Supporting Information for

*H*-phosphonate-mediated sulfonylation of heteroaromatic N-oxides: a mild and metal-free one-pot synthesis of 2-sulfonyl quinolines/pyridines

Kai Sun, Xiao-Lan Chen,* a Xu Li, a Ling-Bo Qu,*,ab Wen-Zhu Bi, a Xi Chen, a Hui-Li Ma, a Song-Tao Zhang, a Bo-Wen Han, a Yu-Fen Zhao,*ac and Chao-Jun Li d

a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450052, (P. R. China); b Chemistry and Chemical Engineering School, Henan University of Technology, Zhengzhou, 450052, (P. R. China); c Department of Chemistry, Xiamen University, Xiamen, 361005, (P. R. China); d Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A0B8, Canada.

E-mail: chenxl@zzu.edu.cn

Table of Contents

1. General information…………………………………………………………..(S2)
2. Experimental procedures…………………………………………...……(S2-S3)
3. For reactions which were performed in dioxane and ethanol………………………………………………………………………..(S3-S4)
4. Characterization data for products…………………………………….(S4-S13)
5. ¹H NMR, ¹³C NMR, and HRMS (ESI) copies of products…………..(S13-S51)
1. General information

Solvents were freshly distilled from respective drying agents before use. TLC was performed on silica gel plates and preparative chromatograph on columns of silica gel (200-300 mesh). $^1$H, $^{13}$C, and $^{31}$P NMR spectra were recorded with a Bruker Avance 400 MHz spectrometer operating at 400.13, 100.61, and 161.98 MHz, respectively, with $^{13}$C and $^{31}$P NMR spectra being recorded with broad band proton decoupled. All NMR spectra were recorded in CDCl$_3$ at room temperature (20 ± 3 °C). $^1$H and $^{13}$C chemical shifts are quoted in parts per million downfield from TMS. $^{31}$P chemical shifts are quoted in parts per million relative to 85% H$_3$PO$_4$ as an external standard. High resolution mass spectra (HR MS) were obtained with a Waters Micromass Q-Tof Micro instrument using the ESI technique.

2. Experimental procedures

2.1. Synthesis of sulfonylated quinoline derivatives starting from the sulfonyl chloride.

\[
\begin{align*}
\text{Quinoline N-oxides (0.2 mmol), sulfonyl chlorides (0.4 mmol), diisopropyl H-phosphonate (0.2 mmol), KOH (0.8 mmol) in THF (7 mL) was stirred at room temperature for 1 h. The solvent was evaporated under vacuum, and the residue was quenched with water (5 mL), extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed with brine (15 mL) and dried over anhydrous Na$_2$SO$_4$. After filtration, the solvent was evaporated in vacuo. The crude product was purified by silica gel chromatography (petroleum ether: ethyl acetate = 3:1) to give the desired product.}
\end{align*}
\]

2.2. Synthesis of sulfonylated quinoline derivatives starting from the sulfinate salts.

\[
\begin{align*}
\text{Quinoline N-oxides (1.0 mmol), sulfinate salts (1.0 mmol), diisopropyl H-phosphonate (1.0 mmol) KOH (4.0 mmol) and CCl$_4$ (0.5 mL) in THF (15 mL) at room temperature for 1 h. The solvent}
\end{align*}
\]
was evaporated under vacuum, and the residue was quenched with water (5 mL), extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed with brine (15 mL) and dried over anhydrous Na$_2$SO$_4$. After filtration, the solvent was evaporated in vacuo. The crude product was purified by silica gel chromatography (petroleum ether: ethyl acetate = 3:1) to give the desired product.

3. For reactions which were performed in dioxane and ethanol.

3.1 Why was the yield so low when THF was replaced with dioxane (Table 1, entry 23)?

As mentioned in our manuscript, without base no product was formed (Table 1, entry 18). The use of KOH brought about a highest yield among the bases tested (Table 1, entry 2). So we do think that the solubility of KOH in reaction solvent should play a very important role in determining the efficiency of the related reaction. As we have known that dioxane is a non-polar aprotic solvent with low dielectric constant ($\varepsilon=2.25$), however THF is a polar aprotic solvent with relatively high dielectric constant ($\varepsilon=7.58$). Thus, the solubility of KOH in dioxane should be relatively lower than that of KOH in THF. Taking the solubility of KOH into consideration, it can be predicted that much longer reaction time would be taken to fulfill the reaction if using dioxane instead of THF as reaction solvent.

Based on the prediction above, we carried out the same reaction in dioxane using much longer reaction time. As shown as the following, after 8 hours, the target product was efficiently obtained in 78% yield as predicted. Of course, we do think the polarity of solvent could also possibly affect the solubility of the starting reactants like quinoline N-oxide and TsCl and make some difference on the overall efficiency to some extent.

\[
\begin{align*}
1a + 2a & \xrightarrow{1,4\text{-dioxane, r.t. 8 h}} 3a: 78% \\
\text{Reaction conditions: 0.2 mmol of quinoline N-oxide, 0.4 mmol of TsCl, disopropyl H-phosphonate (1.0 equiv), KOH (4.0 equiv) and 7 mL of 1,4-dioxane in a 25 mL round-bottom flask at room temperature for 8 h.}
\end{align*}
\]

