Gold(I)-Catalysed Cascade Reactions in the Synthesis of 2,3-Fused Indole Derivatives

Authors: Ana Gimeno, Alejandra Rodríguez, Ana B. Cuenca, Carmen Ramírez de Arellano, Mercedes Medio-Simón and Gregorio Asensio
Departamento de Química Orgánica, Universidad de Valencia,
Avda. Vicente Andrés Estellés, s / n
Burjassot, Valencia 46100.
Gregorio.asensio@uv.es

Supporting Information

Table of Contents
General RemarksS1
Synthesis of Starting Materials S2-S6
Representative general procedure for the gold(I)-catalyzed synthesis of annulated indoles derivatives 3a-3q. S7-S11
Preparation of Intermediates and Indole-Gold Complexes 4, 5 and 6. S11-S13
Table 3. Solvent and acid additive effect on the [Au(JohnPhos)(MeCN)]SbF ${ }_{6}$ S14 catalysed cascade formation of cycloheptaindole $\mathbf{3 j}$ from $\mathbf{1 j}$
NMR spectra for new compounds S15-S53
References S54

General Remarks

General Methods

Chemicals were purchased from commercial suppliers and used as delivered. All reactions were carried out in oven-dried resealable test tubes or Schlenk tubes under an atmosphere of Argon. Solvents were refluxed and freshly distilled from desiccants. N,N-dimethylformamide and deuterated solvents were purchased from Aldrich and used without further purification. NMR spectra were, if not mentioned otherwise, recorded at room temperature on the spectrometers Bruker DPX-300, Bruker AVANCE-400 or Bruker DRX-500. Chemical shifts are given in ppm and coupling constants in Hz . In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra chemical shifts are reported relative to deuterated solvents $\left(\mathrm{CDCl}_{3}: 7.26 / 77.16 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: 5.32 / 54.00 \mathrm{ppm} ;\right.$ Acetone- $d_{6}: 2.05 /$ $29.84 \mathrm{ppm} ;$ DMF- $d_{7}: 2.75$ / 29.76 ppm ; THF- $\left.d_{8}: 1.73 / 25.37 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}$ chemical shifts are given in $\delta \mathrm{ppm}$ relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$ (5% solution) as an external standard. The following abbreviations were used for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sext (sextet), m (multiplet), bs (broad singlet). High Resolution Mass Spectra were determined on a TRIPLETOFT5600 (ABSciex, USA) spectrometer. Analytical thin
layer chromatography was carried out using commercial aluminium sheets pre-coated $(0.2 \mathrm{~mm}$ layer thickness) with silica gel 60 F254 (E. Merck), and visualization was effected with shorts wavelength UV light (254nm). Reactions were monitored by GC. Product purification by flash chromatography was performed using E. Merck Silica gel (230-400 mesh). Melting points were measured in a Cambridge Instrument Apparatus.

Materials

2-haloanilines derivatives, alkynes and alkenes were commercially available and were used without further purification. All the commercial reagents and Gold/Silver catalysts were purchased from Aldrich or Strem Chemical Co. The following non-commercially available starting materials were prepared according to literature procedures: 2-iodo-4-methoxyaniline ${ }^{1}$

Synthesis of Starting Materials

Preparation of enynes

The following non-commercially enynes were prepared according to described literature procedures: dimethyl 2-allyl-2-(prop-2-ynyl)malonate, ${ }^{2}$ Dimethyl 2-(2-methylallyl)-2-(prop-2ynyl)malonate, ${ }^{3} \quad N$-allyl-4-methyl- N-(prop-2-ynyl)benzenesulfonamide, ${ }^{4}$ hept-1-en-6-yne, ${ }^{5} \quad 3$ -(prop-2-ynyloxy)prop-1-ene, ${ }^{6}$ dimethyl 2-(but-3-enyl)-2-(prop-2-ynyl)malonate, ${ }^{7} \mathrm{~N}$-(but-3-enyl)-4-methyl- N-(prop-2-ynyl)benzenesulfonamide, ${ }^{8} \quad 4$-(prop-2-ynyloxy)but-1-ene, ${ }^{9}$ dimethyl 2 -cinnamyl-2-(prop-2-ynyl)malonate, ${ }^{10}$ hex-1-en-5-yn-3-yl acetate ${ }^{11}$.

Preparation of 2-aniline-enynes 1, 4 and 7. General procedure A

Cul (10 mol\%), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$ were suspended in $\mathrm{Pr}_{2} \mathrm{NH}(0.5 \mathrm{M})$ under Argon. The corresponding 2-haloaniline (1.3 eq) and enyne (1 eq) were successively added and the reaction mixture was stirred at room temperature until all the enyne was consumed. Next, the mixture was diluted with dichloromethane and filtered over Celite $®$. The solvent was removed under reduced pressure and the 2 -aniline-enyne was isolated by silica gel column chromatography.

Dimethyl 2-allyl-2-(3-(2-aminophenyl)prop-2-ynyl)malonate (1a).
Compound 1a was prepared according to the general procedure A (eluents:Hexane: ethyl acetate $=20: 1$). Yield: 90%. Yellow dense oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.20$ (ddd, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{3}=7.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}$, $\left.\mathcal{J}_{\mathrm{HH}}=0.3 \mathrm{~Hz}\right), 7.07\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, \boldsymbol{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 6.69-6.58(\mathrm{~m}, 2 \mathrm{H})$, 5.67 (ddt, $1 \mathrm{H}, \mathcal{J}_{\text {HHtrans }}=17.5 \mathrm{~Hz}, \mathcal{J}_{\text {HHcis }}=10.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}$), $5.24-5.12(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, 6 H), $3.07(\mathrm{~s}, 2 \mathrm{H}), 2.87\left(\mathrm{dt}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=1.0 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,148.1,131.9,131.5,129.2,119.9,117.4,114.1,107.5,89.1$, 80.4, 57.2, 52.7, 36.7, 24.0. HRMS (TOF) calc. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 302.1387$, found 302.1390.

Dimethyl 2-allyl-2-(3-(2-amino-3-bromo-5-methylphenyl)prop-2ynyl)malonate (1b). Compound 1b was prepared according to the general procedure A (eluents:Hexane: ethyl acetate $=50: 1$). Yield: 70%. White solid, m.p.: 79-81 ${ }^{\circ}$ C. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{4}=1.3 \mathrm{~Hz}\right), 6.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{4} 1.3 \mathrm{~Hz}\right), 5.65\left(\mathrm{ddt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HHtrans}}=17.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HHcis}}=10.0\right.$ $\left.\mathrm{Hz}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 5.24-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{bs}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.86\left(\mathrm{dt}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}\right.$ $=7.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=0.9 \mathrm{~Hz}$), $2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,143.5,133.1,131.5$, 131.5, 127.4, 120.1, 108.5, 108.3, 89.7, 80.1, 57.2, 52.9, 36.8, 24.0, 19.9. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$394.0648, found 394.0633.

Dimethyl
2-allyl-2-(3-(2-amino-5-chlorophenyl)prop-2ynyl)malonate (1c). Compound 1c was prepared according to the general procedure A (eluents: Hexane: ethyl acetate $=20: 1$). Yield: 95%. Yellow dense oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{4}=2.5 \mathrm{~Hz}\right.$), 7.01 (dd, 1 H , $\left.\mathcal{J}_{\mathrm{HH}}=8.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.5 \mathrm{~Hz}\right), 6.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.6 \mathrm{~Hz}\right), 5.64\left(\mathrm{ddt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HHHtrans}}=17.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HHCis}}\right.$ $\left.=10.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 5.25-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{bs}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4,146.8,131.4,131.1,129.3,121.6,120.1$, 115.2, 108.8, 90.3, 79.3, 57.1, 52.8, 36.8, 23.9. HRMS (TOF) calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{CINO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 336.0997, found 336.0993.

