Aza-BODIPY Dyes With Enhanced Hydrophilicity

Supporting Information

Anyanee Kamkaewa and Kevin Burgessa,b

a Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842.
b Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.

1. General Procedures .. 2
2. Syntheses Of Sulfonated aza-BODIPY Derivatives ... 3
3. Spectroscopic Data Of Compound 4. .. 14
4. Thermodynamic Equilibrium Solubility Measurement ... 16
5. Cell Culture And Imaging Studies .. 17
1. **General Procedures**

All reactions were carried out under an atmosphere of dry argon. Glassware was oven-dried prior to use. Unless otherwise indicated, common reagents or materials were obtained from commercial source and used without further purification. Dry DMF, (<50 ppm water) was purchased from EMD. Tetrahydrofuran (THF), acetonitrile (MeCN), dichloromethane (CH$_2$Cl$_2$), and methanol (MeOH) were dried by MBRAUN solvent drying system. Other solvents and reagents were used as received.

NMR spectra were recorded on a Bruker-400 MHz spectrometer (1H at 400 MHz and 13C at 100 MHz) at room temperature unless otherwise mentioned. Chemical shifts of 1H NMR spectra were recorded and reported in ppm from the solvent resonance (CDCl$_3$ 7.26 ppm, CD$_3$OD 3.30 ppm, DMSO-d$_6$ 2.50 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants, and number of protons. Proton decoupled 13C NMR spectra were also recorded in ppm from tetramethylsilane (TMS) resonance (CDCl$_3$ 77.0, CD$_3$OD 49.1, DMSO-d$_6$ 39.5 ppm). Analytical thin layer chromatography (TLC) was performed on EM Reagents 0.25 mm silica-gel 60-F plates, and visualized with UV light. Flash chromatography was performed using silica gel 60 (230–400 mesh). MS were measured under ESI or MALDI conditions.
2. Syntheses of Sulfonated aza-BODIPY Derivatives

Table S1. Conditions to form BF$_2$ complex.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Base</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>toluene</td>
<td>'Pr$_2$EtN</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>'Pr$_2$EtN</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>Et$_3$N</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>NaH</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>CH$_2$CH$_2$Cl$_2$</td>
<td>'Pr$_2$EtN</td>
<td>60</td>
<td>12</td>
</tr>
</tbody>
</table>

Fig. S1 11B NMR of the crude product showed the loss of the BF$_2$ fragment.
1-(4-methoxyphenyl)-4-nitro-3-(3-nitrophenyl)butan-1-one (7).

Potassium hydroxide (33.6 g, 60 mmol) was added to a solution of chalcone H (17 g, 60 mmol) in MeOH (250 mL) at 25 °C. Nitromethane (64 mL, 1.2 mol) was added to the reaction mixture, and then the reaction was heated to reflux at 78 °C for 24 h. After the reaction was cooled to 25 °C, HCl (0.2 N) was added to neutralize. Precipitate was filtered out and washed with cold MeOH. The product was obtained as slightly brown
solid (14.5 g, 70 % yield) and used without further purification. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.21 (s, 1H), 8.19 (d, \(J = 7.7\) Hz, 1H), 7.92 (d, \(J = 8.9\) Hz, 2H), 7.69 (d, \(J = 7.7\) Hz 1H), 7.54 (dd, \(J = 7.9, 7.9\) Hz, 1H), 6.95 (d, \(J = 8.9\) Hz, 2H), 4.89 (m, 1H), 4.75 (m, 1H), 4.38 (m, 1H), 3.90 (S, 3 H), 3.47 (d, \(J = 6.9\) Hz, 2H). 13C (100 MHz, CDCl\textsubscript{3}) \(\delta\) 194.3, 164.1, 141.5, 134.3, 130.3, 130.2, 130.0, 129.1, 122.9, 122.2, 114.0, 79.0, 55.5, 40.7, 39.0. MS (ESI+) calcd for C\textsubscript{17}H\textsubscript{17}N\textsubscript{2}O\textsubscript{6} \{M+H\}+ 345.1087, found 345.1096.

(Z)-5-(4-methoxyphenyl)-N-(5-(4-methoxyphenyl)-3-(3-nitrophenyl)-1H-pyrrol-2-yl)-3-(3-nitrophenyl)-2H-pyrrol-2-imine (1).

7 (10 g, 29 mmol) was dissolved in 6BuOH (300 mL). Ammonium acetate (78 g, 1 mol) was added to the solution. The reaction was heated up to reflux at 120 °C and stirred for 24 h. The mixture was cooled to 40 °C, then the solvent was removed. The residue was precipitated in cold EtOH, the solid was filtered to give dark solid 1 (9 g, 52 % yield). The product was used without further purification. NMR spectra cannot be obtained from compound 1 due to solubility. However, after complexation with BF\textsubscript{2} to yield compound 3, the NMR was obtained nicely. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.92 (s, 2H), 8.37 (d, \(J = 7.2\) Hz, 2H), 8.28 (d, \(J = 8.0\) Hz, 2H), 8.14 (d, \(J = 8.6\) Hz, 4H), 7.70 (t, \(J = 7.8\) Hz, 2H), 7.20 (s, 2H), 7.06 (d, \(J = 8.6\) Hz, 4H), 3.91 (s, 6H). 13C (100 MHz, CD\textsubscript{2}Cl\textsubscript{2}) \(\delta\) 161.6, 158.3, 155.5, 149.4, 148.7, 141.3, 140.8, 135.0, 133.7, 133.3, 132.4, 131.5, 130.7, 130.3, 130.2, 128.9, 124.2, 124.1, 124.0, 122.5, 122.3, 117.6, 116.7, 114.8, 114.6, 55.8. HRMS(ESI-) calcd for C\textsubscript{14}H\textsubscript{24}BCIF\textsubscript{2}N\textsubscript{6}O\textsubscript{6} \{M+Cl\}- 682.1476, found 682.1464.

Synthesis of disulfonic acid (2a, 2b)

1 (30 mg, 0.05 mmol) was dissolved in CH\textsubscript{2}Cl\textsubscript{2} (5.5 mL) and the solution was cooled to -40 °C. Solution of chlorosulfonic acid (1 eq. for 2a and 4 eq. for 2b) in CH\textsubscript{2}Cl\textsubscript{2} (0.5 mL) was slowly added to the solution over 5 min at -40 °C. The mixture was slowly warmed to 25 °C and stirred for 5-12 h. The reaction was quenched with sat. NaHCO\textsubscript{3} at -40 °C. Organic layer was separated and the crude product was purified by flash silica chromatography eluting with CH\textsubscript{2}Cl\textsubscript{2}:MeOH (85:15) to yield 20 mg (60 %) of 2a as a purple powder. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 8.54 (s, 2H), 8.18 (d, \(J = 7.2\) Hz, 1H), 8.18 (d, \(J = 7.6\) Hz, 1H), 8.13 (d, \(J = 7.6\) Hz, 1H), 8.06 (d, \(J = 7.2\) Hz, 1H), 7.95 (d, \(J = 7.6\) Hz, 1H), 7.28 (d, \(J = 7.6\) Hz, 1H), 7.18 (d, \(J = 7.6\) Hz, 1H), 6.06 (d, \(J = 7.2\) Hz, 1H), 5.75 (d, \(J = 7.6\) Hz, 1H), 5.65 (d, \(J = 7.6\) Hz, 1H), 4.70 (s, 2H), 4.30 (s, 2H), 3.98 (s, 6H), 3.80 (s, 6H). MS (ESI+) calcd for C\textsubscript{34}H\textsubscript{24}BCIF\textsubscript{2}N\textsubscript{6}O\textsubscript{6} \{M+H\}+ 882.1476, found 882.1464.
7.8 Hz, 2H), 7.91 (d, J = 8.1 Hz, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.37 (s, 1H), 7.34-7.8 (m, 1H, overlap with CDCl₃) 7.01-6.97 (m, 4H), 3.86 (s, 6H). HRMS (ESI-) calcd for C₃₄H₂₄N₅O₉-{M-Na}⁻ 678.1300, found 678.1321. For 2b, the product was precipitated from the reaction. The precipitate was filtered to give a purple powder 60 mg, 79 % yield. NMR cannot be obtained due to solubility. HRMS (ESI-) calcd for C₃₄H₂₃N₄NaO₁₂S₂⁻ {M-Na}⁻ 780.0676, found 780.0640.

3,3'-((5,5-difluoro-3,7-bis(4-methoxyphenyl)-5H-4λ⁴,5λ⁴-dipyrrrolo[1,2-c:2',1'-f][1,3,5,2]triazaborinine-1,9-diyl)dianiline (5).