3.2 Why was the yield so high when the reaction was performed in ethanol (Table 1, entry 26)?

As we have known from above, the solubility of KOH in reaction solvent should play a very important role in determining the efficiency of the related reaction. Ethanol is a polar protic
solvent with much high dielectric constant ($\varepsilon = 24.5$). The solubility of KOH in ethanol is about 40 g/100 mL. This solubility might well explain why the yield (80%, table 1, entry 26) is so high when the reaction was performed in ethanol. However, this result still could not tell the reason why a relatively high yield (85%, table 1, entry 2) could be obtained when the same reaction was performed in THF ($\varepsilon = 7.58$). Therefore, as shown bellow (Figure 1), we carried out the reaction in ethanol in an enlarged scale to see whether or not there were any other side products which could be formed in ethanol as well. The result showed that, besides the main product 3a, a side product, 2-ethoxyquinoline (4a), was obtained. As described in the mechanism shown below (Figure1), 2-ethoxyquinoline (4a) was formed as ethanol rather than sulfonyl anion acting as nucleophile to attack the intermediate 9. This result might well explained why a relatively low yield was obtained in ethanol in comparison with that in THF.

**Figure 1**

4. Characterization data for products

2-tosylquinoline (3a)

White solid. m.p.140-141 °C: $^1$H NMR (400 MHz, CDCl$_3$) $\delta$: 2.42 (s, 3H, 5'-H), 7.35 (d, 2H, J=...
8.0 Hz, 3'-H), 7.66-7.70 (m, 1H, 6-H), 7.78-7.83 (m, 1H, 7-H), 7.89 (d, 1H, J = 8.0 Hz, 3-H), 8.04 (d, 2H, J = 8.4 Hz, 2'-H), 8.21 (t, 2H, J = 8.4 Hz, J = 8.0 Hz, 5-8-H), 8.39 (d, 1H, J = 8.4 Hz, 4-H).

$^{13}$C NMR (100 MHz, CDCl$_3$) δ: 21.6 (C-5'), 117.6 (C-3), 127.7 (C-6), 128.7 (C-10), 128.9 (C-2'), 129.1 (C-5), 129.7 (C-3'), 130.1 (C-8), 130.9 (C-7), 136.1 (C-1'), 138.8 (C-4), 144.8 (C-4'), 147.3 (C-9), 158.2 (C-2). HR MS Calcd for C$_{16}$H$_{13}$NO$_2$S [M + H]$^+$: m/z 284.0745, Found 284.0742.

2-((4-(tert-butyl)phenyl)sulfonyl)quinoline (3b)

White solid. m.p. 199-200 °C: $^1$H NMR (400 MHz, CDCl$_3$) δ: 1.29 (s, 9H, 6'-H), 7.54 (d, 2H, J = 8.8 Hz, 3'-H), 7.61-7.65 (m, 1H, 6-H), 7.74-7.78 (m, 1H, 7-H), 7.85 (d, 1H, J = 8.4 Hz, 3-H), 8.08 (d, 2H, J = 8.8 Hz, 2'-H), 8.20 (t, 2H, J = 8.4 Hz, J = 7.6 Hz, 5-8-H), 8.36 (d, 1H, J = 8.4 Hz). $^{13}$C NMR (100 MHz, CDCl$_3$) δ: 31.0 (C-6'), 35.2 (C-5'), 117.8 (C-3), 126.1(C-2'), 127.7 (C-6), 128.80 (C-10), 128.86(C-3'), 129.1 (C-5), 130.3 (C-8), 130.9 (C-7), 136.1 (C-1'), 138.7 (C-4), 147.4 (C-9), 157.6 (C-4'), 158.3 (C-2). HR MS Calcd for C$_{19}$H$_{19}$NO$_2$S [M + H]$^+$: m/z 326.1215, Found 326.1212.

2-(phenylsulfonyl)quinoline (3c)

White solid. m.p. 160-161 °C: $^1$H NMR (400 MHz, CDCl$_3$) δ: 7.54 (t, 2H, J = 7.2 Hz, 3'-H), 7.59-7.62 (m, 1H, 6-H), 7.64-7.68 (m, 1H, 7-H), 7.77-7.81 (m, 1H, 4'-H), 7.88 (d, 1H, J = 8.0 Hz, 3-H), 8.13-8.18 (m, 3H, 2'-8-H), 8.21 (d, 1H, J = 8.8 Hz, 5-H), 8.38 (d, 1H, J = 8.0 Hz, 4-H). $^{13}$C NMR (100 MHz, CDCl$_3$) δ: 117.7 (C-3), 127.7 (C-6), 128.8 (C-10), 129.06 (C-2'), 129.08 (C-3'), 129.2 (C-5), 130.4 (C-8), 131.0 (C-7), 133.7 (C-4'), 138.7 (C-4), 139.1 (C-1'), 147.4 (C-9), 158.1 (C-2). HR MS Calcd for C$_{15}$H$_{11}$NO$_2$S [M + H]$^+$: m/z 270.0589, Found 270.0585.