Dimethyl 2-allyl-2-(3-(2-amino-5-isopropylphenyl)prop-2ynyl)malonate (1d). Compound 1d was prepared according to the general procedure A (eluents:Hexane: ethyl acetate $=20: 1$). Yield: $\left.=8.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.1 \mathrm{~Hz}\right), 6.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}\right), 5.67\left(\mathrm{ddt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HHtrans}}=17.7 \mathrm{~Hz}, \mathcal{J}_{\text {HHcis }}=\right.$ $\left.10,2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 5.24-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{bs}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 2.88(\mathrm{dt}, 2 \mathrm{H}$, $\left.\mathcal{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 2.75$ (sept, $\left.1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 1.18\left(\mathrm{~d}, 6 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,146.1,138.1,131.6,129.5,127.6,120.0,114.3,107.5,88.7$, 80.8, 57.3, 52.8, 36.8, 33.0, 24.0, 24.0. HRMS (TOF) calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 344.1856$, found 344.1855 .

Dimethyl 2-allyl-2-(3-(2-amino-5-methoxyphenyl)prop-2ynyl)malonate (1e). Compound $\mathbf{1 e}$ was prepared according to the general procedure A (eluents:Hexane: ethyl acetate $=10: 1$). Yield: 92%. Orange dense oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.77\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=2.8 \mathrm{~Hz}\right.$), $6.72(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathcal{J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.9 \mathrm{~Hz}\right), 6.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right), 5.66\left(\mathrm{ddt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HHtrans}}=17.4 \mathrm{~Hz}\right.$, $\left.\mathcal{J}_{\text {HHcis }}=10.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 5.18(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{dt}$, $\left.2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=0.9 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,151.7,142.3,131.6,120.0$,
116.8, 116.1, 115.7, 108.4, 89.3, 80.5, 57.2, 55.8, 52.8, 36.8, 24.0. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 332.1492$, found 332.1503.

N -allyl-N-(3-(2-aminophenyl)prop-2-ynyl)-4-methylbenzenesulfonamide
(1f). Compound 1 f was prepared according to the general procedure A (eluents:Hexane: ethyl acetate $=5: 1$). Yield: 83%. Yellow dense oil. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz},) \delta 7.77\left(\mathrm{~d}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right), 7.27\left(\mathrm{~d}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 7.08\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.2\right.$ $\left.\mathrm{Hz}, \mathcal{J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 6.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right), 6.66-6.56(\mathrm{~m}, 2 \mathrm{H})$, 5.79 (ddt, $\left.1 \mathrm{H}, \mathcal{J}_{\text {HHtrans }}^{3}=16.4 \mathrm{~Hz}, \mathcal{J}_{\text {HHcis }}=10.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{3}=6.4 \mathrm{~Hz}\right), 5.32\left(\mathrm{dq}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=17.1 \mathrm{~Hz}\right.$, $\left.\mathcal{J}_{\mathrm{HH}}=\mathcal{J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right), 5.26\left(\mathrm{dq}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=10.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=\mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.4 \mathrm{~Hz}\right), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz ,) $\delta 147.9,143.6,135.9,132.2,132.1,129.8$, 129.6, 127.7, 119.8, 117.5, 114.2, 106.8, 87.0, 82.4, 49.3, 36.9, 21.4. HRMS (TOF) calc. for $\mathrm{C} 19 \mathrm{H} 21 \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$341.1318, found 341.1315 .

2-(hept-6-en-1-ynyl)aniline (1g). Compound $\mathbf{1 g}$ was prepared according to the general procedure A (eluents:Hexane: ethyl acetate = 200:1). Yield: 96\%. Pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}\right.$ $=1.5 \mathrm{~Hz}), 6.99\left(\mathrm{td}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right), 6.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 6.57(\mathrm{td}, 1 \mathrm{H}$, $\left.\mathcal{J}_{\mathrm{HH}}=6.3 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right) 5.75$ (ddt, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HHtrans}}=16.9 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HHCis}}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}$), 5.04-4.89 (m, 2H), $4.06(\mathrm{bs}, 2 \mathrm{H}), 2.40\left(\mathrm{t}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right), 2.18-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (quint, $\left.2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.7,137.9,132.1,129.0,117.9,115.4,114.2$, 109.0, 95.4, 77.4, 33.0, 28.2, 19.1. HRMS (TOF) calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 186.1277$, found 186.1277.

2-(3-(allyloxy)prop-1-ynyl)aniline (1h). Compound 1h was prepared according to the general procedure A (eluents:Hexane: ethyl acetate $=20: 1$). Yield: 70%. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29$ (dd, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.1$ $\left.\mathrm{Hz}, \mathcal{J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right), 7.12\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=9.3 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 6.72-6.64(\mathrm{~m}$, 2 H), 5.96 (ddt, $1 \mathrm{H}, \mathcal{J}_{\text {HHtrans }}=17.3 \mathrm{~Hz}, \mathcal{J}_{\text {HHcis }}=10.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=5.8 \mathrm{~Hz}$), $5.35\left(\mathrm{dq}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=17.3\right.$ $\mathrm{Hz}, \mathcal{J}_{\mathrm{HH}}^{2}=\mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}$), $5.25\left(\mathrm{ddt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=10.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 4.44(\mathrm{~s}$, 2 H), 4.22 (bs, 2H), $4.15\left(\mathrm{dt}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{H}}=6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.0$, 134.0, 132.4, 129.8, 117.8, 117.7, 114.2, 107.2, 90.3, 82.9, 70.6, 58.0. HRMS (TOF) calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$188.1070, found 188.1068.

Dimethyl
2-(3-(2-aminophenyl)prop-2-ynyl)-2-(2methylallyl)malonate (1i). Compound 1 i was prepared according to the general procedure A (eluents:Hexane: ethyl acetate $=20: 1$). Yield: 78%. Orange dense oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20$ (dd, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}$ $\left.=7.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right), 7.08\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.2, \mathcal{J}_{\mathrm{HH}}=7.4, \mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 6.65\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=\right.$ $\left.8.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=0.6 \mathrm{~Hz}\right), 6.63\left(\mathrm{td}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.5, \mathcal{J}_{\mathrm{HH}}^{4}=1.1 \mathrm{~Hz}\right), 4.95-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~m}, 1 \mathrm{H})$, 4.25 (bs, 2H), $3.76(\mathrm{~s}, 6 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right) \delta$
$171.0,148.3,139.8,132.1,129.4,117.6,116.5,114.2,107.8,89.6,80.8,56.9,52.9,39.9,24.2$, 23.3. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 316.1543$, found 316.1549 .

