 137.63, 133.51, 133.28, 132.18, 131.63, 130.02, 129.92, 129.86, 129.78, 129.70, 128.63, 128.56, 88.40, 81.26, 75.00, 64.28, 39.75, 21.24. \]

ESI-MS for C_{26}H_{24}O_{5}SNa [M+Na]^+: 471.1, found: 471.3.
3. Preparation of acceptors

(1) General procedure for silylation of pyrimidines

A suspension of nucleobase (5 mmol), (NH₄)₂SO₄ (20 mg) in hexamethyldisilazane (HMDS) (7 mmol, 1.5 mL) was refluxed until the reaction mixture became clear. The reaction mixture was then concentrated in vacuo and the crude was kept under high vacuum overnight to remove traces of solvent.

(2) Preparation of Boc-protected purines.

The Boc-protected purines 2e and 2f were prepared according to the published procedures. [J. Org. Chem., 65 (2000) 7697–7699]
4. General procedure for \(N\)-glycosylations of nucleobases

(1) General procedure for \(N\)-glycosylations of pyrimidines

To a mixture of thioglycoside donor (1.0 equiv, 0.069 mmol), \((p\text{-Tol})_2\text{SO}\) (2 – 6 equiv), and activated 3Å powdered sieves in flame-dried glass vessel was added anhydrous dichloromethane (CH\(_2\)Cl\(_2\), 2.5 mL), which was freshly distilled over calcium hydride. The resulting mixture was stirred at preactivation temperature (-70ºC – -40ºC) for 20 min, followed by the addition of trifluoromethanesulfonic anhydride (13.6 \(\mu\)L, 1.2 equiv). After activation for 30 min (for donor 1e, the activation time was 1 h), a solution of silylated nucleobase (3.0 equiv) in anhydrous CH\(_3\)CN (0.7 ml) was added, and the reaction mixture was maintained at this temperature for 2 h and then raise 20ºC higher for another 2 h. The reaction mixture was quenched with saturated NaHCO\(_3\) solution (1 ml), diluted with CH\(_2\)Cl\(_2\), filtered through Celite, washed with saturated brine, dried and concentrated to leave a residue which was purified by column chromatography on silica gel to afford the pure nucleosides 3-20 and 29-37.

(2) General procedure for \(N\)-glycosylations of purines

To a mixture of thioglycoside donor (1.0 equiv, 0.069 mmol), \((p\text{-Tol})_2\text{SO}\) (2.0 equiv), and activated 3Å powdered sieves in flame-dried glass vessel was added anhydrous dichloromethane (CH\(_2\)Cl\(_2\), 2.5 mL), which was freshly distilled over calcium hydride. The resulting mixture was stirred at preactivation temperature (-50ºC – -40ºC) for 20 min, followed by the addition of trifluoromethanesulfonic anhydride (13.6 \(\mu\)L, 1.2 equiv). After activation for 30 min (for donor 1e, the activation time was 1 h), a solution of acceptor (3.0 equiv) in anhydrous CH\(_3\)CN (0.7 ml) was added, and the reaction mixture was allowed warming to rt gradually. After which, the reaction mixture was quenched with Et\(_3\)N (0.1 ml), diluted with CH\(_2\)Cl\(_2\), filtered through Celite, washed with saturated brine, dried and concentrated to leave a residue which was purified by column chromatography on silica gel to afford the pure nucleosides 21 – 28.
5. NMR data for coupling products

(1) Reference for known compounds

<table>
<thead>
<tr>
<th>Compounds</th>
<th>References</th>
<th>1H NMR</th>
<th>Compounds</th>
<th>References</th>
<th>1H NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>[8]</td>
<td>★</td>
<td>25</td>
<td>[8]</td>
<td>★</td>
</tr>
<tr>
<td>7</td>
<td>[9]</td>
<td>★</td>
<td>29</td>
<td>[16]</td>
<td>★</td>
</tr>
<tr>
<td>8</td>
<td>[8]</td>
<td>★</td>
<td>30</td>
<td>[16]</td>
<td>★</td>
</tr>
<tr>
<td>9</td>
<td>[10]</td>
<td>★</td>
<td>31</td>
<td>[16]</td>
<td>★</td>
</tr>
<tr>
<td>15</td>
<td>[8]</td>
<td>★</td>
<td>34</td>
<td>[16]</td>
<td>★</td>
</tr>
<tr>
<td>18</td>
<td>[14]</td>
<td>★</td>
<td>36</td>
<td>[17]</td>
<td>★</td>
</tr>
<tr>
<td>19</td>
<td>[14]</td>
<td>★</td>
<td>37</td>
<td>[17]</td>
<td>★</td>
</tr>
<tr>
<td>20</td>
<td>[14]</td>
<td>★</td>
<td>S1</td>
<td>[8]</td>
<td>★</td>
</tr>
<tr>
<td>21</td>
<td>[15]</td>
<td>★</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) New compounds

<table>
<thead>
<tr>
<th>Compounds</th>
<th>1H NMR</th>
<th>13C NMR</th>
<th>HRMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>13</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>14</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>17</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>24</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>27</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>28</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>S2</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>

1-(2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosyl)-uracil (3)

\begin{align*}
\text{AcO} & \quad \text{AcO} \\
\text{N} & \quad \text{NH} \\
\text{OAc} & \quad \text{OAc} \\
\text{OAc} & \quad \text{OAc}
\end{align*}

($R_f = 0.40$. Petroleum: ethyl acetate = 1:3) 1H NMR (400 MHz, CDCl$_3$) δ 9.16 (s, broad, 1H, NH), 7.40 (d, $J = 8.2$ Hz, 1H, H-6), 5.90 – 5.83 (m, 2H, H-1’and H-5), 5.51 (d, $J = 2.7$ Hz, 1H), 5.31 (t, $J = 9.6$ Hz, 1H), 5.24 (dd, $J = 10.2$, 3.2 Hz, 1H), 4.10-4.18 (m, 3H), 2.20 (s, 3H, -OAc), 2.06 (s, 3H, -OAc), 2.02 (s, 3H, -OAc), 2.01 (s, 3H, -OAc).
1-(2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosyl)-thymine (4)

(Rf = 0.21, petroleum: ethyl acetate = 2:3) 1H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H, NH), 7.16 (d, J = 1.2 Hz, 1H, H-6), 5.85 (d, J = 9.2 Hz, 1H, H-1'), 5.51 (d, J = 3.2 Hz, 1H, H-4'), 5.32 (t, J = 9.7 Hz, 1H, H-2'), 5.22 (dd, J = 10.2, 3.3 Hz, 1H, H-3'), 4.22 – 4.05 (m, 3H, H-5' and H-6'), 2.22 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.01 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.98 (d, J = 1.0 Hz, 3H, CH₃).