2-((4-chlorophenyl)sulfonyl)quinoline (3d)

White solid: m.p. 190-191 °C: $^1$H NMR (400 MHz, CDCl$_3$) δ: 7.52 (d, 2H, J = 8.8 Hz, 3'-H), 7.66-7.70 (m, 1H, 6-H), 7.79-7.83 (m, 1H, 7-H), 7.90 (d, 1H, J = 8.0 Hz, 3-H), 8.10 (d, 2H, J = 8.4 Hz,
2'-H), 8.16 (d, 1H, J= 8.4 Hz, 8-H), 8.22 (d, 1H, J= 8.4 Hz, 5-H), 8.41 (d, 1H, J= 8.8 Hz, 4-H).

13C NMR (100 MHz, CDCl3) δ: 117.5 (C-3), 127.7 (C-6), 128.9 (C-10), 129.3 (C-5), 129.4 (C-2'), 130.3 (C-8), 130.5 (C-3'), 131.1 (C-7), 137.5 (C-1'), 138.9 (C-4), 140.5 (C-4'), 147.4 (C-9), 157.7 (C-2). HR MS Calcd for C15H10ClNO2S [M + H]+: m/z 304.0199, Found 304.0196.

2-(naphthalen-2-ylsulfonyl)quinoline (3e)

White solid. m.p.136-138 °C: 1H NMR (400 MHz, CDCl3) δ: 7.55-7.62 (m, 3H, 6-6'-7'-H), 7.70-7.73 (m, 1H, 7-H), 7.81-7.84 (m, 2H, 3-8'-H), 7.93 (d, 1H, J= 8.8 Hz, 8-H), 7.96 (d, 1H, J= 8.8 Hz, 5'-H), 8.08-8.11 (m, 1H, 5-H), 8.14 (d, 1H, J= 8.4 Hz, 3'-H), 8.27 (d, 1H, J= 8.4 Hz, 4'-H), 8.35 (d, 1H, J=8.4 Hz, 4-H), 8.75 (d, 1H, J= 1.2 Hz, 1'-H). 13C NMR (100 MHz, CDCl3) δ: 117.8 (C-3), 123.6 (C-3'), 127.5 (C-6'), 127.7 (C-7'), 127.9 (C-6), 128.8 (C-10), 129.2 (C-1'), 129.34 (C-8'), 129.35 (C-5'), 129.4 (C-5), 130.2 (C-8), 130.7 (C-7), 131.0 (C-4'), 132.1 (C-9'), 135.3 (C-2'), 136.0 (C-10'), 138.8 (C-4), 147.4 (C-9), 158.1 (C-2). HR MS Calcd for C19H13NO2S [M + H]+: m/z 320.0745, Found 320.0742.

2-(thiophen-2-ylsulfonyl)quinoline (3f)

Light yellow solid, m.p.144-146 °C: 1H NMR (400 MHz, CDCl3) δ: 7.14-7.16 (m, 1H, 4'-H), 7.67-7.69 (m, 1H, 3'-H), 7.74-7.75 (m, 1H, 6-H), 7.80-7.84 (m, 1H, 7-H), 7.90-7.93 (m, 2H, 5'-3'H), 8.22 (d, 2H, J= 8.4 Hz, 5-8-H), 8.41 (d, 1H, J= 8.8 Hz, 4-H). 13C NMR (100 MHz, CDCl3) δ: 117.3 (C-3), 127.7 (C-6), 127.8 (C-5'), 128.9 (C-10), 129.3 (C-5), 130.3 (C-8), 131.1 (C-7), 135.2 (C-4'), 135.3 (C-3'), 138.8 (C-4), 139.7 (C-2'), 147.4 (C-9), 157.9 (C-2). HR MS Calcd for C13H9NO2S2 [M + H]+: m/z 276.0153, Found 276.0150.

2-(isopropylsulfonyl)quinoline (3g)

Light yellow solid, m.p.80-82 °C: 1H NMR (400 MHz, CDCl3) δ: 1.32 (d, 6H, J= 6.8 Hz, 2'-H), 3.88-3.95 (m, 1H, 1'-H), 7.62-7.66 (m, 1H, 6-H), 7.76-7.78 (m, 1H, 7-H), 7.88 (d, 1H, J= 8.0 Hz,
3-H), 8.08 (d, 1H, J = 8.8 Hz, 8-H), 8.16 (d, 1H, J = 8.4 Hz, 5-H), 8.38 (d, 1H, J = 8.8 Hz, 4-H). 

$^{13}$C NMR (100 MHz, CDCl$_3$) δ: 15.0 (C-2'), 51.9 (C-1'), 118.3 (C-3), 127.9 (C-6), 129.0 (C-10), 129.2 (C-5), 130.1 (C-8), 131.1 (C-7), 138.6 (C-4), 147.3 (C-9), 155.7 (C-2). HR MS Calcd for C$_{12}$H$_{13}$NO$_2$S [M + H$^+$]: m/z 236.0745, Found 236.0744.

2-(ethylsulfonyl)quinoline (3h)

![2-(ethylsulfonyl)quinoline](image)

Light yellow solid, m.p.63-65 °C: $^1$H NMR (40 MHz, CDCl$_3$) δ: 1.39 (t, 3H, J = 7.6 Hz, J = 7.2 Hz, 2'-H), 3.57-3.63 (m, 2H, 1'-H), 7.72-7.76 (m, 1H, 6-H), 7.85-7.90 (m,1H, 7-H), 7.96 (d, 1H, J = 8.4 Hz, 3-H), 8.16 (d, 1H, J = 8.4 Hz, 8-H), 8.24 (d, 1H, J = 8.4 Hz, 5-H), 8.46 (d, 1H, J = 8.4 Hz, 4-H). $^{13}$C NMR (100 MHz, CDCl$_3$) δ: 6.9 (C-2'), 46.3 (C-1'), 117.4 (C-3), 127.8 (C-6), 129.1 (C-10), 129.2 (C-5), 130.1 (C-8), 131.1 (C-7), 138.7 (C-4), 147.2 (C-9), 156.4 (C-2). HR MS Calcd for C$_{11}$H$_{11}$NO$_2$S [M + H$^+$]: m/z 222.0589, Found 222.0585.