Dimethyl 2-(3-(2-aminophenyl)prop-2-ynyl)-2-(but-3-enyl)malonate
(1j). Compound $\mathbf{1 j}$ was prepared according to the general procedure A (eluents:Hexane: ethyl acetate $=10: 1$). Yield: 87%. Yellow dense oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20$ (ddd, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=1.5 \mathrm{~Hz}$, $\left.\mathcal{J}_{\mathrm{HH}}=0.3 \mathrm{~Hz}\right), 7.08\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 6.68-6.59(\mathrm{~m}, 2 \mathrm{H})$, 5.79 (ddt, $\left.1 \mathrm{H}, \mathcal{J}_{\text {HHtrans }}^{3}=16.6 \mathrm{~Hz}, \mathcal{J}_{\text {HHcis }}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=6.4 \mathrm{~Hz}\right), 5.06\left(\mathrm{dq}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=17.1 \mathrm{~Hz}\right.$, $\left.\mathcal{J}_{\mathrm{HH}}=\mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 4.98\left(\mathrm{dq}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=\mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 4.23(\mathrm{bs}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, 6 H), 3.11 ($\mathrm{s}, 2 \mathrm{H}$), 2.28-2.18 (m, 2H), 2.08-1.97 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9$, $148.1,137.1,132.0,129.3,117.5,115.3,114.1,107.6,89.1,80.3,57.0,52.8,31.5,28.3,24.3$. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 316.1543$, found 316.1536.

Dimethyl 2-(3-(2-amino-3-bromo-5-methylphenyl)prop-2-ynyl)-2-(but-3-enyl)malonate (1k). Compound 1 k was prepared according to the general procedure A (eluents: Hexane: ethyl acetate $=30: 1$). Yield: 70%. Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17$ (d, 1 H , $\left.\mathcal{J}_{\mathrm{HH}}^{4}=1.4 \mathrm{~Hz}\right), 6.97\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{4}=1.3 \mathrm{~Hz}\right), 5.78\left(\mathrm{ddt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH} \text { trans }}^{3}=16.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HHcis}}^{3}=10.2 \mathrm{~Hz}\right.$, $\left.\mathcal{J}_{\mathrm{HH}}=6.5 \mathrm{~Hz}\right), 5.05\left(\mathrm{dq}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=17.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=\mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right.$), 4.98 (ddd, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=10.2$ $\left.\mathrm{Hz}, \mathcal{J}_{\mathrm{HH}}^{2}=2.9 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=1.2 \mathrm{~Hz}\right), 4.53(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 2 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 171.0, 143.6, 137.2, 133.3, 131.6, 127.5, 115.6, 108.6, 108.5, 89.8, 80.2, 57.1, 53.0, 31.7, 28.5, 24.4, 20.0. HRMS (TOF) calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$408.0805, found 408.0802 .

Dimethyl 2-(3-(2-amino-5-chlorophenyl)prop-2-ynyl)-2-(but-3enyl)malonate (1I). Compound 11 was prepared according to the general procedure A (eluents: Hexane: ethyl acetate $=20: 1$). Yield: 90%. Yellow dense oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{HH}}^{4}=2.5 \mathrm{~Hz}\right), 6.99\left(\mathrm{dd}, 1 \mathrm{H} \mathcal{J}_{\mathrm{HH}}^{3}=8.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=2.5 \mathrm{~Hz}\right), 6.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{3}=8.6 \mathrm{~Hz}\right), 5.77(\mathrm{ddt}$, $1 \mathrm{H}, \mathcal{J}_{\text {HHtrans }}=16.6 \mathrm{~Hz}, \mathcal{J}_{\text {HHcis }}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=6.4 \mathrm{~Hz}$,), $5.04\left(\mathrm{dq}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=17.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=\right.$ $\left.J_{\mathrm{HH}}^{4}=1.6 \mathrm{~Hz}\right), 4.97\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.9 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=1.3 \mathrm{~Hz}\right), 4.26(\mathrm{bs}, 2 \mathrm{H}), 3.74$ $(\mathrm{s}, 6 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9$, 147.0, 137.1, 131.2, 129.4, 121.7, 115.5, 115.3, 108.9, 90.4, 79.3, 57.0, 52.9, 31.6, 28.4, 24.3. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{CINO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 350.1154$, found 350.1159.

Dimethyl 2-(3-(2-amino-5-methoxyphenyl)prop-2-ynyl)-2-(but-3-enyl)malonate (1m). Compound 1 m was prepared according to the general procedure A (eluents: Hexane: ethyl acetate $=10: 1$). Yield: 90\%. orange oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76$ (d, 1 H , $\left.\mathcal{J}_{\mathrm{HH}}=2.8 \mathrm{~Hz}\right), 6.71\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{3}=8.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.9 \mathrm{~Hz}\right), 6.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{3}=8.7 \mathrm{~Hz}\right), 5.79(\mathrm{ddt}$,
$\left.1 \mathrm{H}, \mathcal{J}_{\text {HHtrans }}=16.6 \mathrm{~Hz}, \mathcal{J}_{\text {HHcis }}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=6.4 \mathrm{~Hz}\right), 5.05\left(\mathrm{dq}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=17.1 \mathrm{~Hz}, J_{\mathrm{HH}}^{2}=\mathcal{J}_{\mathrm{HH}}^{4}\right.$ $=1.6 \mathrm{~Hz}$,), 4.98 (ddd, $\left.1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.9 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.3 \mathrm{~Hz}\right), 3.94(\mathrm{bs}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, 6 H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,151.8,142.5,137.3,117.0,116.2,115.8,115.5,108.5,89.3,80.5,57.2,56.0$, 52.9, 31.6, 28.5, 24.4. HRMS (TOF) calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 346.1649$, found 346.1664.

Dimethyl 2-(3-(2-amino-4-(trifluoromethyl)phenyl)prop-2-ynyl)-2-(but-3-enyl)malonate (1n). Compound $\mathbf{1 n}$ was prepared according to the general procedure A (eluents: Hexane: ethyl acetate $=20: 1$). Yield: 80%. Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.9 \mathrm{~Hz}\right), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.83\left(\mathrm{~d}, \mathcal{J}_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78\left(\mathrm{ddt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HHtrans}}=\right.$ $\left.15.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HHCis}}=9.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=6.0 \mathrm{~Hz}\right), 5.05\left(\mathrm{dq}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{3}=17.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{2}=\mathcal{J}_{\mathrm{HH}}^{4}=1.6 \mathrm{~Hz}\right), 4.98$ (ddd, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.9 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 4.48(\mathrm{bs}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H})$, $2.27-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,148.5,137.1$, $132.5,131.1\left(\mathrm{q}, \mathcal{J}^{2}{ }_{C F}=32.0 \mathrm{~Hz}\right), 124.1\left(\mathrm{q}, J_{\mathrm{CF}}^{1}=272.3 \mathrm{~Hz}\right), 115.6,113.8\left(\mathrm{q}, \mathcal{J}^{3}{ }_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right)$, $110.5\left(\mathrm{q}, \mathcal{J}_{\mathrm{CF}}=3.9 \mathrm{~Hz}\right), 91.5,79.4,57.1,52.9,31.7,28.4,24.4 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 63.15. HRMS (TOF) calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+} 384.1417$, found 384.1401.

methylbenzenesulfonamide (10). Compound 10 was prepared according to the general procedure A (eluents: Hexane: ethyl acetate $=$ 10:1). Yield: 85%. Yellow dense oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ $\left(\mathrm{d}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.3 \mathrm{~Hz}\right), 7.6\left(\mathrm{~d}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.3 \mathrm{~Hz}\right), 7.08\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right.$, $\left.\mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 6.91\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.3 \mathrm{~Hz}\right), 6.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}\right), 6.60(\mathrm{td}$, $\left.1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.1 \mathrm{~Hz}\right), 5.79\left(\mathrm{ddt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HHtrans}}=17.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HHcis}}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=6.8\right.$ $\mathrm{Hz}), 5.13\left(\mathrm{dq}, \mathcal{J}_{\mathrm{HH}}=17.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=\mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 5.07\left(\mathrm{ddd}, \mathcal{J}_{\mathrm{HH}}=10.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.9 \mathrm{~Hz}\right.$, $\mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{bs}, 2 \mathrm{H}), 3.34\left(\mathrm{t}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 2.43-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0,143.7,136.1,134.7,132.4,130.0,129.7,127.8$, 117.8, 117.4, 114.4, 106.9, 87.2, 82.6, 46.0, 37.5, 32.5, 21.6. HRMS (TOF) calc. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$355.1475, found 355.1489 .

