Supporting Information

Direct Fluorination of Benzylic C-H Bonds with N-Fluorobenzenesulfonimide

Matthew B. Nodwell†, Abhimanyu Bagai†, Shira D. Halperin†, Rainer E. Martin‡, Henner Knust‡ and Robert Britton†.

†Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
‡Medicinal Chemistry, Small Molecule Research, Pharma Research & Development (pRED), F. Hoffmann-La Roche AG Grenzacherstrasse 124, 4070 Basel, Switzerland

rbritton@sfu.ca

Table of contents

S1

General considerations and reaction procedures
S1-S2

Characterization data for all compounds
S3-S6

Supporting table S1: Optimization of TBADT-catalyzed benzylic fluorination
S7

Supporting figure S1: Flow apparatus setup
S8

NMR spectra for all compounds
S9-S25

Supplementary references
S26

General Considerations

All reactions were carried out with commercial solvents and reagents that were used as received. For extended TBADT photochemical reactions, degassing of the solvent was carried out via several freeze/pump/thaw cycles. Flash chromatography was carried out with 230-400 mesh silica gel (SiliCycle, SiliaFlash® P60). Concentration and removal of trace solvents was done via a Büchi rotary evaporator using dry ice/acetone condenser, and vacuum applied from an aspirator or Büchi V-500 pump. All reagents and starting materials were purchased from Sigma Aldrich, Alfa Aesar, TCI America,
and/or Strem, and were used without further purification. All solvents were purchased from Sigma Aldrich, EMD, Anachemia, Caledon, Fisher, or ACP and used without further purification, unless otherwise specified. Nuclear magnetic resonance (NMR) spectra were recorded using chloroform-d (CDCl$_3$) or acetonitrile-d$_3$). Signal positions (δ) are given in parts per million from tetramethylsilane (δ 0) and were measured relative to the signal of the solvent (1H NMR: CDCl$_3$: δ 7.26, (CD$_3$CN: δ 1.94; 13C NMR: CDCl$_3$: δ 77.16, CD$_3$CN: δ 118.26). 19F NMR spectra were referenced to CFCl$_3$ (at 0.0 ppm) using an external standard 1,3,5-tris(trifluoromethyl)benzene in CDCl$_3$ set to -65.3 ppm contained in a coaxial tube. Coupling constants (J values) are given in Hertz (Hz) and are reported to the nearest 0.1 Hz. 1H NMR spectral data are tabulated in the order: multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quint, quintet; m, multiplet), coupling constants, number of protons. NMR spectra were recorded on a Bruker Avance 600 equipped with a QNP or TCI cryoprobe (600 MHz), Bruker 500 (500 MHz), or Bruker 400 (400 MHz). Assignments of 1H and 13C NMR spectra are based on analysis of 1H-1H COSY, HSQC, HMBC, TOCSY and 1D NOESY spectra, where applicable. Where necessary, 1,3,5-tris(trifluoromethyl)benzene was added to the crude reaction mixtures and used as an internal standard. Yields were then calculated following analysis of 1H NMR spectra. Compounds that were not purified and whose yield was determined by NMR spectroscopic analysis of the crude reaction mixture with the addition of an internal standard were structurally identified by comparison of their spectral data to that reported previously: 22, 23, and 24. Volatile substrates 31, 32, 33, 34, 35 and 36 were partially purified by extraction of the crude reaction mixtures with pentane. Removal of the solvent via careful air-drying yielded mixtures of these compounds. No further purification was carried out to separate isomers of these compounds or to remove unreacted starting materials. High-resolution mass spectra were performed on an Agilent 6210 TOF LC/MS, Bruker MaXis Impact TOF LC/MS, or Bruker microOTOF-II LC mass spectrometer. In the cases where complete separation of starting material and product was not possible, the product yield was calculated taking into account the amount of starting material remaining in the sample (as measured by 1H NMR spectroscopy).

Method A: Photochemical reaction with TBADT

A suspension of substrate (1 eq), NFSI (3 eq), TBADT (2 mol %), and Li$_2$CO$_3$ or NaHCO$_3$ (1 eq) in CH$_3$CN (0.6-0.8 M substrate) was degassed via 3 x freeze/pump/thaw cycles. The reaction was irradiated with a black light (long-wave UV, ~365 nm) for 24-72 h, until reaction progress as analyzed by 1H NMR spectroscopy indicated no additional reaction progress. The resulting suspension was concentrated to dryness, CH$_2$Cl$_2$ was added and the mixture was filtered through a pad of celite. The crude reaction product was then purified by column chromatography.