N⁴-benzoyl-1-(2',3',4',6'-tetra-O-acetyl-β-D-galactopyranosyl)-cytosine (5)

(Rf = 0.40, petroleum: ethyl acetate = 1:4) 1H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.5 Hz, 2H), 7.84 (d, J = 7.6 Hz, 1H), 7.58 (dt, J = 15.3, 7.4 Hz, 4H), 6.11 (d, J = 8.8 Hz, 1H, H-1'), 5.54 (d, J = 2.5 Hz, 1H, H-4'), 5.32 (dd, J = 12.7, 6.3 Hz, 1H, H-2'), 5.26 (dd, J = 10.2, 3.2 Hz, 1H, H-3'), 4.23 – 4.09 (m, 3H, H-5' and H-6'), 2.22 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.01 (s, 6H, OAc).

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranosyl)-uracil (6)

(Rf = 0.34, petroleum: ethyl acetate = 1:3) 1H NMR (400 MHz, CDCl₃) δ 9.35 (s, broad, 1H, NH), 7.35 (d, J = 8.2 Hz, 1H, H-6), 5.90 (d, J = 9.5 Hz, 1H, H-1'), 5.84 (dd, J = 8.2, 2.0 Hz, 1H, H-5), 5.41 (t, J = 9.5 Hz, 1H, H-2'), 5.17 (dt, J = 13.5, 9.6 Hz, 2H, H-3' and H-4'), 4.28 (dd, J = 12.6, 4.9 Hz, 1H, H-6'), 4.13 (dd, J = 12.6, 2.0 Hz, 1H, H-6'), 3.96 (ddd, J = 10.2, 4.9, 2.1 Hz, 1H, H-5'), 2.10 (s, 3H, Ac), 2.06 (s, 3H, Ac), 2.03 (s, 3H, Ac), 2.01 (s, 3H, Ac).

1-(2',3',4',6'-Tetra-O-acetyl-β-D-glucopyranoside)-thymine (7)

(Rf = 0.49, petroleum: ethyl acetate = 1:3) 1H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H, NH), 7.14 (d, J = 1.2 Hz, 1H, H-6), 5.87 (d, J = 9.5 Hz, 1H, H-1'), 5.38 (t, J = 9.5 Hz, 1H, H-3'), 5.24 – 5.11 (m, 2H, H-2', H-4'), 4.28 (dd, J = 12.6, 5.1 Hz, 1H, H-6'), 4.12 (dd, J = 12.6, 2.0 Hz, 1H, H-6'), 3.93 (ddd, J = 10.2, 5.1, 2.1 Hz, 1H, H-5'), 2.10 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.02 (s, 3H, OAc), 2.00 (s, 3H, OAc), 1.96 (d, J = 1.1 Hz, 3H, CH₃).

S7
$\beta\text{-D-glucopyranosyl}$-cytosine (8)

(Rf = 0.30, petroleum: ethyl acetate = 1:3) 1H NMR (400 MHz, CDCl$_3$) δ 8.76 (s, 1H), 7.90 (d, $J = 6.6$ Hz, 2H), 7.81 (d, $J = 7.0$ Hz, 1H), 7.66 – 7.50 (m, 4H), 6.14 (d, $J = 9.3$ Hz, 1H), 5.44 (t, $J = 9.4$ Hz, 1H), 5.25 – 5.13 (m, 2H), 4.30 (dd, $J = 12.6$, 4.6 Hz, 1H), 4.14 (d, $J = 12.5$ Hz, 1H), 4.02-3.94 (m, 1H), 2.10 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.99 (s, 3H).

1-(2',3',5'-Tri-O-acetyl-$\beta\text{-D-ribofuranosyl}$)-uracil (9)

(Rf = 0.28, petroleum: ethyl acetate = 1:3) 1H NMR (400 MHz, CDCl$_3$) δ 8.72 (s, 1H, NH), 7.39 (d, $J = 8.2$ Hz, 1H, H-6), 6.04 (d, $J = 4.9$ Hz, 1H, H-1’), 5.79 (dd, $J = 8.2$, 1.8 Hz, 1H, H-5), 5.37 – 5.31 (m, 2H, H-2’ and H-3’), 4.40 – 4.32 (m, 3H, H-4’ and H-5’), 2.15 (s, 3H, Ac), 2.13 (s, 3H, Ac), 2.11 (s, 3H, Ac).

1-(2',3',5'-Tri-O-acetyl-$\beta\text{-D-ribofuranosyl}$)-thymine (10)

(Rf = 0.41, petroleum: ethyl acetate = 2:5) 1H NMR (400 MHz, CDCl$_3$) δ 8.96 (br s, 1H, N-H), 7.18 (d, $J = 1.2$ Hz, 1H, H-6), 6.12 – 6.06 (m, 1H, H-1’), 5.38 – 5.31 (m, 2H, H-2’ and H-3’), 4.41 – 4.31 (m, 3H, H-4’ and H-5’), 2.16 (s, 3H, -OAc), 2.13 (s, 3H, -OAc), 2.10 (s, 3H, -OAc), 1.95 (d, $J = 1.1$ Hz, 3H, -CH$_3$).