6-methyl-2-(phenylsulfonyl)quinoline (3i)

![6-methyl-2-(phenylsulfonyl)quinoline](image)

White solid, m.p.150-151 °C: $^1$H NMR (400 MHz, CDCl$_3$) δ: 2.51(s, 3H, CH$_3$), 7.51 (t, 2H, J = 7.60 Hz, J = 7.20 Hz, 3'-H), 7.55-7.59 (m, 3H, 4'-5-7-H), 8.03 (d, 1H, J = 8.40 Hz, 3-H), 8.12-8.15 (m, 3H, 2'-8-H), 8.24 (d,1H, J = 8.40 Hz, 4-H). $^{13}$C NMR (100 MHz, CDCl$_3$) δ: 21.7 (CH$_3$), 117.7 (C-3), 126.4 (C-5), 128.9 (C-2'), 128.93(C-10), 129.0 (C-3'), 129.8 (C-8), 133.4 (C-7), 133.6 (C-7), 137.9 (C-4), 139.3 (C-1'), 139.7 (C-6), 146.0 (C-9), 157.0 (C-2'). HR MS Calcd for C$_{16}$H$_{13}$NO$_2$S [M + H$^+$]: m/z 284.0745, Found.284.0745.

6-methyl-2-tosylquinoline (3j)

![6-methyl-2-tosylquinoline](image)

White solid, m.p.144-146 °C: $^1$H NMR (400 MHz, CDCl$_3$) δ: 2.40 (s, 3H, 5'-H), 2.55 (s, 3H, 6-H), 7.32 (d, 2H, J = 8.00 Hz, 3'-H), 7.61 (d, 2H, J= 9.20 Hz, 5-7-H), 8.02 (d, 2H, J= 8.40 Hz, 2'-H), 8.06 (d, 1H, J= 8.40 Hz, 3-H), 8.15 (d, 1H, J= 8.80 Hz, 8-H), 8.25 (d, 1H, J= 8.40 Hz, 4-H). $^{13}$C NMR (100 MHz, CDCl$_3$) δ: 21.6 (C-5'), 21.7 (C-6), 117.7 (C-3), 126.4 (C-5), 128.8(C-10), 128.9
4-methyl-2-tosylquinoline (3k)

White solid, m.p. 143-145 °C: $^1$H NMR (400 MHz, CDCl$_3$) $\delta$: 2.39 (s, 3H, $^5$'-H), 2.78 (s, 3H, CH$_3$), 7.32 (d, 2H, $J$ = 8.00 Hz, $^3$'-H), 7.63-7.67 (m, 1H, 6-H), 7.73-7.77 (m, 1H, 7-H), 7.99-8.03 (m, 4H, 2'-3-5-H), 8.17 (d, 1H, $J$ = 8.40 Hz, 8-H). $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$: 19.1 (CH$_3$), 21.6 (C-5'), 118.0 (C-3), 123.8 (C-5), 128.7 (C-10), 128.8 (C-6), 129.0 (C-2'), 129.7 (C-3'), 130.5 (C-7), 131.0 (C-8), 136.2 (C-1'), 144.7 (C-4'), 147.2 (C-4), 147.9 (C-9), 157.9 (C-2). HR MS Calcd for C$_{17}$H$_{15}$NO$_2$S [M + H]$^+$: m/z 298.0902, Found 298.0899.

4-methyl-2-((4-nitrophenyl)sulfonyl)quinolone (3l)

Yellow solid, m.p. 165-166 °C: $^1$H NMR (400 MHz, CDCl$_3$) $\delta$: 2.85 (s, 3H, CH$_3$), 7.70-7.75 (m, 1H, 6-H), 7.79-7.83 (m, 1H, 7-H), 8.06-8.14 (m, 3H, 3-5-8-H), 8.34-8.40 (m, 4H, 2'-3'-H). $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$: 19.2 (CH$_3$), 117.8 (C-3), 123.9 (C-5), 124.1 (C-3'), 129.0 (C-10), 129.4 (C-6), 130.5 (C-2'), 130.92 (C-7), 130.98 (C-8), 144.8 (C-1'), 147.2 (C-4), 148.6 (C-9), 150.7 (C-4'), 156.5 (C-1). HR MS Calcd for C$_{16}$H$_{12}$N$_2$O$_4$S [M + H]$^+$: m/z 329.0596, Found 329.0597

6-methoxy-2-(phenylsulfonyl)quinolone (3m)