Reaction Method B: Thermal AIBN-initiated reaction

To a suspension of substrate (1 eq), NFSI (3 eq) and Li$_2$CO$_3$ (1 eq) was added AIBN (5 mol %, 250 mM solution in CH$_3$CN, 0.6-0.8 M substrate). The resulting reaction mixture was then heated to 75 °C for 16-20 h, cooled and filtered through a pad of celite. The crude reaction product was then purified by column chromatography.

Flow reactions
Substrate (1 eq), NFSI (3 eq) and TBADT (0.02 eq) were dissolved in a minimal amount of degassed CH$_3$CN. Li$_2$CO$_3$ (1 eq) was then added, and the resulting slurry was sonicated for 10 min to break up larger solid particles. This slurry was then pumped through a flow reaction tube (Scheme 4 and Supporting Figure S1) at the following rates:

16: 0.33 mmol/h, 2 h residence time, 66 % isolated yield

17: 0.044 mmol/h, 16 h residence time, 34% isolated yield

20: 0.092 mmol/h, 5 h residence time, 70% isolated yield

The crude reaction products were then purified by column chromatography.

N-(1-phenylethyl)acetamide (12)

The spectral data derived for 12 was consistent with that reported by others.\(^5\)

1H-NMR (400 MHz, CDCl$_3$): δ 7.30 (m, 5H), 5.86 (br s, 1H), 5.12 (m, 1H), 1.48 (d, J = 6.9, 3H); 13C-NMR (100 MHz, CDCl$_3$): δ 169.3, 143.3, 128.8, 127.5, 126.3, 48.9, 23.6, 21.8

HRMS (EI$^+$) calcd for C$_{10}$H$_{13}$NO $^{+}$ 163.0997, found 163.0976

4-(1-acetamidoethyl)phenyl acetate (13)

1H-NMR (500 MHz, CDCl$_3$): δ 7.33 (d, J = 8.6 Hz, 2H), 7.05 (d, J = 8.6 Hz, 2H), 5.69 (br s, 1H), 5.13 (m, 1H), 2.29 (s, 3H), 1.97 (s, 3H), 1.48 (d, J = 6.9 Hz, 3H); 13C-NMR (125 MHz, CDCl$_3$): δ 169.7, 169.2, 150.0, 140.8, 127.6, 121.9, 48.4, 23.6, 21.6, 21.3

HRMS (ESI$^+$) calcd for C$_{12}$H$_{15}$NO$_3$H$^+$ 222.1125, found 222.1109

4-(1-fluoroethyl)phenyl acetate (16)
The spectral data derived for 16 was consistent with that reported by others.\(^4\)

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.37 (d, \(J = 8.1\) Hz, 2H), 7.10 (d, \(J = 8.2\) Hz, 2H), 5.62 (dq, \(J = 47.6, 6.4\) Hz, 1H), 2.31 (s, 3H), 1.64 (dd, \(J = 23.9, 6.5\) Hz, 3H);

\(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta\) 169.6, 150.6 (d, \(J = 2.3\) Hz), 139.2 (d, \(J = 19.9\) Hz), 126.6 (d, \(J = 6.7\) Hz), 121.8, 90.6 (d, \(J = 168.1\) Hz), 23.1 (d, \(J = 25.1\) Hz), 21.3

\(^{19}\)F-NMR (470 MHz, CDCl\(_3\)) \(\delta\) –168.5

HRMS (EI\(^{+}\)) calcd for C\(_{10}\)H\(_{11}\)FO\(_2\)Na\(^+\) 205.0635, found 205.0609

1-(4-(1-fluoroethyl)phenyl)ethan-1-one (17)

The spectral data derived for 15 was consistent with that reported by others.\(^4\)

\(^1\)H-NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.97 (d, \(J = 8.1\) Hz, 2H), 7.43 (d, \(J = 8.1\) Hz, 2H), 5.68 (dq, \(J = 47.6, 6.4\) Hz, 1H), 2.60 (s, 3H), 1.65 (dd, \(J = 24.1, 6.5\) Hz, 3H);

\(^{13}\)C-NMR (125 MHz, CDCl\(_3\)): \(\delta\) 197.8, 146.8 (d, \(J = 19.6\) Hz), 137.0 (d, \(J = 1.8\) Hz), 128.7, 125.2 (d, \(J = 7.3\) Hz), 90.4 (d, \(J = 169.8\) Hz), 26.8, 23.1 (d, \(J = 24.6\) Hz);

\(^{19}\)F-NMR (470 MHz, CDCl\(_3\)) \(\delta\) –173.4

HRMS (EI\(^{+}\)) calcd for C\(_{10}\)H\(_{11}\)FO\(_2\) 182.0743, found 182.0736

methyl 4-(1-fluoroethyl)benzoate (18)