$\beta\text{-D-ribofuranosyl}$-cytosine (11)

(Rf = 0.22, petroleum: ethyl acetate = 2:7) 1H NMR (400 MHz, DMSO) δ 11.35 (s, 1H, ex, NH), 8.19 (d, $J = 7.5$ Hz, 1H, H-6), 8.01 (d, $J = 7.3$ Hz, 2H, Ph), 7.63 (t, $J = 7.4$ Hz, 1H, Ph), 7.52 (t, $J = 7.7$ Hz, 2H, Ph), 7.40 (bs, 1H, H-5), 5.94 (d, $J = 3.8$ Hz, 1H, H-1’), 5.54 (dd, $J = 6.1$, 3.9 Hz, 1H, H-2’), 5.40 (s, 1H, ex, NH), 8.19 (d, $J = 7.5$ Hz, 1H, H-6), 8.01 (d, $J = 7.3$ Hz, 2H, Ph), 7.63 (t, $J = 7.4$ Hz, 1H, Ph), 7.52 (t, $J = 7.7$ Hz, 2H, Ph), 7.40 (bs, 1H, H-5), 5.94 (d, $J = 3.8$ Hz, 1H, H-1’), 5.54 (dd, $J = 6.1$, 3.9 Hz, 1H, H-2’), 5.40
(apt, $J = 6.3$ Hz, 1H, H-3'), 4.41 – 4.30 (m, 2H), 4.25 (dd, $J = 11.6, 5.3$ Hz, 1H), 2.08 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H).

1-(2',3',4',6'-Tetra-O-benzoyl-β-D-galactopyranosyl)-uracil (12)

(R$_f$ = 0.20, petroleum: ethyl acetate = 1:1) 1H NMR (400 MHz, CDCl$_3$) δ 8.18 (s, 1H, NH), 8.08 – 8.03 (m, 2H), 7.91 – 7.87 (m, 2H), 7.77 (dd, $J = 8.3, 1.2$ Hz, 2H), 7.70–7.65 (m, 1H), 7.61 – 7.40 (m, 8H), 7.36 (t, $J = 7.8$ Hz, 2H), 7.29 – 7.23 (m, 2H), 6.21 (d, $J = 9.3$ Hz, 1H), 6.10 (d, $J = 2.7$ Hz, 1H), 5.95 – 5.87 (m, 2H), 5.82 (dd, $J = 10.1, 3.3$ Hz, 1H), 4.64 (dd, $J = 10.9, 6.7$ Hz, 1H), 4.61 – 4.56 (m, 1H), 4.45 (dd, $J = 10.9, 5.2$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 166.09, 165.62, 165.42, 165.35, 162.62, 150.39, 139.25, 133.98, 133.93, 133.58, 133.48, 130.03, 129.94, 129.90, 129.85, 129.28, 129.02, 128.97, 128.65, 128.57, 128.47, 128.14, 104.06, 81.04, 74.62, 71.79, 68.37, 68.20, 62.16; HRMS (ESI) calcd for C$_{38}$H$_{30}$N$_2$O$_{11}$Na $[$M+Na$]$: 713.1742, found: 713.1741.

1-(2',3',4',6'-Tetra-O-benzoyl-β-D-galactopyranosyl)-thymine (13)

(R$_f$ = 0.51, petroleum: ethyl acetate = 1:1) 1H NMR (400 MHz, CDCl$_3$) δ 8.60 (s, 1H), 8.10 – 8.04 (m, 2H), 8.03 – 7.98 (m, 2H), 7.91 – 7.86 (m, 2H), 7.79 (ddd, $J = 7.6, 4.8, 3.3$ Hz, 3H), 7.51 – 7.31 (m, 7H), 7.26 (t, $J = 7.8$ Hz, 2H), 6.25 (d, $J = 9.3$ Hz, 1H), 6.10 (d, $J = 3.2$ Hz, 1H), 5.93 (t, $J = 9.7$ Hz, 1H), 5.82 (dd, $J = 10.1, 3.3$ Hz, 1H), 4.67 – 4.57 (m, 2H), 4.51 – 4.43 (m, 1H), 2.03 (d, $J = 0.9$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 166.12, 165.61, 165.41, 165.37, 163.18, 150.43, 154.75, 154.02, 133.94, 133.61, 133.53, 130.05, 129.95, 129.91, 129.88, 129.30, 129.10, 128.98, 128.68, 128.60, 128.49, 128.22, 112.41, 81.00, 74.53, 71.91, 68.36, 68.23, 62.24, 12.97; HRMS (ESI) calcd for C$_{39}$H$_{32}$N$_2$O$_{11}$Na $[$M+Na$]$: 727.1898, found: 727.1897.

N4-benzoyl-1-(2',3',4',5'-tetra-O-benzoyl-β-D-galactopyranosyl)-cytosine (14)

(R$_f$ = 0.40, petroleum: ethyl acetate = 2:3) 1H NMR (400 MHz, CDCl$_3$) δ 8.10 – 7.85 (m, 9H), 7.81 – 7.52 (m, 7H), 7.52 – 7.39 (m, 6H), 7.34 (t, $J = 7.8$ Hz, 2H), 7.29 – 7.22 (m, 2H), 6.53 (d, $J = 9.1$ Hz, 1H), 6.13 (d, $J = 3.2$ Hz, 1H), 5.96 (t, $J = 9.7$ Hz, 1H), 5.84 (dd, $J = 10.1, 3.3$ Hz, 1H), 4.68 – 4.60 (m, 2H), 4.48 (q, $J = 9.2$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 166.06, 165.73, 165.43, 165.32, 162.62, 144.39, 133.98, 133.81, 133.53, 133.45, 133.40, 130.11, 129.93, 129.86, 129.29, 129.12, 129.03, 128.98, 128.67, 128.60, 128.56, 128.44, 127.79, 81.86, 74.86, 71.94, 69.05, 68.44, 62.19; HRMS (ESI) calcd for C$_{45}$H$_{35}$N$_3$O$_{11}$Na $[$M+Na$]$: 816.2164, found: 816.2165.
1-(2',3',4',6'-Tetra-O-benzoyl-β-D-glucopyranosyl)-uracil (15)

(Rf = 0.30, petroleum: ethyl acetate = 1:1) 1H NMR (400 MHz, CDCl3) δ 8.24 (s, 1H), 8.04 (dd, J = 8.3, 1.3 Hz, 2H), 7.93 (dd, J = 8.4, 1.2 Hz, 2H), 7.90 – 7.87 (m, 2H), 7.82 (dd, J = 8.4, 1.2 Hz, 2H), 7.62 – 7.56 (m, 1H), 7.56 – 7.33 (m, 10H), 7.32 – 7.26 (m, 2H), 6.25 (d, J = 9.5 Hz, 1H), 6.09 (t, J = 9.6 Hz, 1H), 5.83 (dd, J = 8.2, 2.2 Hz, 1H), 5.78 (t, J = 9.8 Hz, 1H), 5.66 (t, J = 9.5 Hz, 1H), 4.67 (dd, J = 12.4, 2.7 Hz, 1H), 4.50 (dd, J = 12.5, 5.0 Hz, 1H), 4.40 (ddd, J = 10.0, 5.0, 2.7 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 166.15, 165.61, 165.40, 165.29, 161.99, 150.10, 139.13, 134.05, 133.86, 133.61, 133.48, 130.15, 129.94, 129.87, 129.52, 128.71, 128.67, 128.63, 128.52, 128.00, 103.96, 80.89, 75.63, 73.00, 70.31, 68.99, 62.72.