6-(2-aminophenyl)hex-1-en-5-yn-3-yl acetate (1p). Compound 1p was prepared according to the general procedure A (eluents: Hexane: ethyl acetate $=30: 1$). Yield: 54%. Yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}\right), 7.09\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.6\right.$ Hz), $6.68-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.95$ (ddd, $1 \mathrm{H}, \mathcal{J}_{\text {HHtrans }}=17.2 \mathrm{~Hz}, \mathcal{J}_{\text {HHcis }}=10.5 \mathrm{~Hz}, \mathcal{J}_{\text {HH }}=6.2 \mathrm{~Hz}$), $5.49\left(\mathrm{qt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{3}=6.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=1.2 \mathrm{~Hz}\right), 5.39\left(\mathrm{dt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{3}=17.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=1.3 \mathrm{~Hz}\right), 5.29(\mathrm{dt}$, $\left.1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=10.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 4.20(\mathrm{bs}, 2 \mathrm{H}), 2.82\left(\mathrm{~d}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.2 \mathrm{~Hz}\right), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,148.1,135.2,132.1,129.4,118.0,117.8,114.3,108.1,90.1$, 79.5, 72.6, 25.8, 21.3. HRMS (TOF) calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$230.1176, found 230.1173.

Representative general procedure for the gold(I)-catalyzed synthesis of annulated indoles derivatives $3 \mathrm{a}-3 \mathrm{p}$.

An oven dried resealable test tube with a Teflon stirring bar was charged with the 1,X-enynes 1 (0.3 mmol) in dried DMF (0.125 M). Subsequently, [Au(JohnPhos)(NCMe)]SbF 6 ($5 \mathrm{~mol} \%$) were added. The tube was sealed with a Teflon screw-cap and placed in an oil bath at $60{ }^{\circ} \mathrm{C}\left(80{ }^{\circ} \mathrm{C}\right)$. As indicated extra $5 \mathrm{~mol} \%[\mathrm{Au}(\mathrm{JohnPhos})(\mathrm{NCMe})] \mathrm{SbF}_{6}$ was added after 8 h of reaction. The reaction was heated at this temperature until consumption of the starting material. Next, the mixture was cooled to room temperature, diluted with dichloromethane ($2-3 \mathrm{~mL}$), and filtered over Aluminium oxide activated. The solvent was removed under reduced pressure and the annulated indoles were isolated by silica gel column chromatography.

Dimethyl 4-methyl-3,4-dihydro-1 H -carbazole-2,2(9H)-dicarboxylate
(3a). (eluents: Hexane: ethyl acetate $=10: 1$). Yield: 91%. Yellow dense oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{bs}, 1 \mathrm{H}), 7.50\left(\mathrm{dm}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.5\right.$ Hz), 7.22-7.16 (m, 1H), 7.08-6.94 (m, 2H), 3.71 (s, 3H), $3.58(\mathrm{~s}, 3 \mathrm{H})$, $3.35\left(\mathrm{dt}, 1 \mathrm{H}, \mathcal{J}^{2} \mathrm{HH}=16.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=1.5 \mathrm{~Hz}\right), 3.11-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.64\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}^{2} \mathrm{HH}=13.3 \mathrm{~Hz}\right.$, $\left.\mathcal{J}^{3}{ }_{\mathrm{HH}}=5.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.7 \mathrm{~Hz}\right), 1.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=13.4, \mathcal{J}_{\mathrm{HH}}=10.1 \mathrm{~Hz}\right), 1.37\left(\mathrm{~d}, \mathcal{J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}\right.$, 3 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,171.0,136.5,130.7,127.0,121.3,119.6,119.3,113.5$, 110.9, 54.7, 53.1, 52.9, 38.7, 29.5, 26.1, 21.3. HRMS (El) calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}]^{+} 301.1314$, found 301.1302.

Dimethyl 8-bromo-4,6-dimethyl-3,4-dihydro-1H-carbazole-2,2(9H)dicarboxylate (3b). (eluents: Hexane: ethyl acetate $=10: 1$). Yield: 75%. Pale yellow solid, m.p.: 195-197 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.97 (bs, 1H), 7.28 (s, 1H), 7.10 (s, 1H), 3.80 (s, 3H), 3.67 (s, 3H), 3.47 (dt, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=16.5 \mathrm{~Hz}, J_{H H}^{4}=1.6 \mathrm{~Hz}$,), $3.18\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=14.2 \mathrm{~Hz}, J_{H H}^{4}=3.9 \mathrm{~Hz}\right), 3.18-3.05$ (m, 1H), 2.71 (ddd, 1H, J $\mathcal{H H}^{2}=13.4 \mathrm{~Hz}, \mathcal{J}_{H H}^{3}=5.6 \mathrm{~Hz}, \mathcal{J}_{H H}^{4}=1.9 \mathrm{~Hz}$), 2.41 (s, 3H), 1.86 (dd, 1 H , $\left.\mathcal{J}^{2}{ }_{\mathrm{HH}}=13.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{3}=10.2 \mathrm{~Hz}\right), 1.42\left(\mathrm{~d}, 3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1$, 170.9, 133.3, 131.6, 130.1, 128.2, 124.9, 118.6, 114.2, 104.0, 54.6, 53.2, 53.0, 38.5, 29.5, 26.2, 21.4, 21.2. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 394.0648$, found 394.0641.

Dimethyl 6-chloro-4-methyl-3,4-dihydro-1H-carbazole-2,2(9H)dicarboxylate (3c). (eluents: Hexane: ethyl acetate $=10: 1$). Yield: 81%. Pale yellow solid, m.p.: $192-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=2.0 \mathrm{~Hz}\right), 7.21\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=0.5 \mathrm{~Hz}\right), 7.09(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.0 \mathrm{~Hz}\right), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.45\left(\mathrm{dt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=14.8 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=\right.$ 1.7 Hz), $3.18\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=16.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.0 \mathrm{~Hz}\right), 3.19-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.74\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=\right.$ $\left.13.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=5.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.8 \mathrm{~Hz}\right), 1.91\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=13.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=10.2 \mathrm{~Hz}\right), 1.45(\mathrm{~d}$, $3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,170.9,134.8,132.3,128.0,125.0,121.5$, 119.1, 113.4, 111.8, 54.6, 53.1, 53.0, 38.5, 29.5, 26.0, 21.1. HRMS (TOF) calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Cl}$ $[\mathrm{M}+\mathrm{H}]^{+} 336.0997$, found 336.0963 .

Dimethyl 6-isopropyl-4-methyl-3,4-dihydro-1H-carbazole-2,2(9H)-dicarboxylate (3d). (eluents: Hexane: ethyl acetate $=5: 1$). Yield: 78\%. Pale yellow solid, m.p.: 64-66 ${ }^{\circ}$ C. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{bs}, 1 \mathrm{H}), 7.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=0.9 \mathrm{~Hz}\right), 7.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}\right.$ $=8.3 \mathrm{~Hz}), 7.03\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=1.6 \mathrm{~Hz}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dt}, 1 \mathrm{H}$, $\mathcal{J}_{\mathrm{HH}}=14.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.7 \mathrm{~Hz}$), 3.24-3.11(m, 2H), 3.00 (hept, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}$), 2.72 (ddd, 1 H , $\left.\mathcal{J}_{\mathrm{HH}}^{2}=13.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{3}=5.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=1.7 \mathrm{~Hz}\right), 1.88\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=13.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{3}=10.1 \mathrm{~Hz}\right), 1.47$ $\left(\mathrm{d}, 3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}\right), 1.31\left(\mathrm{~d}, 6 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,171.0$, $140.0,135.0,130.8,127.0,120.3,116.7,113.3,110.7,54.7,53.1,529,38.7,34.4,29.5,26.1$, 24.9, 24.8, 21.3.HRMS (TOF) calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 344.1856$ found 344.1844.

Dimethyl 6-methoxy-4-methyl-3,4-dihydro-1H-carbazole-2,2(9H)-dicarboxylate (3e). (eluents: Hexane: ethyl acetate $=5: 1$).

Yield: 90\%. Pale yellow solid, m.p.: 105-107 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{bs}, 1 \mathrm{H}), 7.16\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=0.5 \mathrm{~Hz}\right), 7.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{4}=2.4 \mathrm{~Hz}\right)$, $6.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.4 \mathrm{~Hz}\right), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dt}, 1 \mathrm{H}$, $\left.\mathcal{J}_{\mathrm{HH}}=14.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.7 \mathrm{~Hz}\right), 3.19-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.70\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=13.3 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=5.4 \mathrm{~Hz}\right.$, $\left.\mathcal{J}_{\mathrm{HH}}=1.6 \mathrm{~Hz},\right), 1.87\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=13.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right), 1.43\left(\mathrm{~d}, 3 \mathrm{H}, \mathcal{J}^{3}{ }_{\mathrm{HH}}=6.7 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,171.0,153.8,131.7,127.4,113.3,111.4,110.7,102.5,56.2$, 54.7, 53.1, 52.9, 38.6, 29.6, 26.1, 21.1. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 332.1492$ found 332.1498.

4-methyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3f). (eluents: Hexane: ethyl acetate $=5: 1$). Yield: 90%. Pale yellow solid, m.p.: 80-83 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87$ (bs, 1H), $7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathcal{J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right), 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.40\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=14.4\right.$ $\mathrm{Hz}), 4.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.38-3.14(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.38\left(\mathrm{~d}, 3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right)$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9,136.5,133.8,129.9,128.2,127.8,126.3,122.0,119.8$, 118.8, 113.6, 111.2, 51.3, 43.8, 28.1, 21.7, 18.9. HRMS (TOF) calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 341.1318 found 341.1308 .

4-methyl-2,3,4,9-tetrahydro-1H-carbazole (3g). (eluents: Hexane: ethyl acetate $=20: 1$). Yield: 91%. Colorless dense oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65$ (bs, $1 \mathrm{H}), 7.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.28\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right.$), 7.08 (ddt, $2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}$ $\left.=8.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=4.1 \mathrm{~Hz}\right), 3.14-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 2 \mathrm{H})$, 1.87-1.77 (m, 1H), 1.62-1.58 (m, 1H), $1.38\left(\mathrm{~d}, 3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 134.0,133.9,127.6,120.9,119.1,118.8,115.2,110.6,32.3,27.3,23.6,21.4,20.6$ HRMS (TOF) calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 186.1277$ found 186.1274.

4-methyl-1,3,4,9-tetrahydropyrano[3,4-b]indole (3h). (eluents: Hexane: ethyl acetate $=20: 1$). Yield: 48%. Yellow dense oil. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (bs, 1H), $7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.07(\mathrm{~m}, 3 \mathrm{H}), 4.80(\mathrm{t}$, $\left.2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=1.4 \mathrm{~Hz}\right), 4.02\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=11.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=4.5 \mathrm{~Hz}\right), 3.67(\mathrm{dd}, 1 \mathrm{H}$, $\mathcal{J}_{\mathrm{HH}}=11.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=5.3 \mathrm{~Hz}$), 3.24-3.08(m, 1H), $1.38\left(\mathrm{~d}, 3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.2,131.3,126.8,121.7,119.7,118.9,113.1,111.1,72.6,63.9,28.4,18.0$. HRMS (TOF) calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 188.1070$ found 188.1063.

Dimethyl

4,4-dimethyl-3,4-dihydro-1H-carbazole-2,2(9H)dicarboxylate (3i). (eluents: Hexane: ethyl acetate $=20: 1$). Yield: 80%. White solid, m.p.: 133-135 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~s}, 1 \mathrm{H})$, $7.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right), 7.29\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.14\left(\mathrm{t}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right), 7.09(\mathrm{t}, 1 \mathrm{H}$, $\left.\mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 172.0,136.6,129.6,126.0,121.1,119.9,119.1,116.7,111.1,53.3,52.8,44.4,31.7,30.1$, 29.2. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 316.1543$ found 316.1544 .

Dimethyl 10-methyl-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)dicarboxylate (3j).(eluents: Hexane: ethyl acetate $=10: 1$). Yield: 90%. Pale yellow solid, m.p.: 134-136 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94$ (bs, 1H), 7.52-7.46 (m, 1H), 7.27-7.23 (m, 1H), 7.14-7.02 (m, 2H), 3.76 $(\mathrm{s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.51\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=14.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}\right.$ $=10.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.2 \mathrm{~Hz}$), 2.26 (ddd, $\left.1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=14.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.0 \mathrm{~Hz}\right), 2.10-1.80$ $(\mathrm{m}, 2 \mathrm{H}), 1.31\left(\mathrm{~d}, 3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6,171.3,135.1,130.3$, $128.5,121.2,119.1,118.1,117.4,110.7,57.0,53.0,52.7,32.7,30.6,30.2,29.8,20.3$ HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 316.1543$ found 316.1549.
 Dimethyl

4-bromo-2,10-dimethyl-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)-dicarboxylate (3k). (eluents: Hexane: ethyl acetate $=20: 1$). Yield: 80%. White solid, m.p.: 175-177 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84$ (bs, 1H), $7.20(\mathrm{~s}, 1 \mathrm{H})$, $7.11(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=15.2 \mathrm{~Hz}\right), 3.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=15.3\right.$ $\mathrm{Hz}), 3.28-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.49\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=14.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=11.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.8 \mathrm{~Hz}\right), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 2.27\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=14.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right), 2.02-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.86\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=14.7\right.$
$\mathrm{Hz}, \mathcal{J}_{\mathrm{HH}}=8.3 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.8 \mathrm{~Hz}$), $1.29\left(\mathrm{~d}, \mathcal{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.4,171.1,132.1,131.4,130.1,129.7,124.9,118.3,117.1,103.9,56.8,53.1,52.7,32.8$, 30.5, 30.1, 29.9, 21.4, 20.2. HRMS (TOF) calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 408.0805$ found 408.0813.

Dimethyl

2-chloro-10-methyl-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)-dicarboxylate (3I). (eluents: Hexane: ethyl acetate $=10: 1$). Yield: 77%. White solid, m.p.: 58-60 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{bs}, 1 \mathrm{H}), 7.45(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=2.0 \mathrm{~Hz}\right), 7.15\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=0.4 \mathrm{~Hz}\right), 7.04\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.6, \mathcal{J}_{\mathrm{HH}}=\right.$ $2.0 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=15.2 \mathrm{~Hz}\right), 3.34\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=15.4 \mathrm{~Hz}\right)$, 3.29-3.15 (m, 1H), $2.51\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=14.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=10.6, \mathcal{J}_{\mathrm{HH}}=2.3 \mathrm{~Hz}\right.$), 2.26 (ddd, $1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}$ $\left.=14.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.4 \mathrm{~Hz}\right), 2.04-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.30\left(\mathrm{~d}, 3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,171.3,133.5,132.0,129.6,124.9,121.4,117.6,117.3,111.7$, 56.9, 53.1, 52.7, 32.8, 30.5, 30.1, 29.7, 20.2. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{CINO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 350.1154 found 350.1136 .

Dimethyl
2-methoxy-10-methyl-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)-dicarboxylate (3m). (eluents: Hexane: ethyl acetate $=5: 1$). Yield: 82%. Pale yellow solid, m.p.: 175-177 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{bs}, 1 \mathrm{H})$, $7.16\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=0.3 \mathrm{~Hz}\right), 6.95\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=2.4 \mathrm{~Hz}\right), 6.78\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.7\right.$ $\left.\mathrm{Hz}, \mathcal{J}_{\mathrm{HH}}=2.4 \mathrm{~Hz}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=15.1 \mathrm{~Hz}\right), 3.32$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=15.2 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}^{4}=0.7 \mathrm{~Hz}\right), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.50\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=14.6, \mathcal{J}_{\mathrm{HH}}=\right.$ $10.8 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.0 \mathrm{~Hz}$), $2.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=14.6 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 2.05-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}$, $\left.3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.6,171.3,154.0,131.3,130.3,128.9,117.3$, $111.4,111.0,100.5,56.9,56.1,53.0,52.7,32.8,30.5,30.2,29.8,20.2$ HRMS (TOF) calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 346.1649$ found 346.1657.

Dimethyl 10-methyl-3-(trifluoromethyl)-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)-dicarboxylate (3n). (eluents: Hexane: ethyl acetate $=5: 1$). Yield: 76%. Pale yellow solid, m.p.: 152-154 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34$ (bs, $1 \mathrm{H}), 7.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.3 \mathrm{~Hz}\right), 7.48\left(\mathrm{t}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=0.9 \mathrm{~Hz}\right), 7.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=\right.$ $1.1 \mathrm{~Hz}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 3.38-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.55\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}^{2} \mathrm{HH}=14.6\right.$ $\left.\mathrm{Hz}, \mathcal{J}_{\mathrm{HH}}=10.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.4 \mathrm{~Hz}\right), 2.30\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=14.7 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.1 \mathrm{~Hz}\right)$, 2.06-1.84 (m, 2H), $1.32\left(\mathrm{~d}, 3 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,171.4,133.9$, $133.5,130.7,125.5\left(\mathrm{q}, \mathcal{J}^{1}{ }_{\mathrm{CF}}=269.3 \mathrm{~Hz}\right), 123.1\left(\mathrm{q}, \mathcal{J}^{2}{ }_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 118.3,115.9\left(\mathrm{q}, \mathcal{J}_{\mathrm{CF}}=3.0\right.$ $\mathrm{Hz}), 108.2\left(\mathrm{q}, \mathcal{J}_{\mathrm{CF}}=4.5 \mathrm{~Hz}\right), 56.9,53.2,52.8,32.9,30.5,30.2,29.7,20.2 .{ }^{19} \mathrm{~F}$ NMR (471 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-60.47$. HRMS (TOF) calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 384.1417$ found 384.1425.

5-methyl-2-tosyl-1,2,3,4,5,10-hexahydroazepino[3,4-b]indole
(30).
(eluents: Hexane: ethyl acetate $=10: 1$). Yield: 80%. Yellow solid, m.p.: 95$97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{bs}, 1 \mathrm{H}), 7.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.3\right.$ $\mathrm{Hz}), 7.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.17(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathcal{J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 7.12\left(\mathrm{td}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.07\left(\mathrm{td}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.2\right.$ $\mathrm{Hz}), 4.71\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=15.8 \mathrm{~Hz}\right), 4.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=15.8 \mathrm{~Hz}\right), 3.70\left(\mathrm{dt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=14.0 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}\right.$ $=4.0 \mathrm{~Hz}$), $3.54\left(\mathrm{ddd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}^{2}=13.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=11.1 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=2.5 \mathrm{~Hz}\right), 3.39-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.5,136.1,135.0,130.5,129.8,128.1,127.22,121.8,119.5,118.4,118.3,111.1$, 46.3, 45.7, 33.6, 28.6, 21.6, 19.9. HRMS (TOF) calc. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 355.1475$ found 355.1464.

4,9-dihydro-1H-carbazole (3p). (eluents: Hexane: ethyl acetate $=50: 1$). Yield: 81%. White solid, m.p.: 142-144 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone) $\delta 9.83$ (bs, $1 \mathrm{H}), 7.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}\right.$), $7.32\left(\mathrm{dt}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=0.8 \mathrm{~Hz}\right), 7.05$ $\left(\mathrm{td}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 6.98\left(\mathrm{td}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.1 \mathrm{~Hz}\right), 6.05-6.00(\mathrm{~m}$, $1 \mathrm{H}), 5.95-5.89(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Acetone) $\delta 137.3,132.2,128.2$, 123.8, 121.5, 119.4, 118.3, 111.4, 106.9, 24.9, 23.9. HRMS (TOF) calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$ 170.0964 found 170.0962 .

Preparation of Intermediates and Indole-Gold Compexes

Procedure for the gold(I)-catalyzed synthesis of indole 3b.

An oven dried resealable test tube with a Teflon stirring bar was charged with the 2-anilineenyne 2b (0.5 mmol) in dried $\mathrm{EtOH}(0.125 \mathrm{M})$. Subsequently, $\mathrm{NaAuCl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($5 \mathrm{~mol} \%$) were added. The tube was sealed with a Teflon screw-cap and placed in an oil bath at $60{ }^{\circ} \mathrm{C}$. The reaction was heated at this temperature until consumption of the starting material. Next, the mixture was cooled to room temperature, diluted with dichloromethane ($2-3 \mathrm{~mL}$), and filtered over Aluminium oxide activated. The solvent was removed under reduced pressure and indole 3b was isolated by silica gel column chromatography (eluents: Hexane: ethyl acetate $=20: 1$).

Dimethyl 2-((1H-indol-2-yl)methyl)-2-(but-3-enyl)malonate. Yield:
87%. Pale yellow solid, m.p.: 72-74 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.62(\mathrm{bs}, 1 \mathrm{H}), 7.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.32\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right.$, $\left.\mathcal{J}_{\mathrm{HH}}=0.8 \mathrm{~Hz}\right), 7.17-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=1.4 \mathrm{~Hz}\right), 5.87-5.65$ $(\mathrm{m}, 1 \mathrm{H}), 5.10-4.92(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 2.07-2.06(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,137.2,136.3,133.7,128.3,121.5,120.1,119.6,115.5,110.8,102.8,58.8,52.8$, 33.5, 32.9, 28.8. HRMS (TOF) calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 316.1543$ found 316.1535.

Synthesis of indole-gold complex 4.

An oven dried resealable test tube with a Teflon stirring bar was charged under argon with [Au(JohnPhos)(NCMe)]SbF 6 (0.1 mmol) and compound 3a (0.1 mmol) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The tube was sealed with a Teflon screw-cap and the reaction was stirred at room temperature for 1 h . Then the solvent was removed under vacuum, and the solid residue was washed with diethyl ether to give complex 4 as a white solid (98\%).