White solid, m.p. 147-148 °C: $^1$H NMR (400 MHz, CDCl$_3$) $\delta$: 3.95 (s, 3H, OCH$_3$), 7.10 (d, 1H, $J$ = 2.80 Hz, 5-H), 7.41-7.44 (m, 1H, 7-H), 7.51-7.55 (m, 2H, 3'-H), 7.58-7.62 (m, 1H, 4'-H), 8.06 (d, 1H, $J$ = 9.20 Hz, 8-H), 8.13-8.17(m, 3H, 2'-3-H), 8.23 (d, 1H, $J$ = 8.40 Hz, 4-H). $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$: 55.7 (OCH$_3$), 104.6 (C-5), 118.3 (C-3), 124.3 (C-7), 128.8 (C-2'), 129.0 (C-3'), 130.4 (C-10), 131.8 (C-8), 133.5 (C-4'), 136.8 (C-4), 139.5 (C-1'), 143.6 (C-9), 155.4 (C-6), 146.0 (C-9), 157.3 (C-2). HR MS Calcd for C$_{17}$H$_{15}$NO$_2$S [M + H]$^+$: m/z 298.0902, Found 298.0890.
159.8 (C-2). HR MS Calcd for C_{16}H_{13}NO_{5}S \[M + H\]^+: m/z 300.0694, Found 300.0691.

**6-methoxy-2-tosylquinoline (3n)**

![6-methoxy-2-tosylquinoline](image)

White solid, m.p.165-166°C: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 2.39 (s, 3H, 5'-H), 3.94 (s, 3H, OCH\(_3\)), 7.09 (d, \(J= 2.80\) Hz, 5-H), 7.32 (d, 2H, \(J= 8.40\) Hz, 3'-H ), 7.40-7.43 (m, 1H, 7-H), 8.01 (d, 2H, \(J= 8.00\) Hz, 2'-H), 8.05 (d, 1H, \(J= 9.20\) Hz, 8-H), 8.13(d, 1H, \(J= 8.40\) Hz, 3-H), 8.21(d, 2H, \(J= 8.80\) Hz, 4-H ). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 21.6 (C-5'), 55.7 (OCH\(_3\)), 104.6 (C-5), 118.2 (C-3), 124.2 (C-7), 128.8 (C-2'), 129.7 (C-3'), 130.3 (C-10), 131.7 (C-8), 136.5 (C-1'), 136.8 (C-4), 143.6 (C-4'), 144.6 (C-9), 155.6 (C-6), 159.7 (C-2). HR MS Calcd for C\(_{17}\)H\(_{15}\)NO\(_5\)S \[M + H\]^+: m/z 314.0851, Found 314.0850.

**3-bromo-2-tosylquinoline (3o)**

![3-bromo-2-tosylquinoline](image)

White solid, m.p.155-157 °C: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 2.49 (s, 3H, 5'-H), 7.38 (d, 2H, \(J= 8.00\) Hz, 3'-H), 7.66-7.71 (m, 1H, 7-H), 7.77 (m, 1H, 6-H), 7.75-7.81 (m, 1H, 8-H), 7.98-8.02 (m, 3H, 3'-5-H), 8.54 (s, 1H, 4-H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 21.7 (C-5'), 111.3 (C-3), 126.5 (C-6), 129.4 (C-2'), 129.7 (C-10), 129.8 (C-3'), 130.0 (C-5), 130.2 (C-8), 131.0 (C-7), 134.9 (C-1'), 142.9 (C-4), 144.4 (C-4'), 144.9 (C-9), 154.4 (C-2). HR MS Calcd for C\(_{16}\)H\(_{12}\)BrNO\(_2\)S \[M + H\]^+: m/z 361.9850, Found 361.9843.

**1-tosylisoquinoline (3p)**

![1-tosylisoquinoline](image)

White solid, m.p.177-178 °C: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 2.45(s, 3H, CH\(_3\)), 7.37(d, 2H, \(J= 8.0\) Hz, 3'-H ), 7.75-7.80 (m, 3H, 4-5-7-H), 7.90-7.93(m, 1H, 6-H), 8.00(d, 2H, \(J= 8.4\) Hz, 2'-H), 8.44(d, 1H, \(J= 5.6\) Hz, 8-H), 9.17-9.19(m, 1H, 3-H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 21.7 (CH\(_3\)), 124.3 (C-4), 124.9 (C-5), 125.3 (C-7), 127.5(C-9), 129.21 (C-8), 129.25(C-2'), 129.6 (C-3'), 131.1(C-6), 136.0 (C-10), 137.7 (C-4'), 140.5 (C-3), 144.7 (C-4'), 157.2 (C-1). HR MS Calcd
for C_{16}H_{13}NO_{2}S [M + H]^+: m/z 284.0745, Found 284.0743.

1-(naphthalen-2-ylsulfonyl)isoquinoline (3q)

White solid, m.p.183-184 °C: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.59-7.63 (m, 1H, 6-H), 7.64-7.68 (m, 1H, 7-H), 7.77-7.81 (m, 3H, 4-5-7-H), 7.89-7.93 (m, 2H, 6-8-H), 7.79-8.05 (m, 3H, 3'-5'-8'-H), 8.42 (d, 1H, \(J= 5.60\) Hz, 4'-H), 8.73 (s, 1H, 1'-H), 9.24-9.27 (m, 1H, 3-H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 124.1 (C-3'), 124.3(C-9), 125.0 (C-4), 125.3 (C-5), 127.4 (C-6'), 127.5 (C-7'), 127.9 (C-1'), 128.9 (C-7), 129.2 (C-5'), 129.3 (C-8'), 129.5 (C-8), 130.8 (C-4'), 131.1 (C-6), 132.1 (C-9'), 135.3 (C-2'), 136.1 (C-10), 137.7 (C-10'), 140.5 (C-3), 157.1 (C-1). HR MS Calcd for C_{19}H_{13}NO_{2}S [M + H]^+: m/z 320.0745, Found 320.0743.

1-(isopropylsulfonyl)isoquinoline (3r)

Light yellow solid: m.p.90-93 °C: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 1.47 (d, 6H, \(J= 7.20\) Hz, 2'-H), 4.19-4.29 (m, 1H, 1'-H), 7.73-7.76 (m, 1H, 7-H), 7.78-7.82 (m, 1H, 6-H ), 7.88 (d, 1H, \(J= 5.20\) Hz, 5-H), 7.94 (d, 1H, \(J= 7.60\) Hz, 4-H), 8.56 (d, 1H, \(J= 5.60\) Hz, 8-H), 9.11-9.13 (m, 1H, 3-H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 15.2 (C-2'), 52.2 (C-1'), 125.13 (C-4), 125.18 (C-10), 125.3 (C-5), 127.5 (C-7), 129.3 (C-8), 131.2 (C-6), 137.7 (C-9), 140.3 (C-3), 155.2 (C-2). HR MS Calcd for C_{12}H_{13}NO_{2}S [M + H]^+: m/z 236.0745, Found 236.0744.

2-(phenylsulfonyl)pyridine (3s)

White solid, m.p.94-96 °C: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.48-7.49 (m, 1H, 5-H), 7.56 (t, 2H, \(J= 8.00\) Hz, \(J= 7.20\) Hz, 3'-H), 7.64 (t, 1H, \(J= 7.60\) Hz, \(J= 7.20\) Hz, 4'-H), 7.93-7.97 (m, 1H, 4-H), 8.09 (d, 2H, \(J= 7.60\) Hz, 2'-H), 8.23(d, 1H, \(J= 8.00\) Hz, 3H), 8.70 (d, 1H, \(J= 4.40\) Hz, 6-H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 122.2 (C-3), 126.8 (C-5), 128.9 (C-2'), 129.1 (C-3'), 133.7 (C-4'), 138.0 (C-4), 138.9 (C-1'), 150.4 (C-6), 158.7 (C-2). HR MS Calcd for C_{11}H_{9}NO_{2}S [M + H]^+: m/z
220.0432, Found 220.0428.

4-methyl-2-(phenylsulfonyl)pyridine (3t)

\[
\begin{array}{c}
\text{N} \\
\text{S} \\
\text{O} \\
1' \\
2' \\
3' \\
4' \\
\end{array}
\]

White solid, m.p.116-118 °C: \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\): 2.47 (s, 3H, 7-H), 7.27 (d, 1H, \(J=4.40\) Hz, 5-H), 7.54 (t, 2H, 3'-H), 7.60-7.63 (m, 1H, 4'-H), 8.04-8.06 (m, 3H, 2'-3-H), 8.52(d, 1H, \(J=4.80\) Hz, 6-H). \(^13C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\): 21.2 (C-7), 122.9 (C-3), 127.6 (C-5), 128.8 (C-2'), 129.0 (C-3'), 133.6 (C-4'), 139.1 (C-1'), 150.0 (C-4), 150.2 (C-6), 158.6 (C-2). HR MS Calcd for C\(_{12}\)H\(_{11}\)NO\(_2\)S [M + H]\(^+\): m/z 234.0589, Found 234.0585.

4-methyl-2-tosylpyridine (3u)

\[
\begin{array}{c}
\text{N} \\
\text{S} \\
\text{O} \\
1' \\
2' \\
3' \\
4' \\
5' \\
\end{array}
\]

White solid, m.p. 126-128 °C: \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\): 2.35 (s, 3H, 5'-H), 2.40(s, 3H, CH\(_3\)), 7.21(d, 1H, \(J=4.80\) Hz, 5-H), 7.27 (d, 2H, \(J=8.00\)Hz, 3'-H), 7.89(d, 2H, \(J=8.00\) Hz, 2'-H), 7.96 (s, 1H, 3-H), 8.45(d, 1H, \(J=4.80\) Hz, 6-H). \(^13C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\): 21.2 (C-7), 21.6 (C-5'), 122.7 (C-3), 127.6 (C-5), 128.8 (C-2'), 129.7 (C-3'), 136.0 (C-1'), 144.7 (C-4'), 150.0 (C-4), 150.1 (C-6), 158.7 (C-2). HR MS Calcd for C\(_{13}\)H\(_{13}\)NO\(_2\)S [M + H]\(^+\): m/z 248.0745, Found 248.0745.

2-(isopropylsulfonyl)-4-methylpyridine (3v)

\[
\begin{array}{c}
\text{N} \\
\text{S} \\
\text{O} \\
1' \\
2' \\
3' \\
4' \\
\end{array}
\]

Light yellow oil: \(^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\): 1.33 (d, 6H, \(J=7.20\) Hz, 2'-H), 2.49 (s, 3H, CH\(_3\)), 3.71-3.82 (m, 1H, 1'-H), 7.35-7.36 (m, 1H, 5-H), 7.92 (s, 1H, 3-H), 8.60 (d, 1H, \(J=4.80\) Hz, 6H). \(^13C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\): 14.9 (C-2'), 21.2 (CH\(_3\)), 51.6 (C-1'), 124.0 (C-3), 128.0 (C-5), 149.9 (C-4), 150.0 (C-6), 155.9 (C-2). HR MS Calcd for C\(_9\)H\(_{13}\)NO\(_2\)S [M + H]\(^+\): m/z 200.0745, Found 200.0742.

4-methyl-2-(naphthalen-2-ylsulfonyl)pyridine (3w)
White solid, m.p.183-184°C: $^1$H NMR (400 MHz, CDCl$_3$) δ: 2.47 (s, 3H, CH$_3$), 7.25 (d, 1H, $J=4.80$ Hz, 5-H), 7.59-7.67 (m, 2H, 6'-7'-H), 7.89(d, 1H, $J=8.00$ Hz, 3'-H), 7.94-8.01 (m, 3H, 4'-5'-8'-H), 8.10 (s, 1H, 3-H), 8.51 (d, 1H, C-6), 8.69 (s, 1H, 1'-H). $^{13}$C NMR (100 MHz, CDCl$_3$) δ: 21.2 (CH$_3$), 123.0 (C-3), 123.5 (C-3'), 127.5 (C-6'), 127.6 (C-7'), 127.9 (C-1'), 129.2 (C-5'), 129.3 (C-8'), 129.5 (C-4'), 130.6 (C-5), 131.2 (C-9'), 135.3 (C-2'), 136.0 (C-10'), 150.0 (C-4), 150.2 (C-6), 158.6 (C-2). HR MS Calcd for C$_{16}$H$_{13}$NO$_2$S [M + H]$^+$: m/z 284.0745, Found 284.0748.

4-chloro-2-tosylpyridine (3x)

Yellow solid, m.p.108-110°C: $^1$H NMR (400 MHz, CDCl$_3$) δ: 2.44 (s, 3H, CH$_3$), 7.36 (d, 2H, $J=8.40$ Hz, 3'-H), 7.44-7.45 (m, 1H, 5-H), 7.95 (d, 2H, $J=8.00$ Hz, 2'-H), 8.20 (d, 1H, $J=1.60$ Hz, 3-H), 8.57 (d, 1H, $J=5.20$ Hz, 6-H). $^{13}$C NMR (100 MHz, CDCl$_3$) δ: 122.5 (C-3), 126.9 (C-5), 129.1 (C-2'), 129.9 (C-3'), 135.3 (C-1'), 145.2 (C-4'), 146.3 (C-4), 151.1 (6-C), 160.4 (C-2). HR MS Calcd for C$_{12}$H$_{10}$ClNO$_2$S [M + H]$^+$: m/z 268.0119, Found 268.0197.

2-tosylquinoxaline (3y)

Light yellow solid, m.p.178-179°C: $^1$H NMR (400 MHz, CDCl$_3$) δ: 2.45 (s, 3H, 5'-H), 7.40 (d, 1H, $J=8.00$ Hz, 2'-H), 7.83-7.87 (m, 1H, 5-H), 7.88-7.92 (m, 1H, 6-H), 8.03 (d, 1H, $J=8.00$ Hz, 3'-H), 8.20-8.22 (m, 1H, 7-H), 8.54-8.57 (m, 1H, 8-H), 9.04 (s, 1H, 3-H). $^{13}$C NMR (100 MHz, CDCl$_3$) δ: 21.7 (C-5'), 118.9 (C-5), 127.3 (C-6), 129.3 (C-2'), 130.1 (C-3'), 131.1 (C-7), 132.5 (C-8), 132.9 (C-1'), 134.7 (C-4'), 137.9 (C-10), 144.5 (C-9), 146.0 (C-3), 156.1 (C-2). HR MS Calcd for C$_{11}$H$_{11}$NO$_2$S [M + H]$^+$: m/z 285.0689, Found 285.0696.

2-ethoxyquinoline (4a)

Yellow oil; $^1$H NMR (400 MHz, CDCl$_3$) δ: 1.44 (t, 3H, $J=6.80$ Hz, 2'-H, -CH$_3$); 4.53 (m, 2H, 1'-H,
-\text{CH}_2\text{CH}_3); 6.87 (d, \textit{J} = 8.84 \text{ Hz}, 1\text{H}, 3\text{-H}); 7.34 (t, 1\text{H}, 6\text{-H}); 7.60 (m, 1\text{H}, 7\text{-H}); 7.67 (d, \textit{J} = 8.00 \text{ Hz}, 1\text{H}, 5\text{-H}); 7.83 (d, \textit{J} = 8.40 \text{ Hz}, 1\text{H}, 8\text{-H}); 7.93 (d, \textit{J} = 8.80 \text{ Hz}, 1\text{H}, 4\text{-H}); ^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta: 14.6 \text{ (C-2', -CH}_2\text{CH}_3}); 61.7 \text{ (C-1', -OCH}_2\text{-}); 113.3 \text{ (C-3)}; 123.9 \text{ (C-6)}; 125.1 \text{ (C-10)}; 127.2 \text{ (C-5)}; 127.4 \text{ (C-8)}; 129.4 \text{ (C-7)}; 138.6 \text{ (C-4)}; 146.7 \text{ (C-9)}; 162.2 \text{ (C-2)}. \text{HR MS Calcd for C}_{11}\text{H}_{11}\text{NO} [\text{M + H}]^+: \text{m/z} 174.0919, \text{Found} 174.0917.

5. $^1\text{H NMR, }^{13}\text{C NMR, and HRMS (ESI) copies of products}$

![Fig. 1 $^1\text{H NMR spectrum of compound 3a}$](image)
Fig. 2 $^{13}$C NMR spectrum of compound 3a

Fig. 3 HRMS spectrum of compound 3a
Fig. 4 $^1$H NMR spectrum of compound 3b

Fig. 5 $^{13}$C NMR spectrum of compound 3b
Fig. 6 HRMS spectrum of compound 3b

Fig. 7 $^1$H NMR spectrum of compound 3c
Fig. 8 $^{13}$C NMR spectrum of compound 3c

Fig. 9 HRMS spectrum of compound 3c
Fig. 10 $^1$H NMR spectrum of compound 3d

Fig. 11 $^{13}$C NMR spectrum of compound 3d
Fig. 12 HRMS spectrum of compound 3d

Fig. 13 $^1$H NMR spectrum of compound 3e
Fig. 14 $^{13}$C NMR spectrum of compound 3e

Fig. 15 HRMS spectrum of compound 3e
Fig. 16 $^1$H NMR spectrum of compound 3f

Fig. 17 $^{13}$C NMR spectrum of compound 3f
Fig. 18 HRMS spectrum of compound 3f

Fig. 19 $^1$H NMR spectrum of compound 3g
Fig. 20 $^{13}$C NMR spectrum of compound 3g

Fig. 21 HRMS spectrum of compound 3g
Fig. 22 $^1$H NMR spectrum of compound 3h

Fig. 23 $^{13}$C NMR spectrum of compound 3h
Fig. 24 HRMS spectrum of compound 3h

Fig. 25 $^1$H NMR spectrum of compound 3i
Fig. 26 $^{13}$C NMR spectrum of compound 3i

Fig. 27 HRMS spectrum of compound 3i
Fig. 28 $^1$H NMR spectrum of compound 3j

Fig. 29 $^{13}$C NMR spectrum of compound 3j
Fig. 30 HRMS spectrum of compound 3j

Fig. 31 $^1$H NMR spectrum of compound 3k
Fig. 32 $^{13}$C NMR spectrum of compound 3k

Fig. 33 HRMS spectrum of compound 3k
Fig. 34 $^{13}$H NMR spectrum of compound 3l

Fig. 35 $^{13}$H NMR spectrum of compound 3l
Fig. 36 $^1$H NMR spectrum of compound 3l

Fig. 37 $^1$H NMR spectrum of compound 3m
Fig. 38 $^{13}$C NMR spectrum of compound 3m

Fig. 39 HRMS spectrum of compound 3m
Fig. 40 $^1$H NMR spectrum of compound 3n

Fig. 41 $^{13}$C NMR spectrum of compound 3n
Fig. 42 HRMS spectrum of compound 3n

Fig. 43 $^1$H NMR spectrum of compound 3o
Fig. 44 $^{13}$C NMR spectrum of compound 3o

Fig. 45 HRMS spectrum of compound 3o
Fig. 46 $^1$H NMR spectrum of compound 3p

Fig. 47 $^{13}$C NMR spectrum of compound 3p
Fig. 48 HRMS spectrum of compound 3p

Fig. 49 ¹H NMR spectrum of compound 3q
Fig. 50 $^{13}$C NMR spectrum of compound 3q

Fig. 51 HRMS spectrum of compound 3q
Fig. 52 $^1$H NMR spectrum of compound 3r

Fig. 53 $^{13}$C NMR spectrum of compound 3r
Fig. 54 HRMS spectrum of compound 3r

Fig. 55 $^1$H NMR spectrum of compound 3s
Fig. 56 $^{13}$C NMR spectrum of compound 3s

Fig. 57 HRMS spectrum of compound 3s
Fig. 58 $^1$H NMR spectrum of compound 3t

Fig. 59 $^{13}$C NMR spectrum of compound 3t
Fig. 60 HRMS spectrum of compound 3t

Fig. 61 $^1$H NMR spectrum of compound 3u
Fig. 62 $^{13}$C NMR spectrum of compound 3u

Fig. 63 HRMS spectrum of compound 3u
Fig. 64 $^1$H NMR spectrum of compound 3v

Fig. 65 $^{13}$C NMR spectrum of compound 3v
Fig. 66 HRMS spectrum of compound 3v

Fig. 67 $^1$H NMR spectrum of compound 3w
Fig. 68 $^{13}$C NMR spectrum of compound 3w

Fig. 69 HRMS NMR spectrum of compound 3w
Fig. 70 $^1$H NMR spectrum of compound 3x

Fig. 71 $^{13}$C NMR spectrum of compound 3x
Fig. 72 HRMS spectrum of compound 3x

Fig. 73 $^1$H NMR spectrum of compound 3y
Fig. 74 $^{13}$C NMR spectrum of compound 3y

Fig. 75 HRMS spectrum of compound 3y
Fig. 76 $^1$H NMR spectrum of compound 4a

Fig. 77 $^{13}$C NMR spectrum of compound 4a
Fig. 78 HRMS spectrum of compound 4a