\(^1\)H-NMR (500 MHz, CDCl\(_3\)): \(\delta\) 8.05 (d, \(J = 8.1\) Hz, 2H), 7.41 (d, \(J = 8.1\) Hz, 2H), 5.68 (dq, \(J = 47.6, 6.4\) Hz, 1H), 3.92 (s, 3H), 1.65 (dd, \(J = 24.1, 6.5\) Hz, 3H);

\(^{13}\)C-NMR (125 MHz, CDCl\(_3\)): \(\delta\) 166.9, 146.7 (d, \(J = 19.7\) Hz), 130.6, 130.0, 125.1 (d, \(J = 7.2\) Hz), 90.5 (d, \(J = 169.6\) Hz), 52.3, 23.1 (d, \(J = 24.8\) Hz);

\(^{19}\)F-NMR (470 MHz, CDCl\(_3\)) \(\delta\) –173.2

HRMS (EI\(^{+}\)) calcd for C\(_{10}\)H\(_{11}\)FO\(_2\) 182.0743, found 182.0722

methyl 2-(4-(1-fluoro-2-methylpropyl)phenyl)propanoate, Fluoro-ibuprofen methyl ester (20)

The spectral data derived for 20 was consistent with that reported by others.\(^3\)

\(^1\)H-NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.30 (d, \(J = 8.1\) Hz, 2H), 7.25 (d, \(J = 8.1\) Hz, 2H), 5.08 (dd, \(J = 46.9, 6.8\) Hz, 1H), 3.74 (q, \(J = 7.1\) Hz, 1H), 3.66 (s, 3H), 2.10 (m, 1H), 1.50 (d, \(J = 7.3\) Hz, 3H), 1.02 (d, \(J = 6.78\) Hz, 3H), 0.85 (d, \(J = 6.9\) Hz, 3H);

\(^{13}\)C-NMR (150 MHz, CDCl\(_3\)): \(\delta\) 175.1, 140.5, 138.4 (d, \(J = 20.8\) Hz), 127.5, 126.6 (d, \(J = 7.1\) Hz), 99.2 (d, \(J = 173.6\) Hz), 52.2, 45.3, 34.4 (d, \(J = 22.7\) Hz), 18.7, 18.5 (d, \(J = 5.8\) Hz), 17.7 (d, \(J = 5.1\) Hz);

\(^{19}\)F-NMR (470 MHz, CD\(_2\)CN) \(\delta\) –179.0
4-fluoro-4-phenylbutanenitrile (21)

The spectral data derived for 21 was consistent with that reported by others. 6

\[^1\text{H-NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.38 \ (m, 5H), 5.58 \ (ddd, J = 47.6, 8.5, 4.0 \text{ Hz, 1H}), 2.58 \ (dt, J = 17.0, 7.93 \text{ Hz, 1H}), 2.48 \ (ddd, J = 17.0, 7.7, 5.7 \text{ Hz, 1H}), 2.24 \ (m, 2H); ^{13}\text{C-NMR} \ (150 \text{ MHz, CDCl}_3) \delta 138.4 \ (d, J = 19.7 \text{ Hz}), 129.1 \ (d, J = 1.7 \text{ Hz}), 129.0, 125.4 \ (d, J = 7.0 \text{ Hz}), 118.9, 92.2 \ (d, J = 173.9 \text{ Hz}), 33.1 \ (d, J = 24.8 \text{ Hz}), 13.5 \ (d, J = 4.9 \text{ Hz}); ^{19}\text{F-NMR} \ (470 \text{ MHz, CDCl}_3) \delta -181.8 \]

5-chloro-4-fluoro-3,4-dihydronaphthalen-1(2H)-one (25)

\[^1\text{H-NMR} \ (500 \text{ MHz, CDCl}_3) \delta 8.01 \ (d, J = 7.9 \text{ Hz, 1H}), 7.67 \ (d, J = 7.9 \text{ Hz, 1H}), 7.48 \ (dt, J = 7.9, 2.2 \text{ Hz, 1H}), 6.11 \ (dt, J = 48.5, 2.6 \text{ Hz, 1H}), 3.04 \ (m, 1H), 2.68 \ (m, 2H), 2.33 \ (m, 1H); ^{13}\text{C-NMR} \ (125 \text{ MHz, CDCl}_3) \delta 196.0 \ (d, J = 1.9 \text{ Hz}), 135.6 \ (d, J = 22.4 \text{ Hz}), 135.5 \ (d, J = 10.2 \text{ Hz}), 134.9 \ (d, J = 2.7 \text{ Hz}), 133.9 \ (d, J = 2.4 \text{ Hz}), 131.1 \ (d, J = 3.7 \text{ Hz}), 125.8 \ (d, J = 2.7 \text{ Hz}), 83.3 \ (d, J = 168.8 \text{ Hz}), 32.1 \ (d, J = 2.7 \text{ Hz}), 28.1 \ (d, J = 23.6 \text{ Hz}); ^{19}\text{F-NMR} \ (470 \text{ MHz, CDCl}_3) \delta -177.5 \]