L = JohnPhos

Complex 4. m.p.: 78-80 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 8.02$7.95(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathcal{J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.21\left(\mathrm{dd}, 2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=8.2 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{HH}}^{4}=1.2 \mathrm{~Hz}\right), 7.02(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.72\left(\mathrm{t}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.5\right.$ $\mathrm{Hz}), 5.74(\mathrm{bs}, 1 \mathrm{H}), 5.03(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.37$ $(\mathrm{s}, 2 \mathrm{H}), 2.12-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.53\left(\mathrm{~d}, 18 \mathrm{H}, \mathcal{J}_{\mathrm{PH}}=16.1 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 186.5,170.7,151.1,149.4\left(\mathrm{~d}, J_{\mathrm{PC}}^{1}=12.3 \mathrm{~Hz}\right), 144.2\left(\mathrm{~d}, \mathcal{J}_{\mathrm{PC}}^{2}=6.1\right.$ $\mathrm{Hz}), 136.9,134.3\left(\mathrm{~d}, \mathcal{J}_{\mathrm{PC}}=3.5 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, \mathcal{J}_{\mathrm{PC}}=7.6 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, \mathcal{J}_{\mathrm{PC}}=2.0 \mathrm{~Hz}\right), 129.9$, 129.2, 128.7, $128.4\left(\mathrm{~d}, \mathcal{J}_{\mathrm{PC}}=7.5 \mathrm{~Hz}\right), 127.5,125.4,124.8,124.4,120.4,119.4,116.3,57.9$, $53.8,45.1,41.7,38.8\left(\mathrm{~d}, J^{1}{ }_{\mathrm{PC}}=26.6 \mathrm{~Hz}\right), 35.5,31.3\left(\mathrm{~d}, \mathcal{J}^{2} \mathrm{PC}=5.9 \mathrm{~Hz}\right), 29.42 .{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 58.7. HRMS (TOF) calc. for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{AuNO}_{4} \mathrm{P}[\mathrm{M}]^{+} 810.2981$ found 810.2972.

Synthesis of indole-gold complexes 5 and 6.

An oven dried resealable test tube with a Teflon stirring bar was charged under argon with $[\mathrm{Au}(\mathrm{IPr})] \mathrm{SbF}_{6}(0.1 \mathrm{mmol})$ (generated from a stoichiometric mixture of $[\mathrm{AuCl}(\mathrm{IPr})]$ and AgSbF_{6}) and compound $3 \mathbf{a}(0.1 \mathrm{mmol})$ in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The tube was sealed with a Teflon screwcap and the reaction was stirred at room temperature for 1 h . Then the solvent was removed under vacuum, and the solid residue was washed with diethyl ether to give complex 5 as a violet solid in quantitative yield.

Complex 5. m.p.: 88-90 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.67(\mathrm{t}$, $\left.2 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.51(\mathrm{~s}, 2 \mathrm{H}), 7.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}\right.$ $\left.\mathrm{SbF}_{6}^{-}=1.0 \mathrm{~Hz}\right), 7.44\left(\mathrm{~d}, 4 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 7.33\left(\mathrm{td}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right.$,
$\left.\mathcal{J}_{\mathrm{HH}}=1.0 \mathrm{~Hz}\right), 7.17\left(\mathrm{td}, 1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathcal{J}_{\mathrm{HH}}=1.1 \mathrm{~Hz}\right), 6.32(\mathrm{~d}$,
$\left.1 \mathrm{H}, \mathcal{J}_{\mathrm{HH}}=7.9 \mathrm{~Hz},\right), 5.85-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}$,
$2 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.66-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.78(\mathrm{~m}$, $2 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.30\left(\mathrm{~d}, \mathcal{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 12 \mathrm{H}\right), 1.29\left(\mathrm{~d}, \mathcal{J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 12 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 188.3,171.2,170.4,151.3,146.7,137.0,134.3,134.1,131.9,128.5,128.4$, $125.4,125.1,125.1,118.3,116.3,57.8,53.6,45.0,41.1,35.7,29.5,29.1,24.9,24.4$. HRMS (TOF) calc. for $\mathrm{C}_{45} \mathrm{H}_{57} \mathrm{AuN}_{3} \mathrm{O}_{4}[\mathrm{M}]^{+} 900.4009$ found 900.3990.

Complex 6

$\mathrm{SbF}_{6}{ }^{-}$

Attempts to crystallize complex 5 from a dichloromethane-pentane solution at low temperature allowed to isolate the diaurated species 6 derived from $[\mathrm{Au}(\mathrm{IPr})] \mathrm{SbF} 6)$

X-ray Data

a)

b)

Figure 1. Thermal ellipsoid plot (50\% probability level) for 6: (a) IPr ellipsoids and hydrogen atoms omitted, (b) labelling scheme with IPr ligands [C(22) and $C(52)]$ omitted. Selected bond lengths (A) and angles $\left(^{\circ}\right.$): $\mathrm{Au}(1)-\mathrm{N}(11)$ 2.044(7), $\mathrm{Au}(1)-\mathrm{C}(52) 1.978(8), \mathrm{Au}(2)-\mathrm{C}(13) 2.122(8)$, $\mathrm{Au}(2)-\mathrm{C}(22) 2.016(7), \mathrm{N}(11)-\mathrm{C}(12) 1.325(9), \mathrm{N}(11)-\mathrm{C}(17 \mathrm{~A})$ 1.382(10), C(12)-C(13)1.429(12), $C(13)-C(13 A) \quad 1.483(10), \quad C(13 A)-C(17 A) 1.382(11), \quad C(13 A)-C(14) \quad 1.410(11), \quad C(14)-C(15)$ 1.392(11), C(15)-C(16) 1.387(13), C(16)-C(17) 1.377(12) , C(17)-C(17A) 1.413(10), C(52)-$\mathrm{Au}(1)-\mathrm{N}(11) 178.0(3), \mathrm{C}(22)-\mathrm{Au}(2)-\mathrm{C}(13) 173.8(3), \mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(17 \mathrm{~A}) 107.1(7), \mathrm{C}(12)-\mathrm{N}(11)-$ $\mathrm{Au}(1)$ 129.8(6), $\mathrm{C}(17 \mathrm{~A})-\mathrm{N}(11)-\mathrm{Au}(1)$ 123.0(5), N(11)-C(12)-C(13) 113.5(7), C(12)-C(13)-C(13A) 101.4(7) , $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{Au}(2)$ 105.6(5), $\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{Au}(2)$ 105.5(5), $\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14)$ 120.1(7), $\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(13)$ 107.1(7), $\mathrm{C}(14)-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(13)$ 132.8(8), $\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13 \mathrm{~A})$ 118.7(8), $\quad C(16)-C(15)-C(14) \quad 120.4(8), \quad C(17)-C(16)-C(15) \quad 121.8(8), \quad C(16)-\quad C(17)-C(17 A)$ $117.9(8), \mathrm{C}(13 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{N}(11) 110.4(6), \mathrm{C}(13 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(17) 121.0(8), \mathrm{N}(11)-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(17)$ 128.6(8).