1-(2',3',4',6'-Tetra-O-benzoyl-β-D-glucopyranosyl)-thymine (16)

(Rf = 0.41, petroleum: ethyl acetate = 1:1) 1H NMR (400 MHz, CDCl3) δ 8.20 (s, 1H), 8.06 – 8.00 (m, 2H), 7.94 – 7.89 (m, 2H), 7.89 – 7.85 (m, 2H), 7.84 – 7.79 (m, 2H), 7.57 (dd, J = 10.4, 4.3 Hz, 1H), 7.51 (q, J = 7.4 Hz, 2H), 7.44 (dd, J = 10.9, 4.4 Hz, 3H), 7.36 (q, J = 8.0 Hz, 4H), 7.31 – 7.25 (m, 3H), 6.24 (d, J = 9.4 Hz, 1H), 6.07 (t, J = 9.6 Hz, 1H), 5.77 (t, J = 9.8 Hz, 1H), 5.67 (t, J = 9.5 Hz, 1H), 4.67 (dd, J = 12.4, 2.7 Hz, 1H), 4.48 (dd, J = 12.4, 5.1 Hz, 1H), 4.38 (ddd, J = 10.0, 5.0, 2.7 Hz, 1H), 1.94 (d, J = 0.9 Hz, 3H).

N4-benzoyl-1-(2',3',4',6'-tetra-O-benzoyl-β-D-glucopyranosyl)-cytosine (17)

(Rf = 0.42, petroleum: ethyl acetate = 2:3) 1H NMR (400 MHz, DMSO) δ 11.24 (s, 1H), 8.69 (d, J = 6.3 Hz, 1H), 8.00 (dd, J = 29.9, 7.5 Hz, 4H), 7.82 (dd, J = 22.7, 7.5 Hz, 4H), 7.76 – 7.36 (m, 18H), 6.67 (d, J = 9.1 Hz, 1H), 6.27 (t, J = 9.4 Hz, 1H), 6.09 (t, J = 9.3 Hz, 1H), 5.96 (t, J = 9.7 Hz, 1H), 4.87 (d, J = 9.7 Hz, 1H), 4.53 (s, 2H). 13C NMR (126 MHz, DMSO) δ 167.39, 165.42, 165.10, 164.80, 164.72, 163.54, 154.25, 146.35, 133.99, 133.84, 133.79, 133.47, 132.94, 132.82, 129.52, 129.27, 128.95, 128.80, 128.55, 128.43, 128.13, 97.24, 80.47, 73.34, 71.60, 68.43, 62.48; HRMS (ESI) calcd for C45H35N3O11Na [M+Na]+:816.2164, found: 816.2164
1-(2',3',5'-Tri-O-benzoyl-β-D-ribofuranosyl)-uracil (18)

\[
\begin{align*}
\text{O} & \text{NH} \\
\text{BzO} & \text{OBz} \\
\text{BzO} & \text{OBz}
\end{align*}
\]

(R\text{f} = 0.52, petroleum: ethyl acetate = 2:3) \text{ } ^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 8.47 (bs, 1H, NH), 8.10 (dd, J = 5.2, 3.3 Hz, 2H), 7.98 (dd, J = 8.3, 1.2 Hz, 2H), 7.94 (dd, J = 8.3, 1.2 Hz, 2H), 7.65 – 7.53 (m, 3H), 7.49 (t, J = 7.7 Hz, 2H), 7.44 – 7.34 (m, 5H), 6.32 (d, J = 5.6 Hz, 1H, H-1'), 5.89 (dd, J = 5.9, 4.5 Hz, 1H, H-3'), 5.75 (t, J = 5.8 Hz, 1H, H-2'), 5.61 (dd, J = 8.1, 2.1 Hz, 1H, H-5'), 4.84 (dd, J = 12.0, 2.7 Hz, 1H, H-4'), 4.74 – 4.70 (m, 1H, H-4'), 4.67 (dd, J = 12.1, 3.8 Hz, 1H, H-5').

1-(2',3',5'-Tri-O-benzoyl-β-D-ribofuranosyl)-thymine (19)

\[
\begin{align*}
\text{O} & \text{NH} \\
\text{BzO} & \text{OBz} \\
\text{BzO} & \text{OBz}
\end{align*}
\]

(R\text{f} = 0.58, petroleum: ethyl acetate = 4:5) \text{ } ^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 8.63 (bs, 1H, NH), 8.17 – 8.11 (m, 2H), 7.99 (dd, J = 8.3, 1.2 Hz, 2H), 7.95 (dd, J = 8.3, 1.2 Hz, 2H), 7.66 – 7.47 (m, 5H), 7.42-7.35 (m, 4H), 7.16 (d, J = 1.2 Hz, 1H, H-6), 6.43 (d, J = 6.4 Hz, 1H, H-1'), 5.92 (dd, J = 6.0, 3.7 Hz, 1H, H-3'), 5.76 (t, J = 6.2 Hz, 1H, H-2'), 4.89 (dd, J = 12.1, 2.6 Hz, 1H, H-5'), 4.70 (dd, J = 6.3, 3.4 Hz, 1H), 4.65 (dd, J = 12.1, 3.5 Hz, 1H), 1.60 (d, J = 1.0 Hz, 3H).