Methyl 3-fluoro-3-phenylpropanoate (26)

The spectral data derived for 26 was consistent with that reported by others. 4

\[^1\text{H-NMR} \ (400 \text{ MHz, CDCl}_3) \delta 7.38 \ (m, 5H), 5.93 \ (ddd, J = 46.9, 9.1, 4.1 \text{ Hz, 1H}), 3.74 \ (s, 3H), 3.04 \ (ddd, J = 16.0, 13.5, 9.1 \text{ Hz, 1H}), 2.80 \ (ddd, J = 32.6, 16.0, 4.1 \text{ Hz, 1H}); ^{13}\text{C-NMR} \ (150 \text{ MHz, CDCl}_3) \delta 170.3 \ (d, J = 172.6 \text{ Hz}), 52.2, 42.4 \ (d, J = 27.2 \text{ Hz}); ^{19}\text{F-NMR} \ (470 \text{ MHz, CDCl}_3) \delta -175.3 \]

3-fluoro-5-methyl-2,3-dihydro-1H-inden-1-one (27)

\[^1\text{H-NMR} \ (500 \text{ MHz, CDCl}_3) \delta 7.69 \ (d, J = 7.9 \text{ Hz, 1H}), 7.54 \ (s, 1H), 7.39 \ (d, J = 7.9 \text{ Hz, 1H}), 6.13 \ (ddd, J = 55.5, 6.6, 1.9 \text{ Hz, 1H}), 3.11 \ (ddd, J = 19.0, 12.2, 6.6 \text{ Hz, 1H}), 2.87 \ (ddd, J = 24.0, 19.0, 2.1, 1H), 2.50 \ (s, 3H); ^{13}\text{C-NMR} \ (125 \text{ MHz, CDCl}_3) \delta 200.9, 150.9 \ (d, J = 17.0 \text{ Hz}), 147.0 \ (d, J = 2.7 \text{ Hz}), 135.0, 132.2 \ (d, J = 3.4 \text{ Hz}), 127.1 \ (d, J = 1.8 \text{ Hz}), 123.5, 88.2 \ (d, J = 177.2 \text{ Hz}), 44.4 \ (d, J = 20.8 \text{ Hz}), 22.3; ^{19}\text{F-NMR} \ (470 \text{ MHz, CDCl}_3) \delta -192.1 \]

HRMS (EI+) calcd for C_{14}H_{19}FO_{2}H^{+} 239.1447, found 239.1454

HRMS (EI+) calcd for C_{10}H_{10}FN^{+} 163.0797, found 163.0780

HRMS (EI+) calcd for C_{10}H_{11}FO_{2}^{+} 182.0743, found 182.0756

HRMS (ESI+) calcd for C_{10}H_{8}ClFONa^{+} 221.0140, found 221.0126

HRMS (EI+) calcd for C_{10}H_{15}FO_{2}^{+} 182.0743, found 182.0756

HRMS (ESI+) calcd for C_{10}H_{8}ClFONa^{+} 221.0140, found 221.0126
CDCl₃ δ −170.8

HRMS (EI⁺) calcd for C₁₀H₁₀FO⁺ 165.0710, found 165.0683

3-fluoro-3-methyl-2,3-dihydro-1H-inden-1-one (29)

\[^1H-NMR \quad (500 \text{ MHz, CDCl}_3): \delta 7.77 (d, J = 7.7 \text{ Hz}, 1H), 7.73 (d, J = 4.1 \text{ Hz}, 2H), 7.56 (m, 1H), 3.13 (dd, J = 20.5, 19.0 \text{ Hz}, 1H), 2.88 (dd, J = 19.0, 11.7 \text{ Hz}, 1H), 1.87 (d, J = 21.0 \text{ Hz}, 3H); \]

\[^{13}C-NMR \quad (125 \text{ MHz, CDCl}_3) \delta 201.4 (d, J = 2.7 \text{ Hz}), 153.8 (d, J = 20.2 \text{ Hz}), 136.3 (d, J = 1.8 \text{ Hz}), 135.6 (d, J = 2.3 \text{ Hz}), 130.6 (d, J = 2.7 \text{ Hz}), 124.3, 123.4, 95.5 (d, J = 176.1 \text{ Hz}), 50.7 (d, J = 23.7 \text{ Hz}), 25.9 (d, J = 29.8 \text{ Hz}); \]

\[^{19}F-NMR \quad (470 \text{ MHz, CDCl}_3) \delta −179.9 \]