Table 3. Solvent and acid additive effect on the $[\mathrm{Au}(\mathrm{JohnPhos})(\mathrm{MeCN})] \mathrm{SbF}_{6}$ catalysed cascade formation of cycloheptaindole $\mathbf{3 j}$ from $\mathbf{1 j}$

	1j $\frac{5 \mathrm{~mol} \%[\mathrm{Au}(\mathrm{JohnPhos})(\mathrm{MeCN})] \mathrm{SbF}_{6}}{\text { solvent, additive, } 80^{\circ} \mathrm{C}}$			2j +3 j	
Entry	Solvent	Additive ${ }^{\text {a }}$	t (h)	2j(\%)	3j(\%)
1	DCM	none	30	>95	-
2	1,2-DCE	none	30	>95	-
3	Toluene	none	30	>95	-
4	THF	none	30	92	8
5	DMA	none	30	37	63
6	DMF	none	30	36	64
7	EtOH	none	30	50	50
8	HFIP	none	30	>95	-
9	DMF/HFIP ${ }^{\text {b }}$	none	30	-	>95
10	DMF	AcOH	45	38	72
11	DMF	BzOH	45	14	86
12	DMF	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$	45	5	95
13	DMF	TfOH	45	55	45
14	DMF	p-TsOH	45	55	45

${ }^{\text {a) }} 7.5 \mathrm{~mol} \%$ of the corresponding acid were added. ${ }^{\text {b }} 50 \% \mathrm{v} / \mathrm{v}$ mixture

NMR Spectra of New Compounds

Dimethyl 2-allyl-2-(3-(2-aminophenyl)prop-2-ynyl)malonate

Dimethyl 2-allyl-2-(3-(2-amino-3-bromo-5-methylphenyl)prop-2-ynyl)malonate

Dimethyl 2-allyl-2-(3-(2-amino-5-chlorophenyl)prop-2-ynyl)malonate

Dimethyl 2-allyl-2-(3-(2-amino-5-isopropylphenyl)prop-2-ynyl)malonate

Dimethyl 2-allyl-2-(3-(2-amino-5-methoxyphenyl)prop-2-ynyl)malonate

N -allyl-N-(3-(2-aminophenyl)prop-2-ynyl)-4-methylbenzenesulfonamide

2-(hept-6-en-1-ynyl)aniline

2-(3-(allyloxy)prop-1-ynyl)aniline

Dimethyl 2-(3-(2-aminophenyl)prop-2-ynyl)-2-(2-methylallyl)malonate

Dimethyl 2-(3-(2-aminophenyl)prop-2-ynyl)-2-(but-3-enyl)malonate

Dimethyl 2-(3-(2-amino-3-bromo-5-methylphenyl)prop-2-ynyl)-2-(but-3-enyl)malonate

Dimethyl 2-(3-(2-amino-5-chlorophenyl)prop-2-ynyl)-2-(but-3-enyl)malonate

Dimethyl 2-(3-(2-amino-5-methoxyphenyl)prop-2-ynyl)-2-(but-3-enyl)malonate

Dimethyl 2-(3-(2-amino-4-(trifluoromethyl)phenyl)prop-2-ynyl)-2-(but-3-enyl)malonate

N-(3-(2-aminophenyl)prop-2-ynyl)-N-(but-3-enyl)-4-methylbenzenesulfonamide

N

	1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

2-(3-(but-3-enyloxy)prop-1-ynyl)aniline

6-(2-aminophenyl)hex-1-en-5-yn-3-yl acetate

Dimethyl 4-methyl-3,4-dihydro-1H-carbazole-2,2(9H)-dicarboxylate

Dimethyl 8-bromo-4,6-dimethyl-3,4-dihydro-1H-carbazole-2,2(9H)-dicarboxylate

Dimethyl 6-chloro-4-methyl-3,4-dihydro-1H-carbazole-2,2(9H)-dicarboxylate

Dimethyl 6-isopropyl-4-methyl-3,4-dihydro-1H-carbazole-2,2(9H)-dicarboxylate

Dimethyl 6-methoxy-4-methyl-3,4-dihydro-1H-carbazole-2,2(9H)-dicarboxylate

4-methyl-2-tosyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole

4-methyl-2,3,4,9-tetrahydro-1H-carbazole

4-methyl-1,3,4,9-tetrahydropyrano[3,4-b]indole

Dimethyl 4,4-dimethyl-3,4-dihydro-1H-carbazole-2,2(9H)-dicarboxylate

Dimethyl 10-methyl-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)-dicarboxylate

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

Dimethyl
4-bromo-2,10-dimethyl-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)-
dicarboxylate

Dimethyl
2-chloro-10-methyl-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)-
dicarboxylate

Dimethyl
2-methoxy-10-methyl-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)-
dicarboxylate

Dimethyl 10-methyl-3-(trifluoromethyl)-6,8,9,10-tetrahydrocyclohepta[b]indole-7,7(5H)dicarboxylate

5-methyl-2-tosyl-1,2,3,4,5,10-hexahydroazepino[3,4-b]indole

4,9-dihydro-1H-carbazole

Dimethyl 2-((1H-indol-2-yl)methyl)-2-(but-3-enyl)malonate

Complex 4

Complex 5

References:

[^0]
[^0]: ${ }^{1}$ 2-iodo-4-methoxyaniline was prepared from 5-methoxy-2-nitroaniline in two steps accordind to the procedures described in: S. W. Dantale and B. C. G. Söderberg, Tetrahedron, 2003, 59, 5507.
 ${ }_{2}$ J.W. Faller and P. P. Fontaine, J. Organomet. Chem. 2006, 691, 1912.
 ${ }^{3}$ a) M. Nishizawa, V. K. Yadav, M. Skwarczynski, H. Takao, H. Imagawa and T. Sugihara, Org. Lett. 2005, 5, 1609. b)
 A. M. Gomez, M. D. Company, S. Valverde and J. C. López, Org. Lett. 2002, 4, 383.
 ${ }^{4} N$-allyl-4-methyl- N-(prop-2-ynyl)benzenesulfonamide was prepared according to the procedure described in: F . Monnier, C. Vovard-Le Bray, D. Castillo, V. Aubert, S. Dérien, P. H. Dixneuf, L. Toupet, A. Lenco and C. Meall, J. Am. Chem. Soc. 2007, 129, 6037 and the properties were consistent with previously reported data: K. T. Sylvester and P. J. Chirik, J. Am. Chem. Soc. 2009, 131, 8772.
 ${ }^{5}$ E-I. Negishi, S. J. Holmes, J. M. Tour, J. A. Miller, F. E. Cederbaum, D. R. Swanson and T. Takahashi, J. Am. Chem. Soc. 1999, 111, 3336.
 ${ }^{6}$ I. Ojima, A. T. Vu, S-Y. Lee, J. V. McCullagh, A. C. Moralee, M. Fujiwara and T. H. Hoang, J. Am. Chem. Soc. 2002, 124, 9164.
 ${ }^{7}$ B. M. Trost and Z. T. Ball, J. Am. Chem. Soc. 2005, 127, 17644.
 ${ }^{8} N$-(but-3-enyl)-4-methyl- N-(prop-2-ynyl)benzenesulfonamide was prepared according to the procedure described in: F. Monnier, C. Vovard-Le Bray, D. Castillo, V. Aubert, S. Dérien, P. H. Dixneuf, L. Toupet, A. Lenco and C. Meall, J. Am. Chem. Soc. 2007, 129, 6037 and the properties were consistent with previously reported data: Y. Kavanagh, C. M. Chaney, J. Muldoon and P. Evans, J. Org. Chem. 2008, 73, 8601.
 ${ }^{9}$ Y. Kavanagh, C. M. Chaney, J. Muldoon and P. Evans, J. Org. Chem. 2008, 73, 8601.
 ${ }^{10}$ See ref. 1.
 ${ }^{11}$ C. H. M. Amijs, V. López-Carrillo, M. Raducan, P. Pérez-Galán, C. Ferrer and A. M. Echavarren J. Org. Chem., 2008, 73, 7721.