\text{N}^4\text{-benzoyl-1-(2',3',5'-tri-O-benzoyl-β-D-ribofuranosyl)-cytosine (20)}

\[
\begin{align*}
\text{NH}\text{Bz} & \\
\text{BzO} & \text{OBz} \\
\text{BzO} & \text{OBz}
\end{align*}
\]

(R\text{f} = 0.28, petroleum: ethyl acetate = 2:3) \text{ } ^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 8.14 – 8.09 (m, 2H), 8.06 – 7.89 (m, 7H), 7.65-7.45 (m, 9H), 7.41 - 7.35 (m, 4H), 6.47 (d, J = 4.6 Hz, 1H, H-1'), 5.92 (t, J = 5.5 Hz, 1H), 5.88 – 5.82 (m, 1H), 4.87 (dd, J = 12.2, 2.7 Hz, 1H), 4.80 (dd, J = 8.3, 3.3 Hz, 1H), 4.74 (dd, J = 12.2, 3.9 Hz, 1H).
2',3',5'-Tri-O-benzoyl-β-D-ribofuranosyl-2,6-dichloropurine (21)

(Rf = 0.39, petroleum: ethyl acetate = 2:1) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.30 (s, 1H, H-8), 8.08 – 8.00 (m, 4H, -OBz), 7.93 (d, \(J = 7.3\) Hz, 2H, -OBz), 7.63 – 7.53 (m, 3H, -OBz), 7.45 (dd, \(J = 15.1, 7.5\) Hz, 4H, -OBz), 7.37 (t, \(J = 7.8\) Hz, 2H, -OBz), 6.49 (d, \(J = 5.4\) Hz, 1H, H-1’), 6.19 (t, \(J = 5.6\) Hz, 1H, H-3’), 6.16 – 6.12 (m, 1H, H-2’), 4.93 (dd, \(J = 12.1, 3.2\) Hz, 1H, H-5’), 4.88 (dd, \(J = 7.5, 3.9\) Hz, 1H, H-4’), 4.73 (dd, \(J = 12.1, 4.0\) Hz, 1H, H-5’). \(^1\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 166.16, 165.41, 165.25, 153.57, 152.73, 152.42, 134.12, 134.01, 133.76, 131.46, 130.02, 129.98, 129.73, 129.15, 128.85, 128.75, 128.72, 128.65, 128.19, 87.12, 81.61, 74.41, 71.66, 63.60.

2-tert-Butoxycarbonylamino-6-chloro-9-(2',3',5'-tri-O-benzoyl-β-D-ribofuranosyl)purine (22)

(Rf = 0.44, petroleum: ethyl acetate = 2:1) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.08 (s, 1H), 8.04 – 7.98 (m, 4H), 7.96 – 7.91 (m, 2H), 7.62 – 7.52 (m, 4H), 7.44 – 7.34 (m, 6H), 6.61 (t, \(J = 5.9\) Hz, 1H), 6.32 – 6.26 (m, 2H), 4.97 (dd, \(J = 11.9, 3.8\) Hz, 1H), 4.92 – 4.87 (m, 1H), 4.79 (dd, \(J = 11.9, 5.4\) Hz, 1H), 1.48 (s, 9H).

N,N-Di-tert-butoxycarbonyl-9-(2',3',5'-tri-O-benzoyl-β-D-ribofuranosyl)adenine (23)

(Rf = 0.52, petroleum: ethyl acetate = 1:1) \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.76 (s, 1H), 8.25 (s, 1H), 8.11 (d, \(J = 7.3\) Hz, 2H), 8.02 (d, \(J = 7.3\) Hz, 2H), 7.92 (d, \(J = 7.3\) Hz, 2H), 7.63 – 7.52 (m, 3H), 7.40 – 7.33 (m, 6H), 6.51 (d, \(J = 5.3\) Hz, 1H), 6.41 (t, \(J = 5.5\) Hz, 1H), 6.27 (t, \(J = 5.2\) Hz, 1H), 4.92 (dd, \(J = 12.1, 3.2\) Hz, 1H), 4.86 (dd, \(J = 7.9, 4.1\) Hz, 1H), 4.73 (dd, \(J = 12.1, 4.2\) Hz, 1H), 1.44 (s, 18H).
N-tert-Butoxycarbonyl-9-(2',3',5'-tri-O-benzoyl-β-D-ribofuranosyl)adenine (S1)

\[\text{NHBoc} \]

1H NMR (400 MHz, CDCl3) δ 8.67 (s, 1H), 8.10 (d, $J = 6.8$ Hz, 4H), 8.01 (d, $J = 7.2$ Hz, 2H), 7.92 (d, $J = 7.2$ Hz, 2H), 7.62 – 7.52 (m, 3H), 7.48 – 7.33 (m, 6H), 6.67 (d, $J = 5.2$ Hz, 1H), 6.38 (t, $J = 5.5$ Hz, 1H), 6.25 (t, $J = 5.3$ Hz, 1H), 4.93 (dd, $J = 12.2$, 3.2 Hz, 1H), 4.84 (dd, $J = 7.9$, 4.1 Hz, 1H), 4.70 (dd, $J = 12.2$, 4.2 Hz, 1H), 1.55 (s, 9H).

2',3',4',6'-Tetra-O-benzoyl-β-D-glucopyranosyl -2,6-dichloropurine (24)

(R$\text{f} = 0.32$, petroleum: ethyl acetate = 2:1) 1H NMR (400 MHz, CDCl3) δ 8.48 (s, 1H, H-8), 8.02 (d, $J = 7.4$ Hz, 2H), 7.94 (d, $J = 7.4$ Hz, 2H), 7.82 (d, $J = 7.4$ Hz, 2H), 7.74 (d, $J = 7.4$ Hz, 2H), 7.60 - 7.50 (m, 2H), 7.48 - 7.34 (m, 6H), 7.32 - 7.26 (m, 4H), 6.82 (d, $J = 9.3$ Hz, 1H, H-1’), 6.19 (t, $J = 9.6$ Hz, 1H), 6.05 (t, $J = 9.5$ Hz, 1H), 5.92 (t, $J = 9.4$ Hz, 1H), 4.70 (dd, $J = 14.5$, 4.8 Hz, 1H), 4.54 (d, $J = 9.4$ Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 166.09, 165.62, 165.21, 164.96, (4 Bz), 153.67, 153.10, 152.37(C-2, C-4, C-6), 143.4(C-8), 134.13, 133.90, 133.69, 133.50, 130.72(C-5), 130.02, 129.97, 129.89, 129.86, 129.34, 128.67, 128.61, 128.53, 128.43, 128.39, 127.44, 81.39(C-1’), 76.01, 72.83, 71.21, 68.80, 62.53; HRMS (ESI) calcd for C$_{39}$H$_{29}$N$_4$O$_9$Cl$_2$ [M+H]$^+$:767.1312, found: 767.1307.

2-tert-Butoxycarbonylamino-6-chloro-9-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-glucopyranosyl)purine (25)

1H NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 8.05 – 7.99 (m, 2H), 7.97 – 7.93 (m, 2H), 7.85 – 7.79 (m, 2H), 7.78 – 7.71 (m, 2H), 7.58 – 7.36 (m, 9H), 7.31 – 7.22 (m, 4H), 6.27 (d, $J = 9.3$ Hz, 1H, H-1’), 6.18 (t, $J = 9.6$ Hz, 1H), 6.02 (t, $J = 9.5$ Hz, 1H), 5.89 (t, $J = 9.5$ Hz, 1H), 4.68 (q, $J = 4.4$ Hz, 1H), 4.57 – 4.48 (m, 2H), 1.58 (s, 9H, Boc).

N,N-Di-tert-butoxycarbonyl-9-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-glucopyranosyl)adenine (26)

\[\text{NBoc}_2 \]
1H NMR (400 MHz, CDCl3) δ 8.79 (s, 1H), 8.42 (s, 1H), 8.04 – 7.99 (m, 2H), 7.97 – 7.93 (m, 2H), 7.84 – 7.80 (m, 2H), 7.71 – 7.67 (m, 2H), 7.58 – 7.51 (m, 2H), 7.47 – 7.36 (m, 6H), 7.32 – 7.22 (m, 4H), 6.34 (d, J = 8.9 Hz, 1H), 6.19 – 6.10 (m, 2H), 5.93 (t, J = 9.5 Hz, 1H), 4.70 (dd, J = 12.9, 3.3 Hz, 1H), 4.56 – 4.48 (m, 2H), 1.33 (s, 18H).

N-tert-Butoxycarbonyl-9-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-glucopyranosyl)adenine (S2)

1H NMR (400 MHz, CDCl3) δ 8.67 (s, 1H), 8.31 (s, 1H), 8.02 (d, J = 7.2 Hz, 2H), 7.96 – 7.91 (m, 2H), 7.84 – 7.79 (m, 2H), 7.70 (d, J = 7.3 Hz, 2H), 7.59 – 7.50 (m, 2H), 7.47 – 7.35 (m, 6H), 7.31 – 7.23 (m, 4H), 6.31 (d, J = 9.2 Hz, 1H), 6.16 (t, J = 9.6 Hz, 1H), 6.08 (t, J = 9.4 Hz, 1H), 5.92 (t, J = 9.6 Hz, 1H), 4.69 (d, J = 9.8 Hz, 1H), 4.56 – 4.47 (m, 2H), 1.53 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.14, 165.67, 165.27, 165.02, 153.10, 151.22, 149.92, 149.50, 140.21, 133.97, 133.85, 133.62, 133.46, 130.05, 129.92, 129.89, 129.47, 128.67, 128.59, 128.55, 128.52, 127.70, 121.14, 82.70, 81.08, 75.86, 73.11, 71.33, 69.02, 62.66, 28.21. HRMS (ESI) calcd for C44H40N5O11 [M+H]+:814.2724, found: 814.2717.

2’,3’,4’,6’-Tetra-O-benzoyl-β-D-galactopyranosyl -2,6-dichloropurine (27)

(Rf = 0.51, petroleum: acetone = 2:1) 1H NMR (400 MHz, CDCl3) δ 8.50 (s, 1H, H-8), 8.17 (d, J = 7.4 Hz, 2H), 7.98 (d, J = 7.4 Hz, 2H), 7.77 (dd, J = 18.5, 7.5 Hz, 4H), 7.68 (d, J = 7.4 Hz, 1H), 7.55 (dd, J = 14.4, 7.2 Hz, 3H), 7.49 – 7.38 (m, 4H), 7.34 – 7.23 (m, 4H), 6.40 (t, J = 9.7 Hz, 1H, H-2’), 6.26 – 6.15 (m, 2H, H-1’ and H-4’), 5.92 (dd, J = 10.1, 3.1 Hz, 1H, H-3’), 4.76 – 4.62 (m, 2H, H-5’ and H-6’), 4.52 (dd, J = 11.4, 5.4 Hz, 1H, H-6’). 13C NMR (101 MHz, CDCl3) δ 166.09, 165.45, 165.43, 165.05(4 Bz), 153.67, 153.11, 152.40(C-2, C-4 and C-6), 143.82(C-8), 134.12, 134.09, 133.72, 133.57, 130.96(C-5), 130.12, 129.91, 129.88, 129.18, 129.04, 128.81, 128.64, 128.60, 128.53, 128.45, 127.62, 82.25(C-1’), 75.03(C-5’), 71.72(C-3’), 68.87(C-2’), 68.06(C-4’), 62.12(C-6’). HRMS (ESI) calcd for C39H29N4O9Cl2 [M+H]+:767.1312, found: 767.1305.

N,N-Di-tert-butoxycarbonyl-9-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-galactopyranosyl)adenine (28)

1H NMR (400 MHz, CDCl3) δ 8.85 (s, 1H, H-2), 8.49 (s, 1H, H-8), 8.49 (d, J = 8.2 Hz, 1H), 8.02 – 7.97 (m, 2H), 7.82 – 7.77 (m, 2H), 7.69 (dd, J = 7.2, 4.7 Hz, 3H), 7.56 (dd, J = 16.1, 7.9 Hz, 3H), 7.48 – 7.38 (m, 4H), 7.29 – 7.22 (m, 4H), 6.49 (t, J = 9.7 Hz, 1H, H-2’), 6.31 (d, J = 9.4 Hz, 1H, H-1’), 6.19 (d, J = 3.0
Hz, 1H, H-4'), 5.90 (dd, J = 10.1, 3.2 Hz, 1H, H-3'), 4.72-4.62 (m, 2H, H-5' and H-6'), 4.51 (dd, J = 11.1, 5.7 Hz, 1H, H-6'), 1.35 (s, 18H, Boc). ¹³C NMR (101 MHz, CDCl₃) δ 166.10, 165.45, 165.42, 164.98(4Bz), 153.26(C-4), 152.56(C-2), 150.82(C-6), 150.17(Boc), 142.51(C-8), 134.06, 133.86, 133.65, 133.52, 130.12, 129.93, 129.91, 129.79, 129.25, 128.99, 128.96, 128.76, 128.58, 128.49, 128.46, 127.85(C-5), 83.85(Boc), 81.68(C-1'), 74.70(C-5'), 72.05(C-3'), 68.87(C-2'), 68.12(C-4'), 62.04(C-6'), 27.76(Boc). HRMS (ESI) calcd for C₄₉H₄₈N₅O₁₃ [M+H]⁺:914.3249, found: 914.3247.

1-(2',3',4',6'-Tetra-O-benzyl-D-galactopyranosyl)-uracil (29)

For the α-isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H, NH), 7.59 (d, J = 8.2 Hz, 1H, H-6), 7.39 – 7.24 (m, 18H, benzyl), 7.02 (dd, J = 6.6, 2.9 Hz, 2H, benzyl), 6.04 (d, J = 1.8 Hz, 1H, H-1'), 5.60 (dd, J = 8.2, 2.1 Hz, 1H, H-5), 4.65 – 4.47 (m, 7H), 4.32 (d, J = 11.7 Hz, 1H), 4.16 (dt, J = 11.9, 4.6 Hz, 2H), 4.05 (dd, J = 6.4, 2.8 Hz, 1H), 3.83 – 3.77 (m, 2H), 3.68 (dd, J = 6.4, 2.8 Hz, 1H).

For the β-isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H, NH), 7.41 – 7.22 (m, 18H, benzyl), 7.17 (dd, J = 6.5, 3.1 Hz, 2H, benzyl), 6.94 (d, J = 8.2 Hz, 1H, H-6), 5.58 (d, J = 8.9 Hz, 1H, H-1'), 5.34 (dd, J = 8.1, 2.1 Hz, 1H, H-5), 4.95 (d, J = 11.3 Hz, 1H, CH₂Ph), 4.83 – 4.72 (m, 3H, CH₂Ph), 4.57 (dd, J = 16.6, 11.6 Hz, 2H, CH₂Ph), 4.44 (q, J = 11.9 Hz, 2H, CH₂Ph), 3.99 (d, J = 2.0 Hz, 1H, H-4'), 3.87 (t, J = 9.2 Hz, 1H, H-3'), 3.78 – 3.70 (m, 2H, H-2', H-5'), 3.58 – 3.47 (m, 2H, H-6'a, H-6'b).

1-(2',3',4',6'-Tetra-O-benzyl-β-D-galactopyranosyl)-thymine (30)

(N₄-benzoyl-1-(2',3',4',6'-tetra-O-benzyl-β-D-galactopyranosyl)-cytosine (31)

(Rf = 0.31, petroleum: ethyl acetate = 1:1) ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H, NH), 7.42 – 7.13 (m, 20H, benzyl), 6.65 (d, J = 1.2 Hz, 1H, H-6), 5.58 (d, J = 8.9 Hz, 1H, H-1'), 4.97 (d, J = 11.4 Hz, 1H, CH₂Ph), 4.83 – 4.72 (m, 3H, CH₂Ph), 4.58 (dd, J = 20.0, 11.7 Hz, 2H, CH₂Ph), 4.45 (q, J = 11.9 Hz, 2H, CH₂Ph), 4.00 (d, J = 1.9 Hz, 1H), 3.85 (t, J = 9.1 Hz, 1H), 3.79 – 3.70 (m, 2H), 3.53 (ddd, J = 15.0, 9.2, 6.6 Hz, 2H, H-6'a, H-6'b), 1.63 (d, J = 1.1 Hz, 3H, CH₃-thymine).

N₄-benzoyl-1-(2',3',4',6'-tetra-O-benzyl-β-D-galactopyranosyl)-cytosine (31)

(Rf = 0.49, petroleum: ethyl acetate = 1:2) ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.42 – 7.10 (m, 22H), 5.88 (d, J = 8.2 Hz, 1H, H-1'), 4.98 (d, J = 11.3 Hz, 1H, CH₂Ph), 4.84 – 4.72 (m, 3H, CH₂Ph), 4.61 (d, J = 11.3 Hz, 1H, CH₂Ph), 4.55 – 4.38 (m, 3H, CH₂Ph), 4.01 (d, J = 2.0 Hz, 1H), 3.91 (t, J = 9.2 Hz, 1H), 3.84 – 3.74 (m, 2H), 3.61 – 3.48 (m, 2H).
1-(2',3',4',6'-Tetra-O-benzyl-D-glucopyranosyl)-uracil (32)

For the α-isomer: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.00 (s, 1H), 7.62 (d, \(J = 8.2\) Hz, 1H), 7.39 – 7.27 (m, 16H), 7.19 (dd, \(J = 7.0, 2.4\) Hz, 2H), 7.14 (dd, \(J = 6.6, 2.7\) Hz, 2H), 6.03 (d, \(J = 3.2\) Hz, 1H), 5.62 (dd, \(J = 8.2, 2.2\) Hz, 1H), 4.59 – 4.40 (m, 7H), 4.35 – 4.28 (m, 2H), 4.05 (t, \(J = 3.0\) Hz, 1H), 3.83 (t, \(J = 3.1\) Hz, 1H), 3.73 (dd, \(J = 10.6, 2.7\) Hz, 1H), 3.70 – 3.62 (m, 2H).

For the β-isomer: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.44 (d, \(J = 1.5\) Hz, 1H), 7.38 – 7.26 (m, 16H), 7.17 (td, \(J = 8.1, 3.1\) Hz, 4H), 6.89 (d, \(J = 8.2\) Hz, 1H), 5.61 (d, \(J = 9.1\) Hz, 1H), 5.37 (dd, \(J = 8.1, 2.2\) Hz, 1H), 4.93 (s, 2H), 4.82 (dd, \(J = 22.9, 11.3\) Hz, 2H), 4.60 (d, \(J = 10.8\) Hz, 1H), 4.56 – 4.45 (m, 3H), 3.86 (t, \(J = 9.0\) Hz, 1H), 3.75 – 3.58 (m, 4H), 3.47 (t, \(J = 9.0\) Hz, 1H).

1-(2',3',4',6'-Tetra-O-benzyl-D-glucopyranosyl)-thymine (33)

For the α-isomer: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.90 (s, 1H), 7.45 (d, \(J = 1.1\) Hz, 1H), 7.39 – 7.27 (m, 16H), 7.20 (dd, \(J = 7.0, 2.4\) Hz, 2H), 7.12 (dd, \(J = 7.3, 2.0\) Hz, 2H), 6.04 (d, \(J = 3.2\) Hz, 1H), 4.59 – 4.49 (m, 5H), 4.44 (t, \(J = 11.1\) Hz, 2H), 4.36 – 4.27 (m, 2H), 4.03 (t, \(J = 3.0\) Hz, 1H), 3.83 (t, \(J = 3.1\) Hz, 1H), 3.74 (dd, \(J = 10.5, 3.0\) Hz, 1H), 3.69 – 3.63 (m, 2H), 1.81 (d, \(J = 0.9\) Hz, 3H).

For the β-isomer: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.07 (s, 1H), 7.38 – 7.20 (m, 16H), 7.17 (dd, \(J = 5.7, 3.7\) Hz, 4H), 6.65 (d, \(J = 1.1\) Hz, 1H), 5.59 (d, \(J = 9.2\) Hz, 1H), 4.94 (s, 2H), 4.81 (dd, \(J = 21.7, 11.4\) Hz, 2H), 4.59 (d, \(J = 10.7\) Hz, 1H), 4.55-4.45 (m, 3H), 3.86 (t, \(J = 9.0\) Hz, 1H), 3.77 – 3.68 (m, 2H), 3.65 (dd, \(J = 11.0, 1.7\) Hz, 1H), 3.62 – 3.56 (m, 1H), 3.46 (t, \(J = 9.0\) Hz, 1H), 1.67 (d, \(J = 0.9\) Hz, 3H).

\(N^4\)-benzoyl-1-(2',3',4',6'-tetra-O-benzyl-β-D-glucopyranosyl)-cytosine (34)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.94 (s, 2H), 7.64 (t, \(J = 7.4\) Hz, 1H), 7.54 (t, \(J = 7.6\) Hz, 2H), 7.38 – 7.27 (m, 14H), 7.23 – 7.10 (m, 8H), 5.91 (d, \(J = 7.7\) Hz, 1H, H-1'), 4.97 – 4.89 (m, 2H, CH\(_2\)Ph), 4.95-4.80 (m, 1H, CH\(_2\)Ph), 4.74 (d, \(J = 11.8\) Hz, 1H, CH\(_2\)Ph), 4.61 (d, \(J = 10.7\) Hz, 1H, CH\(_2\)Ph), 4.54 (d, \(J = 12.2\) Hz, 1H, CH\(_2\)Ph), 4.47 (dd, \(J = 12.0, 3.2\) Hz, 2H, CH\(_2\)Ph), 3.91 (t, \(J = 8.9\) Hz, 1H, H-4'), 3.82 – 3.72 (m, 2H, H-3' and H-2'), 3.70 – 3.62 (m, 2H), 3.52 (t, \(J = 8.7\) Hz, 1H).
1-(3',5'-Di-O-benzoyl-2'-deoxy-β-D-ribofuranosyl)-thymine (35)

(Rf = 0.50, petroleum: ethyl acetate = 1:2) \(^1\text{H NMR (400 MHz, CDCl}_3 \)) \(\delta \) 8.77 (s, 1H), 8.06 (t, \(J = 8.2 \) Hz, 4H), 7.62 (t, \(J = 7.4 \) Hz, 2H), 7.48 (t, \(J = 7.0 \) Hz, 4H), 7.26 (s, 1H, H-6), 6.47 (dd, \(J = 8.6, 5.6 \) Hz, 1H, H-1'), 5.66 (d, \(J = 6.4 \) Hz, 1H, H-3'), 4.80 (dd, \(J = 12.2, 2.8 \) Hz, 1H, H-5'), 4.69 (dd, \(J = 12.2, 3.3 \) Hz, 1H, H-5'), 4.54 (d, \(J = 2.2 \) Hz, 1H, H-4'), 2.72 (dd, \(J = 14.2, 5.2 \) Hz, 1H, H-2'), 2.41 – 2.29 (m, 1H, H-2'), 1.62 (s, 3H, -CH3).

1-(3',5'-Di-O-benzoyl-2'-deoxy-β-D-ribofuranosyl)-uracil (36)

(Rf = 0.43, petroleum: ethyl acetate = 1:2) \(^1\text{H NMR (400 MHz, CDCl}_3 \)) \(\delta \) 8.10 – 8.05 (m, 3H), 8.02 (dd, \(J = 8.4, 1.3 \) Hz, 2H), 7.65 – 7.59 (m, 2H), 7.54 – 7.45 (m, 5H), 6.40 (dd, \(J = 8.4, 5.6 \) Hz, 1H), 5.63 (dt, \(J = 6.5, 2.1 \) Hz, 1H), 5.59 (dd, \(J = 8.2, 2.3 \) Hz, 1H), 4.77 – 4.68 (m, 2H), 4.56 (dd, \(J = 6.0, 3.4 \) Hz, 1H), 2.76 (dd, \(J = 14.4, 5.7, 2.0 \) Hz, 1H), 2.33 (dd, \(J = 14.6, 8.3, 6.7 \) Hz, 1H).

\(^4\text{-benzoyl-1-(3',5'-Di-O-benzoyl-2'-deoxy-β-D-ribofuranosyl)-cytosine (37)}\)

(Rf = 0.32, petroleum: ethyl acetate = 1:2) \(^1\text{H NMR (400 MHz, CDCl}_3 \)) \(\delta \) 8.14 - 8.05 (m, 3H), 8.03 – 7.97 (m, 2H), 7.89 (d, \(J = 7.5 \) Hz, 2H), 7.65 – 7.42 (m, 10H), 6.41 (dd, \(J = 7.9, 5.6 \) Hz, 1H, H-1'), 5.64 (dt, \(J = 6.4, 1.9 \) Hz, 1H), 4.76 (qd, \(J = 12.2, 3.5 \) Hz, 2H), 4.67 (dd, \(J = 5.8, 3.3 \) Hz, 1H), 3.16 – 3.06 (m, 1H, H-2'), 2.31 (ddd, \(J = 14.5, 7.8, 6.6 \) Hz, 1H, H-2').
References

35

36