1 (1 g, 1.67 mmol) was dissolved in CH₂Cl₂ : MeOH (1:1, 30 mL). Pd/C (180 mg, 0.17 mmol) was added to the solution. The mixture was stirred under H₂ (1 atm) at 25 °C for 20 h, the reaction was followed by TLC. The product was filtered through Celite® to give dark blue solid after the solvent was removed. The solid was then dissolved in CH₂Cl₂ (200 mL), N,N-diisopropylethylamine (2.9 mL, 16.7 mmol) was added to the solution. The mixture was stirred at 25 °C for 20 min, BF₃•OEt₂ (3.1 mL, 25 mmol) was then added in portions and the mixture was stirred at 25 °C for 12 h. The reaction was quenched with careful addition of H₂O (20 mL) and the system was stirred vigorously for 15 min. The organic layer was separated and washed with HCl (0.2 N, 1 x 10 mL), NaOH (2 N, 2 x 10 mL) and brine (10 mL). The organic layer was dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by flash silica chromatography eluting with EtOAc:Hexanes (3:1 to 2:1) to yield 883 mg (90 %) of 4 as a dark green solid. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.9 Hz, 4H), 7.71 (s, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.24 (d, J = 7.8 Hz, 2H), 7.03 (d, J = 9.8 Hz, 4H). 6.77-6.74 (m, 2H), 3.91 (s, 6H). ¹³C (100 MHz, CDCl₃) δ 161.9, 158.0, 146.6, 145.3, 143.0, 133.5, 131.6, 129.4, 124.3, 119.3, 118.6, 116.4, 116.2, 114.2, 55.4. ¹¹B NMR (128 MHz, CDCl₃) δ 0.94 (t, J = 31.9 Hz, BF₂) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -131.89 (q, J = 31.9 Hz, BF₂). HRMS (ESI+) calcd for C₃₄H₂₉BF₂N₅O₂ {M+H}⁺ 588.2382, found 588.2359.

(2R,2'R)-3,3'(((5,5-difluoro-3,7-bis(4-methoxyphenyl)-5H-4λ⁴,5λ⁴-dipyrrrolo[1,2-c:2',1'-f][1,3,5,2]triazaborinine-1,9-diyl)bis(3,1-phenylene))bis(azanediyl))bis(2-
Boc-protected Cysteic acid (367 mg, 1.28 mmol) was dissolved in DMF and cooled to 0 °C. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, EDC (274 mg, 1.43 mmol) and 1-hydroxy-7-azabenzotriazole, HOAt (198 mg, 1.46 mmol) were added to the solution. After stirring for 30 min, compound 5 (150 mg, 0.26 mmol) was added to the reaction mixture. N,N-Diisopropylethylamine (0.45 mL, 2.6 mmol) was then added in one portion. The reaction was stirred at 25 °C for 14 h. The solvent was removed and the product was purified by reverse phase MPLC eluting with water and acetonitrile to yield 212 mg (75 %) as a greenish powder.

\(^1H \) NMR (400 MHz, CD\(_3\)OD) \(\delta \) 8.14 (s, 2H), 8.08 (d, \(J = 8.6 \) Hz, 4H), 7.90 (d, \(J = 6.0 \) Hz, 2H), 7.53 (m, 2H), 7.33 (m, 2H), 7.15 (s, 2H), 6.98 (d, \(J = 8.6 \) Hz, 4H), 3.86 (s, 6H), 3.62-3.59 (m, 2H), 3.17-3.11 (m, 4H), 1.47 (s, 18H).

\(^13C \) (100 MHz, CD\(_3\)OD) \(\delta \) 170.3, 162.2, 160.1, 157.7, 156.2, 144.9, 142.2, 138.4, 132.7, 131.7, 128.7, 125.7, 123.6, 120.4, 118.9, 79.7, 55.2, 54.8, 42.1, 27.4. HRMS (MALDI-) calcd for C\(_{50}\)H\(_{53}\)BF\(_2\)N\(_7\)O\(_{14}\)S\(_2\) \({\text{[M-H]}}^-\) 1088.3156, found 1088.3108.

\((R)\)-2-amino-3-((3-9-(3-(\(R\))-2-amino-3-sulfopropanamido)phenyl)-5,5-difluoro-3,7-bis(4-methoxyphenyl)-5H-4i,4i,5i,5i-dipyrrolo[1,2-c:2',1'-f][1,3,5,2]triazaborinin-1-yl)phenyl)amino)-3-oxopropane-1-sulfonic acid (4).

Compound 5 (40 mg, 0.37 mmol) was dissolved in dioxane (2 M, 5 mL). Solution of HCl in dioxane (5 mL) was added into the solution. The reaction was stirred at 25 °C for 1 h. The solvent was removed to yield 4 33 mg, quantitative yield as a green solid.

\(^1H \) NMR (400 MHz, DMSO-d6) \(\delta \) 10.81 (s, 2H), 8.25 (s, 2H), 8.17 (d, \(J = 8.9 \) Hz, 4H), 7.95 (d, \(J = 7.7 \) Hz, 2H), 7.74 (d, \(J = 7.2 \) Hz, 2H), 7.51 (t, \(J = 8.0 \) Hz, 2H), 7.44 (s, 2H), 7.16 (d, \(J = 8.9 \) Hz, 4H), 4.19 (br, 2H), 3.90 (s, 6H), 3.21-3.18 (m, 2H), 2.94 (dd, \(J = 9.8 \) Hz, 4H).

\(^13C \) (100 MHz, DMSO-d6) \(\delta \) 166.5, 162.6, 158.0, 145.0, 142.7, 139.0, 132.8, 132.3, 129.8 125.9, 123.6, 121.6, 120.5, 120.3, 115.0, 56.1, 51.5, 50.7.

\(^{11}B \) NMR (128 MHz, DMSO-d6) \(\delta \) : 0.88 (t, \(J = 32.0 \) Hz, BF2) ppm.

\(^{19}F \) NMR (376 MHz, DMSO-d6) \(\delta \) : -130.52 (q, \(J = 32.0 \) Hz, BF2). HRMS (MALDI-) calcd for C\(_{40}\)H\(_{36}\)BF\(_2\)N\(_7\)NaO\(_{10}\)S\(_2\) \{M-Na\}^- 910.1925, found 910.1968.
^{1}H-NMR of compound 7

^{13}C-NMR of compound 7
$^{1}{H}$-NMR of compound 3

$^{13}{C}$-NMR of compound 3
1H-NMR of compound 2a

1H-NMR of compound 5
$^{11}\text{B, }^{19}\text{F-NMR of compound 5}$

$^{13}\text{C-NMR of compound 5}$
S13

\[^1\text{H-NMR of compound 4} \]

\[^{11}\text{B}, ^{19}\text{F-NMR of compound 4} \]
Fig. S2 UV and fluorescent spectra of 4 in DMSO.

Table S2. Spectroscopic Data of Compound 4.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>λ_{abs max} (nm)</th>
<th>ε (M^{-1} cm^{-1}) \times 10^4</th>
<th>λ_{emis max} (nm)^a</th>
<th>Φ_F^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>703</td>
<td>6.12</td>
<td>730</td>
<td>0.17 ± 0.003</td>
</tr>
<tr>
<td>PBS^c</td>
<td>701</td>
<td>4.72</td>
<td>729</td>
<td>0.34 ± 0.010</td>
</tr>
</tbody>
</table>

^a Excited at 650 nm. ^b Relative to Zn-pthalocyanine in 1% pyridine/toluene (Φ_F = 0.30). ^c Contained 0.1% CrEL, pH 7.4.
4. Thermodynamic Equilibrium Solubility Measurement

Stock solutions (0.1 M) of test compounds were prepared in DMSO then diluted with aqueous media (PBS pH 7.4 or carbonate buffer pH 9 or acetate buffer pH 4) to desired concentrations (0 – 1000 μM, the highest concentration contained 1 % DMSO). Then, the plate covered with aluminium foil was shaken horizontally for 6 h at 25 °C and kept overnight for equilibration. Thereafter, the plate was centrifuged at 100 rpm for 20 min. Supernatant was pipetted into 96-well UV transparent plate (Corning® 96 Well Clear Flat Bottom UV-Transparent Microplate) and analyzed at λ = 680 nm of compounds against blank using microplate reader (Biotek Synergy H4).
Fig. S4 Solubility Profile.

a Compound 4 is soluble in PBS pH 7.4 up to 100 µM and more than 1 mM can be dissolved in carbonate buffer pH 9.

b In acetate buffer, compound 4 is only soluble up to 20 µM, whereas 5 can be soluble up to 50 µM. The analysis was performed in triplicate for each compound.

5. **Cell Culture And Imaging Studies**

4T1 cells were cultured on 75 cm² culture flasks in Dulbecco’s Modified Eagle Medium/nutrient mixture F-12 (DMEM/F12, Sigma Chemical, St. Louis, MO) supplemented with 10 % FBS. Cells were cultures in a humidified incubator at 37 °C with 5 % CO₂ and 95 % air.

Subcellular localization was measured on living 4T1 cells using a Olympus FV1000 Confocal Microscope. Throughout, digital images were captured with a 100x / 1.4 oil objective with the following filter sets: for LysoTracker Green: excitation 488 nm; for aza-BODIPY 4: excitation 633 nm. Sequential optical sections (Z-stacks) from the basal-to-apical surfaces of the cell were also acquired.

Lysosomal Co-localization

Cells were incubated with fluors for 3 h at 37 °C. After the cells were washed with PBS (2X), LysoTracker Green was added and the cells were incubated for 30 min at 37 °C. The cells were washed again with PBS before imaging.