HRMS (EI⁺) calcd for C₁₀H₁₀FO⁺ 164.0637, found 164.0616

(1-fluoroethane-1,2-diyl)dibenzene (30)

This compound was isolated as an inseparable mixture with the parent compound. The spectral data derived was consistent with that reported by others.⁷

\[^1H-NMR \quad (400 \text{ MHz, CDCl}_3): \delta 7.32 (m, 10H), 5.61 (ddd, J = 47.4, 8.1, 4.9 \text{ Hz}, 1H), 3.27 (ddd, J = 17.4, 14.3, 8.1 \text{ Hz}, 1H), 3.11 (dd, J = 28.7, 14.3, 4.9 \text{ Hz}, 1H); \]

\[^{13}C-NMR \quad (150 \text{ MHz, CDCl}_3) \delta 139.9 (d, J = 19.9 \text{ Hz}), 136.8 (d, J = 3.9 \text{ Hz}), 129.7, 128.5, 128.5, 128.5, 126.9, 125.8 (d, J = 6.6 \text{ Hz}), 95.0 (d, J = 174.1 \text{ Hz}), 44.1(d, J = 24.6 \text{ Hz}); \]

\[^{19}F-NMR \quad (470 \text{ MHz, CDCl}_3) \delta −175.3 \]

HRMS (EI⁺) calcd for C₁₄H₁₃F⁺ 200.1001, found 200.1008
<table>
<thead>
<tr>
<th>Conditions below</th>
<th>2 eq NFSI R = H</th>
<th>24 h irradiation R = C(O)CH₃</th>
<th>3 eq NFSI R = C(O)CH₃</th>
<th>3 eq NFSI R = C(O)CH₃ Deoxygenated reaction mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 eq NFSI R = H</td>
<td>4 h 39 %</td>
<td>24 h 76 %</td>
<td>1 eq NFSI 16 %</td>
<td>24 h 32 %</td>
</tr>
<tr>
<td></td>
<td>24 h 76 %</td>
<td>2 eq NFSI 22 %</td>
<td>2 eq NFSI 22 %</td>
<td>48 h 43 %</td>
</tr>
<tr>
<td></td>
<td>96h 78 %</td>
<td>3 eq NFSI 29 %</td>
<td>3 eq NFSI 29 %</td>
<td>72 h 47 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 eq NFSI 31 %</td>
<td>4 eq NFSI 31 %</td>
<td>96 h 47 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 eq NFSI 51 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supporting Table S1: Optimization of TBADT-catalyzed benzylic fluorination
Supporting Figure S1: Flow apparatus for TBADT-catalyzed benzylic fluorination
1H and 13C NMR spectra of 12
^{1}H and ^{13}C NMR spectra of 13
^{1}H, ^{13}C and ^{19}F NMR spectra of 16
^1H, ^{13}C and ^{19}F NMR spectra of 17
^{1}H, ^{13}C and ^{19}F NMR spectra of 18
1H, 13C and 19F NMR spectra of 20
1H, 13C and 19F NMR spectra of 21
1H, 13C and 19F NMR spectra of 25 containing 6% of isomeric α-fluoroketone
HMBC spectrum of compound 25
1H, 13C and 19F NMR spectra of 26
^{1}H, ^{13}C and ^{19}F NMR spectra of 27
HSQC spectrum of compound 27

HMBC spectrum of compound 27
1H, 13C, 19F NMR spectra of 29 containing 4% starting material
^{1}H, ^{13}C and ^{19}F NMR spectra of 30 containing 7% of the starting material as an inseparable impurity
1H NMR spectrum of a partially purified mixture of 31, 32 and 33 produced using conditions A (Scheme 3)
1H NMR spectrum of a partially purified mixture of 31 and 33 produced using conditions B (Scheme 3)
\(^1\)H NMR spectrum of a partially purified mixture of \(34\), \(35\), and \(36\) produced using conditions B (Scheme 3)
1H NMR spectra of the AIBN-initiated fluorination of 31 with 2, 1 and 0.5 eq. NFSI

\[33 \quad \# \]

\[34 \quad * \]
Supplementary references: