C-F bond substitution via aziridinium ion intermediates

Annika Maria Träff, Mario Janjetovic, and Göran Hilmersson

General methods ... 2
Synthetic procedures .. 2
Lewis acid screening .. 10
General method for C-F bond substitution .. 10
NMR studies .. 15
NMR Spectra .. 19
References ... 58
General methods

Dichloromethane (CH$_2$Cl$_2$) was distilled from CaH$_2$ and stored over molecular sieves (3 Å). La[N(SiMe$_3$)$_2$]$_3$ ≥98% (99.9%-La) was purchased from Strem Chemicals Inc. and stored in a glove box. All other solvents and reagents were used as purchased without further purifications. Silica column chromatography was performed with chromatographic silica media for separation and purification applications (35-70 micron). 1H NMR and 13C NMR were recorded with Varian 400, Varian 500 or Bruker 800. 19F NMR was recorded with Varian 500. The chemical shifts are reported in ppm relative to the residual peak from the solvent CDCl$_3$ (1H NMR δ 7.26, 13C NMR δ 77.16) or CD$_2$Cl$_2$ (1H NMR δ 5.32). For 19F NMR, the peaks are reported in ppm, using hexafluorobenzene in CDCl$_3$ as internal reference (19F NMR δ −162.2). The conversion of the substitution reactions were measured by GC-FID with n-dodecane as internal standard, standardized by calibrating against authentic samples of pure starting material, or analyzed by 1H and 19F NMR. GC-FID was performed on a GC Varian 3900 with an auto sampler equipped with an EQUITYTM-5 column (30 m * 0.25 mm * 0.25 µm), and with hydrogen as carrier gas. GC-FID method: 80 °C, 2 min; 20 °C-min$^{-1}$ to 300 °C, 2 min; injector temperature 300 °C, Rt (n-dodecane) = 5.6 min.

Synthetic procedures

Synthesis of N-benzyl-N-methyl-2-fluoroethylamine (1a)

\[
\text{CH}_2\text{CH}_2\text{F} \quad \text{BuMeNH} \quad \text{K}_2\text{CO}_3 \quad \text{MeCN} \\
\]

To K$_2$CO$_3$ (2.8 g, 20 mmol) was added MeCN (22 mL), BnMeNH (1.0 mL, 8 mmol), and 1-bromo-2-fluoroethane (0.88 mL, 12 mmol). The reaction was heated to 60 °C and stirred overnight (~18-20 h). The reaction was quenched by adding ~100 mL of H$_2$O. The crude was extracted with Et$_2$O 3x100 mL. The combined organic phases were dried over Na$_2$SO$_4$, filtered and concentrated under vacuum. The crude was purified by silica gel flash chromatography, gradient eluent 20:1 to 5:2 pentane:Et$_2$O. The product was collected as a clear colorless oil (1.06 g, 6.4 mmol, 80%). 1H NMR (400 MHz, CDCl$_3$) δ 7.35 – 7.23 (m, 5H), 4.56 (dt, $J = 47.6$, 5.1 Hz, 2H), 3.59 (s, 2H), 2.73 (dt, $J = 26.9$, 5.1 Hz, 2H), 2.31 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 138.81, 129.15, 128.42, 127.24, 82.64 (d, $J = 167.3$ Hz), 62.76 (d, $J = 0.9$ Hz), 56.84 (d, $J = 20.2$ Hz), 42.90 (d, $J = 1.2$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -218.82. HRMS calculated for C$_{10}$H$_{14}$FN (M+H)$^+$: 168.1182, found: 168.1181.

Synthesis of Benzyl(2-fluoroethyl)sulfane (3)

\[
\text{CH}_2\text{CH}_2\text{F} \quad \text{K}_2\text{CO}_3 \quad \text{DMF} \\
\]

To a solution of benzyl mercaptan (0.35 mL, 3.0 mmol), K$_2$CO$_3$ (0.55 g, 4.0 mmol), and DMF (7 mL) was added 1-bromo-2-fluoroethane (0.33 mL, 4.5 mmol). The reaction mixture was allowed to stir at room temperature for 17 h. The content was portioned between H$_2$O and Et$_2$O. The water phase was extracted one more time with Et$_2$O. The organic phases were combined, washed with brine, dried over MgSO$_4$, filtered and concentrated. The crude was purified by silica gel flash chromatography using 2% Et$_2$O in pentane as eluent, yielding a colorless oil (0.40 g, 2.4 mmol, 80%). NMR was in agreement with that previously reported.2
Synthesis of 2-fluoroethyl benzyl ether (5a)

![Chemical Structure](image)

To a solution of benzyl alcohol (0.31 mL, 3.0 mmol) in dry DMF (1 mL) was added NaH (60% dispersion in mineral oil, 0.13 g, 3.3 mmol) at 0 °C. 1-bromo-2-fluoroethane (0.26 mL, 3.5 mmol) was then added drop-wise at 0 °C. The reaction mixture was then stirred for 1 h and allowed to reach room temperature where it stirred for 3 h. The content was quenched by adding water and extracted twice with Et2O. The organic phases were combined, washed with brine, dried over MgSO4, filtered and concentrated. The crude was purified by silica gel flash chromatography using 3% EtOAc in pentane as eluent, yielding a colorless oil (0.40 g, 2.37 mmol, 79%). NMR was in agreement with that previously reported.3

Synthesis of (4-fluorobutyl)benzene (7)

![Chemical Structure](image)

To phenylbutanol (0.15 mL, 1.0 mmol), and TEA*3HF (0.16 mL, 1.0 mmol) in dry CH2Cl2 (3 mL) was added Xtalfluor-E (0.34 g, 1.5 mmol) at -78 °C. The reaction mixture was stirred at -78 °C for 30 min. and was then allowed to reach room temperature and stirred for 18 h. The content was quenched by adding sat. NaHCO3, and was stirred for 30 min. and then extracted with CH2Cl2 (3x25 mL). The organic phases were combined, dried over MgSO4, filtered and concentrated. The crude was purified by silica gel flash chromatography using pentane/CH2Cl2 (9:1) as eluent, yielding a colorless oil (0.063 g, 0.41 mmol, 41%). NMR was in agreement with that previously reported.4

Synthesis of N-benzyl-2-fluoro-N-methylacetamide (9)

![Chemical Structure](image)

N-benzyl-2-fluoro-N-methylacetamide was synthesized following a literature procedure for amidation of esters.5 To La(OTf)3 (0.088 g, 0.15 mmol) was added ethyl fluoroacetate (0.29 mL, 3 mmol) and BnMeNH (0.46 mL, 3.6 mmol). The reaction mixture was stirred at 50 °C and followed until completion by GC. The mixture was diluted by CH2Cl2 and applied on silica gel flash chromatography using pentane/EtOAc (3:1) as eluent, yielding a colorless oil (0.26 g, 1.43 mmol, 48%), which consist as mixtures of isomers. 1H NMR (400 MHz, CDCl3) δ 7.41 – 7.15 (m, 5H), 5.03 (d, $J = 47.1$ Hz, 2H), 4.61 (s, 1H), 4.47 (s, 1H), 2.96 (s, 1H), 2.87 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 167.18 (d, $J = 18.0$ Hz), 166.92 (d, $J = 18.5$ Hz), 136.46, 135.74, 129.14, 128.81, 128.32, 128.06, 127.78, 126.69, 80.01(d, $J = 179.7$ Hz), 79.75 (d, $J = 179.2$ Hz), 52.28 (d, $J = 4.6$ Hz), 51.14, 33.94, 33.31 (d, $J = 4.4$ Hz). 19F NMR (376 MHz, CDCl3) δ -219.77, -220.96. HRMS calculated for C10H12FNO (M+H)$^+$: 182.0975, found: 182.0976.

Synthesis of N-benzyl-2,2,2-trifluoro-N-methylacetamide
N-benzyl-2,2,2-trifluoro-N-methylacetamide was prepared according to literature procedure and NMR was in agreement with that previously reported.

Synthesis of N-benzyl-2,2,2-trifluoro-N-methylethan-1-amine (1k)

N-benzyl-2,2,2-trifluoro-N-methylacetamide (0.70 g, 3.2 mmol) was dissolved in dry THF. The content was cooled to 0 °C and borane dimethyl sulfide complex (3.5 mL, 7.1 mmol, 2.0 M in THF) was added dropwise. The reaction mixture was allowed to reach room temperature and was then refluxed for 2 h. After cooling to room temperature the mixture was cooled to 0 °C and carefully quenched by adding methanol followed by water. The crude was extracted with Et₂O (3x30 mL). The organic phases were combined, dried over Na₂SO₄, filtered and concentrated. The crude was purified by silica gel flash chromatography using pentane/EtOAc (95:5) as eluent, yielding a colorless oil (0.54 g, 2.66 mmol, 83%). NMR was in agreement with that previously reported.

Synthesis of N-benzyl-3-fluoro-N-methylpropan-1-amine (1b)

To K₂CO₃ (1.0 g, 7.5 mmol) was added MeCN (8.2 mL), BnMeNH (0.39 mL, 3 mmol), and 1-bromo-3-fluoropropane (0.29 mL, 3.1 mmol). The reaction was heated to 60 °C and stirred overnight (~18-20 h). The reaction was quenched by adding ~35 mL of H₂O. The crude was extracted with Et₂O 3x35 mL. The combined organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The crude was purified by flash chromatography using pentane/EtOAc (95:5) as eluent, yielding a colorless oil (0.54 g, 2.66 mmol, 83%). NMR was in agreement with that previously reported.

Synthesis of N-benzyl-4-fluoro-N-methylbutan-1-amine (1c)

To K₂CO₃ (2.8 g, 20 mmol) was added MeCN (22 mL), BnMeNH (1.0 mL, 8 mmol), and 1-bromo-4-fluorobutane (1.3 mL, 12 mmol). The reaction was heated to 60 °C and stirred overnight (~18-20 h). The reaction was quenched by adding ~100 mL of H₂O. The crude was extracted with Et₂O 3x100 mL. The combined organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The crude was purified by flash chromatography, gradient eluent 4:1 to 1:1 pentane:Et₂O. The product was collected as a clear colorless oil (0.646 g, 3.3 mmol, 41%). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.21 (m, 5H), 4.52 (dt, J = 47.3, 6.1 Hz, 2H), 3.50 (s, 2H), 2.51 (t, J = 7.1 Hz, 2H), 2.06 (s, 3H), 1.99 – 1.82 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 139.22, 129.05, 128.36, 127.10, 82.83 (d, J = 163.8 Hz), 62.56, 53.34 (d, J = 5.7 Hz), 42.27, 28.64 (d, J = 19.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -215.51. HRMS calculated for C₁₁H₁₆FN (M+H)⁺: 182.1339, found: 182.1338.
2.22 (s, 3H), 1.84 – 1.60 (m, 4H). 13C NMR (101 MHz, CDCl$_3$) δ 139.4, 129.1, 128.3, 127.0, 84.2 (d, $J = 164.3$ Hz), 62.5, 56.9, 42.3, 28.4 (d, $J = 19.7$ Hz), 23.2 (d, $J = 5.2$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -213.69. HRMS calculated for C$_{12}$H$_{18}$FN (M+H)$^+$: 196.1495, found: 196.1495.

Synthesis of N-benzyl-5-fluoro-N-methylpentan-1-amine (1d)

![Chemical structure](image)

To K$_2$CO$_3$ (2.8 g, 20 mmol) was added MeCN (22 mL), N-benzylmethylamine (1.0 mL, 8 mmol), and 1-bromo-5-fluoropentane (1.5 mL, 12 mmol). The reaction was heated to 60 °C and stirred for ~48 h. The reaction was quenched by adding 100 mL of H$_2$O. The crude was extracted with Et$_2$O 3x75 mL. The combined organic phases were dried over Na$_2$SO$_4$, filtered and concentrated under vacuum. The crude was purified by flash chromatography, gradient eluent 16:1 to 1:1 pentane:Et$_2$O. The product was collected as a clear colorless oil (1.27 g, 6.1 mmol, 76%).

1H NMR (400 MHz, CDCl$_3$) δ 7.38 – 7.23 (m, 5H), 4.46 (dt, $J = 47.4, 6.1$ Hz, 2H), 3.50 (s, 2H), 2.40 (dd, $J = 8.0, 6.6$ Hz, 2H), 2.21 (s, 3H), 1.81 – 1.41 (m, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 139.4, 129.1, 128.3, 127.0, 84.2 (d, $J = 164.3$ Hz), 62.5, 57.4, 42.4, 30.4 (d, $J = 19.4$ Hz), 27.2, 23.2 (d, $J = 5.7$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -213.80. HRMS calculated for C$_{13}$H$_{20}$FN (M+H)$^+$: 210.1652, found: 210.1650.

Synthesis of 1-bromo-6-fluorohexane

![Chemical structure](image)

To 6-bromo-1-hexanol (0.39 mL, 3.0 mmol) in dry CH$_2$Cl$_2$ (7 mL), was added Deoxo-Fluor (50% in THF, 1.5 mL, 3.6 mmol) dropwise at -78 °C. The reaction mixture was stirred for 30 min. and was then allowed to reach room temperature and was stirred for 18 h. The mixture was quenched by carefully adding sat. NaHCO$_3$. The content was stirred for 30 min. and then extracted with CH$_2$Cl$_2$ (2x30 mL). The organic phases were combined, dried over MgSO$_4$, filtered and concentrated. The crude was purified by silica gel chromatography using pentane/CH$_2$Cl$_2$ (9:1) as eluent. The product was collected as a clear colorless oil (0.25 g, 1.36 mmol, 45%). NMR was in agreement with that previously reported.

Synthesis of N-benzyl-6-fluoro-N-methylhexan-1-amine (1e)

![Chemical structure](image)

To K$_2$CO$_3$ (0.52 g, 3.75 mmol) was added MeCN (4 mL), N-benzylmethylamine (0.19 mL, 1.5 mmol), and 1-bromo-6-fluorohexane (0.25 g, 1.36 mmol). The reaction was heated to 60 °C and stirred for ~18 h. The reaction was quenched by adding 20 mL of H$_2$O. The crude was extracted with Et$_2$O 3x20 mL. The combined organic phases were dried over Na$_2$SO$_4$, filtered and concentrated under vacuum. The crude was purified by flash chromatography, gradient eluent pentane:Et$_2$O (2:1). The product was collected as a clear colorless oil (0.24 g, 1.07 mmol, 79%). 1H NMR (400 MHz, CDCl$_3$) δ 7.34 – 7.21 (m, 5H), 4.43 (dt, $J = 47.3, 6.1$ Hz, 2H), 3.47 (s, 2H), 2.39 – 2.33 (m, 2H), 2.18 (s, 3H), 1.76 – 1.62 (m, 2H), 1.58 – 1.48 (m, 2H), 1.45 – 1.32 (m, 4H). 13C NMR (101 MHz, CDCl$_3$) δ 139.43, 129.16, 128.30, 126.99, 84.33 (d, $J = 164.0$ Hz), 62.53, 57.50, 42.42, 30.55 (d, $J = 19.4$ Hz), 27.47, 27.19, 25.27 (d,
$J = 5.7$ Hz). 19F NMR (376 MHz, CDCl$_3$) δ -213.73. HRMS calculated for C$_{14}$H$_{22}$FN (M+H)$^+$: 224.1808, found: 224.1806.

Synthesis of 2-fluoro-1-iodooctane

To 1-octene (0.31 mL, 2.0 mmol), and TEA*3HF (0.49 mL, 3.0 mmol) in dry CH$_2$Cl$_2$ (2 mL) was added N-iodosuccinimide (0.49 g, 2.2 mmol) at 0 ºC. The reaction mixture was stirred at 0 ºC for 15 min. and was then allowed to reach room temperature and stirred for 6 h. The content was quenched by adding water and neutralized with 25% aq. NH$_3$. The crude was extracted with CH$_2$Cl$_2$ (3x25 mL). The organic phases were combined, dried over MgSO$_4$, filtered and concentrated. The crude was purified by silica gel flash chromatography using pentane as eluent, yielding a colorless oil (0.33g, 1.28 mmol, 64%). NMR was in agreement with that previously reported.

Synthesis of N-benzyl-2-fluoro- N-methyloctan-1-amine (1f)

To 2-fluoro-1-iodooctane (0.33 g, 1.28 mmol), and K$_2$CO$_3$ (0.42 g, 3.03 mmol) in MeCN (7.5 mL) was added N-benzylmethylamine (0.196 mL, 1.52 mmol). The reaction mixture was allowed to stir at 60 ºC until full conversion of 2-fluoro-1-iodooctane was reached indicated by GC-FID, 72 h. The content was portioned between 30 mL H$_2$O and 30 mL Et$_2$O. The water phase was extracted with Et$_2$O 3 x 30 mL. The organic phases were combined, dried over Na$_2$SO$_4$, filtered and concentrated. The crude was purified by silica gel flash chromatography, gradient eluent 24:1 to 3:1 pentane: Et$_2$O, yielding a colorless oil (0.193 g, 0.76 mmol, 60%). 1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.21 (m, 5H), 4.76 – 4.53 (m, 1H), 3.57 (s, 2H), 2.64 (ddd, $J = 19.0$, 13.8, 7.1 Hz, 1H), 2.51 (ddd, $J = 28.5$, 13.8, 3.3 Hz, 1H), 2.30 (s, 3H), 1.72 – 1.20 (m, 10H), 0.89 (t, $J = 7.0$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 138.8, 129.0, 128.2, 127.0, 93.0 (d, $J = 169.0$ Hz, F-CH$_2$), 62.8 (d, $J = 1.4$ Hz, Ph-CH$_2$-N), 60.9 (d, $J = 21.4$ Hz, N-CH$_2$-CHF), 43.1 (d, $J = 1.6$ Hz, CH$_2$-N), 33.4 (d, $J = 20.6$ Hz, FCH-CH$_2$-CH$_2$), 31.7, 29.1, 24.9 (d, $J = 4.6$ Hz, FCH-CH$_2$-CH$_2$), 22.6, 14.0 (-CH$_2$)-. 19F NMR (376 MHz, CDCl$_3$) δ -176.79. HRMS calculated for C$_{16}$H$_{26}$FN (M+H)$^+$: 252.2121, found: 252.2118.

Synthesis of 1-(2-fluoroctyl)piperidine (1g)

To 2-fluoro-1-iodooctane (0.33 g, 1.28 mmol), and K$_2$CO$_3$ (0.42 g, 3.03 mmol) in MeCN (7.5 mL) was added piperidine (1.52 mmol, 0.15 mL). The reaction mixture was allowed to stir at room temperature for 18 h (or until full conversion of 2-fluoro-1-iodooctane was reached indicated by GC-FID). The content was portioned between H$_2$O and Et$_2$O. The water phase was extracted one more time with Et$_2$O. The organic phases were combined, dried over Na$_2$SO$_4$, filtered and concentrated. The crude was purified by silica gel flash chromatography using pentane:Et$_2$O (2:1) as eluent, yielding a colorless oil (0.15g, 0.71 mmol, 56%). 1H NMR (400 MHz, CDCl$_3$) δ 4.77 – 4.56 (m, 1H), 2.63 – 2.31 (m, 6H), 1.66 – 1.22 (m, 16H), 0.94 – 0.83 (m, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 92.67 (d, $J = 168.9$ Hz, F-CH$_2$), 23.9, 22.6, 21.4 (-CH$_2$)-.
Hz), 63.65 (d, J = 21.0 Hz), 55.29 (d, J = 1.2 Hz), 33.96 (d, J = 20.9 Hz), 31.85, 29.26, 26.11, 25.11 (d, J = 4.5 Hz), 24.34, 22.71, 14.20. 19F NMR (376 MHz, CDCl$_3$) δ -175.22. HRMS calculated for C$_{13}$H$_{26}$FN (M+H)$^+$: 216.2121, found: 216.2118.

Synthesis of N-benzyl-N-(2-fluoroethyl)prop-2-en-1-amine (1h)

To K$_2$CO$_3$ (2.3 g, 17 mmol) was added MeCN (20 mL), N-benzyl-N-allyl-amine (1.0 g, 6.8 mmol), and 1-bromo-2-fluoroethane (0.76 mL, 10.2 mmol). The reaction was heated to 60 °C and stirred for ~72 h, or until completion of amine. The reaction was quenched by adding 100 mL of H$_2$O. The crude was extracted with Et$_2$O 3x75 mL. The combined organic phases were dried over Na$_2$SO$_4$, filtered and concentrated under vacuum. The crude was purified by silica gel flash chromatography, gradient eluent 20:1 to 5:2 pentane:Et$_2$O. The product was collected as a clear colorless oil (1.01 g, 5.2 mmol, 77%). NMR was in agreement with that previously reported.

Synthesis of N-benzyl-2-fluoro-N-((trimethylsilyl)methyl)ethan-1-amine (1i)

To K$_2$CO$_3$ (2.8 g, 20 mmol) was added MeCN (22 mL), N-[(trimethylsilyl)methyl]benzylamine (1.8 mL, 8 mmol), and 1-bromo-2-fluoroethane (0.88 mL, 12 mmol). The reaction was heated to 60 °C and stirred for ~72 h, or until completion of amine. The reaction was quenched by adding 100 mL of H$_2$O. The crude was extracted with Et$_2$O 3x75 mL. The combined organic phases were dried over Na$_2$SO$_4$, filtered and concentrated under vacuum. The crude was purified by silica gel flash chromatography, gradient eluent 100:0 to 94:6 pentane:Et$_2$O. The product was collected as a clear colorless oil (1.32 g, 5.5 mmol, 69%). 1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.19 (m, 5H, Ph), 4.48 (dtd, J = 47.6, 5.3, 1.2 Hz, 2H, CH$_2$F), 3.59 (s, 2H, Ph-CH$_2$-N), 2.70 (dt, J = 25.2, 5.3, 1.4 Hz, 2H, N-CH$_2$-CH$_2$F), 2.08 (d, J = 1.5 Hz, 2H, N-CH$_2$-TMS), 0.07 (d, J = 1.6 Hz, 9H, TMS). 13C NMR (101 MHz, CDCl$_3$) δ 140.0 (Ph), 128.8 (Ph), 128.3 (Ph), 127.0 (Ph), 82.9 (d, J = 167.5 Hz, -CH$_2$F), 62.8, 56.8 (d, J = 20.2 Hz, N-CH$_2$-CH$_2$F), 46.9, -1.3 (TMS). 19F NMR (376 MHz, CDCl$_3$) δ -215.40. HRMS calculated for C$_{13}$H$_{22}$FNSi (M+H)$^+$: 240.1578, found: 240.1575.

Synthesis of 4-(2,3-difluoropropyl)morpholine (1j)

To 3-morpholinol-1,2-propanediol (0.7 mL, 5.0 mmol) in dry CH$_2$Cl$_2$ (5 mL), was added Deoxo-Fluor (50% in THF, 4.4 mL, 10.4 mmol) dropwise at 0 °C. The reaction mixture was stirred for 30 min. and was then allowed to reach room temperature and was stirred for 24 h. The mixture was quenched by carefully adding sat. NaHCO$_3$. The content was stirred for 30 min. and then extracted with CH$_2$Cl$_2$ (2x30 mL). The organic phases were combined, dried over Na$_2$SO$_4$, filtered and concentrated. The crude was purified by silica gel chromatography using Et$_2$O as eluent. The product was collected as a clear colorless oil (0.11 g, 0.66 mmol, 13%). 1H NMR (400 MHz, CDCl$_3$) δ
4.95 – 4.43 (m, 3H), 3.70 (td, 4H), 2.76 – 2.58 (m, 2H), 2.54 (td, 4H). 1C NMR (101 MHz, CDCl$_3$) δ 90.11 (dd, J = 174.5, 19.5 Hz), 83.19 (dd, J = 173.0, 23.1 Hz), 67.03, 58.10 (dd, J = 22.2, 7.1 Hz), 54.37 (d, J = 1.2 Hz). 19F NMR (376 MHz, CDCl$_3$) δ -186.28, -228.14. HRMS calculated for C$_7$H$_{13}$F$_2$NO (M+H)$^+$: 166.1037, found: 166.1039.

Synthesis of ((allyloxy)methyl)benzene

\[
\begin{align*}
\text{(allyloxy)methyl)benzene was prepared according to literature procedure and NMR was in agreement with that previously reported.}^{11}
\end{align*}
\]

Synthesis of 2-fluoroocctyl benzyl ether (5b)

\[
\begin{align*}
\text{2-fluoroocctyl benzyl ether was synthesized following a general literature procedure for hydrofluorination of unactivated alkenes.}^{12} \text{Fe$_2$(ox)$_3$ (1.31 g, 2.7 mmol) was stirred in degassed water (55 mL) for 1.5 h. The content was cooled to 0 °C and selectfluor (0.96 g, 2.7 mmol) and acetonitrile (27 mL) was added. A solution of benzyl allyl ether (0.20 g, 1.35 mmol, in 27 mL acetonitrile) was added. NaBH}_4 (0.33 g, 8.7 mmol) was added in two portions over a period of 2 min. The reaction mixture was stirred for 30 min. and was then allowed to reach room temperature. The mixture was quenched by adding 28-30% NH$_4$OH (20 mL) and extracted with 10% MeOH in CH$_2$Cl$_2$ (2x75 mL). The organic phases were combined, dried over Na$_2$SO$_4$, filtered and concentrated. The crude was purified by silica gel chromatography using 3% EtOAc in pentane as eluent, yielding a colorless oil (0.065 g, 0.38 mmol, 28%).}^{13} \text{H NMR (400 MHz, CDCl$_3$) δ 7.50 – 7.07 (m, 5H), 4.96 – 4.71 (m, 1H), 4.60 (dd, J = 2.0, 0.7 Hz, 2H), 3.64 – 3.46 (m, 2H), 1.34 (dd, J = 23.8, 6.3 Hz, 3H).} \text{1C NMR (101 MHz, CDCl$_3$) δ 138.10, 128.57, 127.87, 127.84, 89.70 (d, J = 168.2 Hz), 73.58, 73.26 (d, J = 22.0 Hz), 17.58 (d, J = 22.4 Hz).}$^{13} \text{F NMR (376 MHz, CDCl$_3$) δ -175.08.}
\end{align*}
\]

Synthesis of 2-fluorocyclohexan-1-one

\[
\begin{align*}
\text{2-fluorocyclohexan-1-one was prepared according to literature procedure and NMR was in agreement with that previously reported.}^{13}
\end{align*}
\]
Synthesis of (1S,2R)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine (syn-1l)

\[
\begin{align*}
\text{(1S,2R)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine was synthesized following a general literature procedure for formation of hindered tertiary amines.}^{14} \text{To 2-fluorocyclohexan-1-one (0.4 g, 3.4 mmol) was added dry CH}_2\text{Cl}_2 \\
(18 \text{ mL}), N\text{-benzylmethylamine (0.53 mL, 4.1 mmol), and TMEDA (0.52 mL, 3.4 mmol). The content was stirred for 30 min. and trichlorosilane (0.69 mL, 6.9 mmol) was then added dropwise. The reaction mixture was allowed to stir at room temperature for 72h. The reaction was quenched by carefully adding sat. NaHCO}_3 \\
\text{and extracted with CH}_2\text{Cl}_2 (3 \times 30 \text{ mL}). The organic phases were combined, dried over Na}_2\text{SO}_4, filtered and concentrated. The crude was purified by silica gel flash chromatography using 2% EtOAc in pentane as eluent. The product was collected as a clear colorless oil (0.09 g, 0.4 mmol, 12 %).}^{13}\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta \text{ 7.37 – 7.20 (m, 5H), 5.10 (ddt, } J = 50.0, 4.1, 1.7 \text{ Hz, 1H), 3.75 – 3.64 (m, 2H), 2.57 – 2.40 (m, 1H), 2.32 (d, } J = 1.2 \text{ Hz, 3H), 2.12 – 1.19 (m, 8H).}^{13}\text{C NMR (101 MHz, CDCl}_3 \text{) } \delta \text{ 140.40 , 128.84 , 128.34 , 126.87 , 91.53 (d, } J = 173.6 \text{ Hz), 63.91 (d, } J = 17.7 \text{ Hz), 58.70 (d, } J = 3.1 \text{ Hz), 39.18 (d, } J = 3.4 \text{ Hz), 31.57 (d, } J = 21.6 \text{ Hz), 25.63 , 23.20 (d, } J = 1.8 \text{ Hz), 20.21 (d, } J = 1.6 \text{ Hz).}^{19}\text{F NMR (376 MHz, CDCl}_3 \text{) } \delta \text{ -191.98. HRMS calculated for C}_{14}\text{H}_{20}\text{FN (M+H)+}: 222.1652, \text{found: 222.1652.}
\end{align*}
\]

Synthesis of (1S,2S)-2-(benzyl(methyl)amino)cyclohexan-1-ol

\[
\begin{align*}
(1S,2S)-2-(benzyl(methyl)amino)cyclohexan-1-ol was synthesized following a general literature procedure for ring opening of epoxides with amines.^{15} \text{To Yb(OTf)}_3 (0.31 g, 0.5 mmol) was added dry THF (5 mL), cyclohexene oxide (0.5 mL, 5 mmol), and N-benzylmethylamine (1.3 mL, 10 mmol). The reaction mixture was refluxed for 15 h. The reaction was quenched by adding water and extracted with Et}_2\text{O (3x30 mL). The organic phases were combined, washed with brine, dried over Na}_2\text{SO}_4, filtered and concentrated. The crude was purified by silica gel flash chromatography using pentane/EtOAc (10:1). The product was collected as a clear colorless oil (0.53 g, 2.4 mmol, 48%). NMR was in agreement with that previously reported.}^{16}
\end{align*}
\]

Synthesis of (1S,2S)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine (anti-1l)

\[
\begin{align*}
(1S,2S)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine was synthesized following a general literature procedure for ring opening of cyclohexyl-substituted β-haloamines and aziridinium ions.^{17} \text{To (1S,2S)-2-}
\end{align*}
\]

9
(benzyl(methyl)amino)cyclohexan-1-ol (0.53 g, 2.4 mmol) in dry CH$_2$Cl$_2$ (14 mL), was added Deoxo-Fluor (50% in THF, 1 mL, 2.39 mmol) dropwise at 0 °C. The reaction mixture was stirred for 1.5 h at 0 °C and was then quenched by carefully adding 10% Na$_2$CO$_3$. The crude was extracted with CH$_2$Cl$_2$ (3x30 mL). The organic phases were combined, dried over Na$_2$SO$_4$, filtered and concentrated. The crude was purified by silica gel chromatography using 2% EtOAc in pentane as eluent. The product was collected as a clear colorless oil (0.29 g, 1.31 mmol, 55%).

1H NMR (400 MHz, CDCl$_3$) δ 7.37 – 7.20 (m, 5H), 4.60 (dtd, $J = 50.5, 10.1, 4.8$ Hz, 1H), 3.83 – 3.65 (m, 2H), 2.73 – 2.62 (m, 1H), 2.32 (s, 3H), 2.21 – 1.14 (m, 8H).

13C NMR (101 MHz, CDCl$_3$) δ 140.49, 128.78, 128.32, 126.85, 92.71 (d, $J = 177.1$ Hz), 65.99 (d, $J = 15.2$ Hz), 59.17 (d, $J = 1.6$ Hz), 37.58, 32.66 (d, $J = 17.7$ Hz), 27.11 (d, $J = 8.7$ Hz), 25.01 (d, $J = 2.1$ Hz), 24.10 (d, $J = 11.3$ Hz).

19F NMR (376 MHz, CDCl$_3$) δ -170.23.

HRMS calculated for C$_{14}$H$_{20}$FN (M+H)$^+$: 222.1652, found: 222.1653.

Lewis acid screening

To the Lewis acid (0.044 mmol) was added CH$_2$Cl$_2$ (0.25 mL), BnMeNH (8.0 µL, 0.060 mmol), and N-benzyl-N-methyl-2-fluoroethylamine 1a (40 µL, 1.0 M in CH$_2$Cl$_2$, 0.040 mmol). n-Dodecane (9.1 µL, 0.040 mmol) was added to the reaction as internal standard. The reaction was quenched after 5 min by adding 10% K$_2$CO$_3$/tartrate (aq) and extracted with Et$_2$O. The crude was analyzed by GC-FID.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Lewis acid</th>
<th>Yield (%)</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[a]</td>
<td>SmCl$_3$</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SmBr$_3$</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>3[a]</td>
<td>YbF$_3$</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>YbI$_4$</td>
<td>66</td>
<td>100% conv of 1a. Formation of iodo-product</td>
</tr>
<tr>
<td>5[a]</td>
<td>Yb(OTf)$_3$</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6[a]</td>
<td>La(OTf)$_3$</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7[a]</td>
<td>Sm(OTf)$_3$</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8[a]</td>
<td>SmF$_3$</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9[a]</td>
<td>LiI</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AlI$_4$</td>
<td>16</td>
<td>100% conv of 1a. Formation of iodo-product</td>
</tr>
<tr>
<td>11[a]</td>
<td>KI</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>12[a]</td>
<td>KBr</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>13[a]</td>
<td>MgCl$_2$</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>AlCl$_3$</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>16[a]</td>
<td>TMS-HMDS</td>
<td>-10</td>
<td></td>
</tr>
</tbody>
</table>

[a] The corresponding Lewis acids gave <10% yield due to work-up (see Entry 14). Prolonged reaction times resulted in the same outcome and only <10% yield was obtained. Thus, showing no effect of the corresponding Lewis acid in the C-F bond activation.

General method for C-F bond substitution

The reaction was run under dry and inert conditions. To La[N(SiMe$_3$)$_2$]$_3$ (124 mg, 0.20 mmol, stored and weighed in the glove box) was added CH$_2$Cl$_2$ (1.25 mL) followed by the substrate (200 µL, 0.20 mmol, 1.0 M in CH$_2$Cl$_2$) and the nucleophile [dibutylamine (37 µL, 0.22 mmol)]. The reaction was stirred at room temperature to completion after which it was quenched by adding it directly to silica gel column and purified by flash column chromatography.
Table S1: Reaction conditions for substitution of β-heteroatom-fluorines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>t (min)</th>
<th>Product</th>
<th>m (mg)</th>
<th>yield (%)</th>
<th>eluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[a]</td>
<td>1a</td>
<td>1</td>
<td>2a</td>
<td>41.1</td>
<td>93</td>
<td>1:4 Pentane:Et$_2$O</td>
</tr>
<tr>
<td>2[a]</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>39</td>
<td>87</td>
<td>4:1 – 0:1 Pentane:Et$_2$O</td>
</tr>
<tr>
<td>3[a,b]</td>
<td>5a</td>
<td>60</td>
<td>6</td>
<td>37.5</td>
<td>89</td>
<td>4:1 – 0:1 Pentane:Et$_2$O</td>
</tr>
<tr>
<td>4[a,b]</td>
<td>7</td>
<td>60</td>
<td>8</td>
<td>39</td>
<td>93</td>
<td>1:1 Pentane:Et$_2$O</td>
</tr>
<tr>
<td>5[g]</td>
<td>1b</td>
<td>180</td>
<td>2n</td>
<td>52.2</td>
<td>90</td>
<td>1:1 – 1:3 Pentane:Et$_2$O</td>
</tr>
<tr>
<td>6[c]</td>
<td>1a</td>
<td>1</td>
<td>2b</td>
<td>43.5</td>
<td>93</td>
<td>95:5 CH$_2$Cl$_2$:MeOH</td>
</tr>
<tr>
<td>7[d]</td>
<td>1a</td>
<td>60</td>
<td>2c</td>
<td>34.9</td>
<td>81</td>
<td>90:10 CH$_2$Cl$_2$:MeOH</td>
</tr>
<tr>
<td>8</td>
<td>1a</td>
<td>5</td>
<td>2d</td>
<td>52.2</td>
<td>96</td>
<td>2:1 Pentane:Et$_2$O</td>
</tr>
<tr>
<td>9[e]</td>
<td>1a</td>
<td>5</td>
<td>2e</td>
<td>37</td>
<td>72</td>
<td>1:2 Pentane:Et$_2$O</td>
</tr>
<tr>
<td>10</td>
<td>1a</td>
<td>60</td>
<td>2f</td>
<td>23.4</td>
<td>70</td>
<td>90:10 CH$_2$Cl$_2$:MeOH</td>
</tr>
<tr>
<td>11[f]</td>
<td>1a</td>
<td>1</td>
<td>2g</td>
<td>38.1</td>
<td>61</td>
<td>90:10 CH$_2$Cl$_2$:MeOH</td>
</tr>
<tr>
<td>12[d]</td>
<td>1a</td>
<td>60</td>
<td>2h</td>
<td>33.2</td>
<td>69</td>
<td>95:5 CH$_2$Cl$_2$:MeOH</td>
</tr>
<tr>
<td>13</td>
<td>1a</td>
<td>60</td>
<td>2i</td>
<td>28.4</td>
<td>87</td>
<td>2:1 Pentane:Et$_2$O</td>
</tr>
<tr>
<td>14</td>
<td>1a</td>
<td>5</td>
<td>2j</td>
<td>31</td>
<td>89</td>
<td>7:3 Pentane:EtOAc</td>
</tr>
</tbody>
</table>

[a] Reaction performed at room temperature.
[b] Reaction performed at 100°C.
[c] Reaction performed at 120°C.
[d] Reaction performed at 150°C.
[e] Reaction performed at 180°C.
[f] Reaction performed at 200°C.
[g] Reaction performed at 250°C.
[h] Reaction performed at 300°C.
[i] Reaction performed at 350°C.
[j] Reaction performed at 400°C.
15^[e]	![Structure 1a](image)	1	![Structure 2k](image)	28.7	78	2:1 Pentane:Et₂O
16^[e]	![Structure 1a](image)	5	![Structure 2l](image)	34.8	71	2:1 Pentane:Et₂O
17^[d]	![Structure 1a](image)	120	![Structure 2m](image)	46.2	78	2:1 Pentane:Et₂O
18^[a]	![Structure 1f](image)	5	![Structure 2o](image)	42.1	75	7:1-0:1 Pentane: Et₂O
19^[a]	![Structure 1g](image)	5	![Structure 2p](image)	42.2	81	3:1 – 0:1 Pentane: Et₂O
20^[c]	![Structure 1h](image)	5	![Structure 2q](image)	54	89	1:1 Pentane:Et₂O
21	![Structure 1i](image)	5	![Structure 2r](image)	61.3	90	1:1 Pentane:Et₂O
22^[h,i]	![Structure 1j](image)	180	![Structure 2s](image)	30.6	51	95:5 CH₂Cl₂:MeOH

[a]To La[N(SiMe₃)_2]_3 (110 mg, 0.176 mmol), CH₂Cl₂ (1 mL), substrate (0.160 mmol, 1.0 M in CH₂Cl₂) and the nucleophile [dibutylamine (30 µL, 0.176 mmol)]. [b] Dibutylamine (81 µL, 0.48 mmol). [c] Nucleophile (0.21 mmol). [d] Nucelophile (0.3 mmol). [e] Nucleophile (0.6 mmol). [f] Nucleophile (20 mmol). [g] Was stirred for 10 min. before addition of nucleophile. [h] Was stirred for 30 min. before addition of nucleophile. [i] Nucleophile (0.42 mmol).

N1-benzyl-N2,N2-dibutyl-N1-methylethane-1,2-diamine (2a): ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.25 (m, 5H), 3.58 (s, 2H), 2.66 (dd, J = 9.0, 5.5 Hz, 2H), 2.55 (dd, J = 9.2, 5.5 Hz, 2H), 2.51 – 2.42 (m, 4H), 2.28 (s, 3H), 1.48 – 1.29 (m, 8H), 0.96 (t, J = 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 129.2, 128.3, 127.0, 62.9, 55.6, 54.6, 53.9, 52.4, 42.9, 29.4, 20.9, 14.2. HRMS calculated for C₁₈H₃₂N₂ (M+H)⁺: 277.2638, found: 277.2639.

N-(2-(benzylthio)ethyl)-N-butylbutan-1-amine (4): ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.19 (m, 5H), 3.73 (s, 2H), 2.64 – 2.55 (m, 2H), 2.53 – 2.44 (m, 2H), 2.42 – 2.29 (m, 4H), 1.46 – 1.20 (m, 8H), 0.90 (t, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 129.0, 128.6, 127.1, 54.1, 53.9, 36.6, 29.5, 29.0, 20.8, 14.2. HRMS calculated for C₁₇H₂₉NS (M+H)⁺: 280.2093, found: 280.2096.
N-(2-(benzylxylo)ethyl)-N-butylbutan-1-amine (6): 1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.23 (m, 5H), 4.53 (s, 2H), 3.55 (t, J = 6.4 Hz, 2H), 2.69 (t, J = 6.4 Hz, 2H), 2.49 – 2.38 (m, 4H), 1.48 – 1.22 (m, 8H), 0.90 (t, J = 7.3 Hz, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 138.7, 128.5, 127.8, 127.6, 73.3, 69.1, 54.7, 53.7, 29.4, 20.8, 14.2. HRMS calculated for C$_{17}$H$_{25}$NO (M+H)$^+$: 264.2321, found: 264.2323.

N,N-dibutyl-4-phenylbutan-1-amine (8): 1H NMR (400 MHz, CDCl$_3$) δ 7.35 – 7.14 (m, 5H), 2.65 (t, J = 7.7 Hz, 2H), 2.48 – 2.35 (m, 6H), 1.70 – 1.58 (m, 2H), 1.56 – 1.38 (m, 6H), 1.38 – 1.25 (m, 4H), 0.94 (t, J = 7.3 Hz, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 142.8, 128.5, 128.4, 125.7, 54.2, 54.1, 36.1, 29.62, 29.44, 26.96, 20.93, 14.2. HRMS calculated for C$_{18}$H$_{28}$N$_2$ (M+H)$^+$: 262.2529, found: 262.2530.

N1-benzyl-N3,N3-dibutyl-N1-methylpropane-1,3-diamine (2n): 1H NMR (400 MHz, CDCl$_3$) δ 7.34 – 7.17 (m, 5H), 3.48 (s, 2H), 2.49 – 2.33 (m, 8H), 2.18 (s, 3H), 1.66 (tt, J = 9.4, 6.4 Hz, 2H), 1.47 – 1.20 (m, 8H), 0.90 (t, J = 7.2 Hz, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 139.4, 129.2, 128.3, 126.9, 62.5, 56.0, 54.1, 52.3, 42.4, 29.4, 25.2, 20.9, 14.2. HRMS calculated for C$_{19}$H$_{33}$N$_2$ (M+H)$^+$: 291.2794, found: 291.2796.

N-benzyl-N-methyl-2-morpholinoethan-1-amine (2b): 1H NMR (400 MHz CDCl$_3$) δ 7.35 – 7.19 (m, 5H), 3.76 – 3.63 (m, 4H), 3.51 (s, 2H), 2.57 – 2.47 (m, 4H), 2.42 (dd, J = 5.7, 3.7 Hz, 4H), 2.24 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 139.1, 129.1, 128.3, 127.1, 67.0, 62.9, 57.1, 54.3, 54.2, 42.9. HRMS calculated for C$_{14}$H$_{25}$N$_2$O (M+H)$^+$: 235.1804, found: 235.1807.

N-benzyl-2-(1H-imidazol-1-yl)-N-methylethan-1-amine (2c): 1H NMR (400 MHz, CDCl$_3$) δ 7.50 (s, 1H), 7.33 – 7.15 (m, 5H), 7.04 (s, 1H), 6.91 (s, 1H), 4.00 (t, J = 6.3 Hz, 2H), 3.53 (s, 2H), 2.71 (t, J = 6.3 Hz, 2H), 2.26 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 138.6, 137.5, 129.3, 128.8, 128.5, 127.3, 119.4, 62.7, 57.6, 45.3, 42.4. HRMS calculated for C$_{13}$H$_{17}$N$_3$ (M+H)$^+$: 216.1495, found: 216.1498.

N-benzyl-2-(benzylthio)-N-methylethan-1-amine (2d): 1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.21 (m, 10H), 3.69 (s, 2H), 3.49 (s, 2H), 2.62 – 2.51 (m, 4H), 2.20 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 138.9, 138.6, 129.1, 129.0, 128.6, 128.3, 127.1, 127.0, 62.3, 56.6, 42.2, 36.4, 29.1. HRMS calculated for C$_{17}$H$_{21}$NS (M+H)$^+$: 272.1467, found: 272.1470.

N-benzyl-2-(benzylxylo)-N-methylethan-1-amine (2e): 1H NMR (400 MHz, CDCl$_3$) δ 7.40 – 7.16 (m, 10H), 4.53 (s, 2H), 3.62 (t, J = 5.9 Hz, 2H), 3.56 (s, 2H), 2.67 (t, J = 5.9 Hz, 2H), 2.27 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 139.1, 138.6, 129.2, 128.5, 128.3, 127.8, 127.6, 127.0, 73.2, 68.7, 62.8, 56.7, 43.0. HRMS calculated for C$_{17}$H$_{21}$NO (M+H)$^+$: 256.1695, found: 256.1692.

2,2'-oxybis(N-benzyl-N-methylethan-1-amine) (2g): 1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.19 (m, 10H; Ar), 3.64 (app dd, J = 10.8, 5.0 Hz, 8H, (Ph-CH$_3$-N-)$_2$, -CH$_2$-O-CH$_2$-), 2.71 (t, J = 5.7 Hz, 4H, (-N-CH$_2$-CH$_2$-)$_2$), 2.33 (s, 6H, -CH$_3$). 13C NMR (101 MHz, CDCl$_3$) δ 129.9, 128.5, 127.6, 110.1, 68.9, 62.5, 56.2, 42.6. HRMS calculated for C$_{20}$H$_{28}$N$_2$O (M+H)$^+$: 313.2274, found: 313.2269.

N-benzyl-N-methyl-2-(pyridin-2-xyloxy)ethan-1-amine (2h): 1H NMR (400 MHz, CDCl$_3$) δ 7.37 – 7.12 (m, 7H), 6.52 (ddd, J = 9.1, 1.4, 0.7 Hz, 1H), 6.13 (td, J = 6.7, 1.4 Hz, 1H), 4.01 (dd, J = 6.4, 5.7 Hz, 2H), 3.53 (s, 2H), 2.73 (dd, J = 6.4, 5.7 Hz, 2H), 2.28 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 162.7, 139.4, 138.9, 138.7, 128.8, 128.4, 127.1, 120.8, 105.4, 62.6, 55.7, 47.5, 42.5. HRMS calculated for C$_{13}$H$_{18}$N$_2$O (M+H)$^+$: 243.1491, found: 243.1489.
\[N\text{-benzyl-N-methyl-4-}(\text{trimethylsilyl})\text{but-3-yn-1-amine} (2i): \] \[^1\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta 7.36 - 7.20 (m, 5H), 3.54 (s, 2H), 2.68 - 2.60 (m, 2H), 2.47 - 2.39 (m, 2H), 2.24 (s, 3H), 0.15 (s, 9H). \[^{13}\text{C NMR (101 MHz, CDCl}_3 \text{) } \delta 139.2, 129.0, 128.4, 127.1, 105.8, 85.4, 62.1, 56.1, 42.1, 18.7, 0.3. \] HRMS calculated for C\textsubscript{15}H\textsubscript{29}NSi (M+H)^+: 246.1672, found: 246.1669.

\[2-(\text{2-(benzyl}(\text{methyl})))\text{amino})\text{ethyl} \text{isoindoline-1,3-dione} (2m): \] \[^1\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta 7.83 (dd, J = 5.5, 3.0 Hz, 2H), 7.78 - 7.67 (m, 2H), 7.14 (dd, J = 4.3, 1.4 Hz, 5H), 3.82 (t, J = 6.3 Hz, 2H), 3.52 (s, 2H), 2.67 (t, J = 6.3 Hz, 2H), 2.30 (s, 3H). \[^{13}\text{C NMR (101 MHz, CDCl}_3 \text{) } \delta 168.4, 139.0, 133.9, 132.4, 129.0, 128.2, 127.0, 123.3, 62.3, 54.7, 42.4, 36.1. \] HRMS calculated for C\textsubscript{15}H\textsubscript{31}N\textsubscript{2}O\textsubscript{2} (M+H)^+: 295.1400, found: 295.1439.

\[N\text{1,N}2\text{dibenzy}-N\text{1,N}2\text{dimethyloctane-1,2-diamine} (2o): \] \[^1\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta 7.39 - 7.18 (m, 10H), 3.73 - 3.58 (m, 2H), 3.57 - 3.42 (m, 2H), 2.80 - 2.73 (m, 1H), 2.61 (dd, J = 12.5, 6.0 Hz, 1H), 2.24 (dd, J = 12.5, 6.7 Hz, 1H), 2.18 (app d, J = 2.0 Hz, 6H, 3 x N-CH\textsubscript{3}), 1.54 - 1.25 (m, 10H), 0.91 (t, J = 6.8 Hz, 3H). \[^{13}\text{C NMR (101 MHz, CDCl}_3 \text{) } \delta 140.8, 139.5, 129.0, 128.6, 128.1, 128.0, 126.8, 126.6, 63.1, 60.2, 58.3, 58.2, 42.9, 36.6, 32.0, 30.3, 29.6, 27.2, 22.7, 14.2. \] HRMS calculated for C\textsubscript{24}H\textsubscript{32}N\textsubscript{2} (M+H)^+: 423.2951, found: 353.2948.

\[N\text{,N}2\text{dibutyl-2-(piperidin-1-yl)octan-1-amine} (2p): \] \[^1\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta 2.75 - 2.20 (m, 10H), 2.14 (dd, J = 12.6, 6.9 Hz, 1H), 1.57 - 1.18 (m, 24H), 0.93 - 0.87 (m, 9H). \[^{13}\text{C NMR (101 MHz, CDCl}_3 \text{) } \delta 62.9, 60.2, 56.9, 55.4, 54.8, 54.6, 50.0, 49.9, 32.0, 31.9, 31.8, 31.0, 30.3, 29.9, 29.6, 29.5, 29.3, 27.4, 27.2, 26.8, 26.2, 25.2, 24.6, 22.7, 20.7, 20.5, 14.2, 14.1, 14.1, 14.1. \] HRMS calculated for C\textsubscript{24}H\textsubscript{32}N\textsubscript{2} (M+H)^+: 353.3577, found: 353.3572.

\[N\text{1-allyl-N}1\text{benzyl-N}2\text{dibutylethane-1,2-diamine} (2q): \] \[^1\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta 7.37 - 7.18 (m, 5H; Ar), 5.89 (ddt, J = 17.3, 10.2, 6.4 Hz, 1H; -N-CH\textsubscript{2}-CH=N=CH\textsubscript{2}), 5.19 (ddt, J = 17.2, 2.1, 1.5 Hz, 1H; -N-CH\textsubscript{2}-CH=CH\textsubscript{2}), 5.13 (ddt, J = 10.2, 2.2, 1.2 Hz, 1H; -N-CH\textsubscript{2}-CH=CH\textsubscript{2}), 3.60 (s, 2H, -N-CH\textsubscript{2}-Ph), 3.11 (dt, J = 6.4, 1.4 Hz, 2H; -N-CH\textsubscript{2}-CH=CH\textsubscript{2}). 2.55 (s, 4H), 2.42 - 2.31 (m, 4H), 1.42 - 1.31 (m, 4H), 1.31 - 1.18 (m, 4H), 0.88 (t, J = 7.3 Hz, 6H). \[^{13}\text{C NMR (101 MHz, CDCl}_3 \text{) } \delta 139.8, 136.2, 129.0, 128.2, 126.9, 117.3, 58.9, 57.6, 54.6, 52.3, 51.6, 29.5, 20.9, 14.2. \] HRMS calculated for C\textsubscript{20}H\textsubscript{34}N\textsubscript{2} (M+H)^+: 303.2794, found: 303.2790.

\[N\text{1,N}2\text{dibenzy}-N\text{1-methyl-N}2\text{-(trimethylsilyl)methyl} \text{ethane-1,2-diamine} (2r): \] \[^1\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta 7.37 - 7.17 (m, 10H), 3.52 (s, 2H), 3.47 (s, 2H), 2.62 - 2.47 (m, 4H), 2.16 (s, 3H), 1.98 (s, 2H), 0.05 (s, 9H). \[^{13}\text{C NMR (101 MHz, CDCl}_3 \text{) } \delta 140.5, 139.3, 129.1, 128.8, 128.3, 128.2, 127.0, 126.8, 62.8, 55.6, 55.4, 46.7, 42.9, -1.2. \] HRMS calculated for C\textsubscript{21}H\textsubscript{32}N\textsubscript{2}Si (M+H)^+: 341.2407, found: 341.2405.

\[4,4\text{,4\text{a}}\text{,4b\text{,4c}}\text{-(propane-1,2,3-triyl)} \text{trimorpholine} (2s): \] \[^1\text{H NMR (400 MHz, CDCl}_3 \text{) } \delta 3.90 - 3.55 (m, 12H), 2.94 - 2.14 (m, 17H). \[^{13}\text{C NMR (101 MHz, CDCl}_3 \text{) } \delta 67.81, 67.26, 59.12, 58.68, 54.40, 49.60. \] HRMS calculated for C\textsubscript{15}H\textsubscript{29}N\textsubscript{3}O\textsubscript{3} (M+H)^+: 300.2281, found: 300.2278.
NMR studies

1H NMR study of $(1S,2S)$-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine (anti-$1l$)

To $\text{La}[\text{N(SiMe}_3\text{)}_2]_3$ (50 mg, 0.08 mmol), in a NMR tube, was added CD_2Cl_2 (0.5 mL) followed by anti-$1l$ (80 μL, 0.08 mmol, 1.0 M in CD_2Cl_2 A). 1H NMR spectra was recorded. After aziridinium ion formation has been completed (B), N-benzyl methyl amine (10 μL, 0.08 mmol) was added and 1H NMR spectra was recorded to follow the ring opening of the aziridinium ion (C). The anti-$2t$ product that was obtained was in agreement with that previously reported.\(^{22}\)
1H NMR study of La[N(SiMe$_3$)$_2$]$_2$ mediated formation of 4-, 5-, 6-, and 7-membered cyclic ammonium ions

To La[N(SiMe$_3$)$_2$]$_3$ (50 mg, 0.08 mmol), in a NMR tube, was added CD$_2$Cl$_2$ (0.5 mL) followed by the substrate (80 μL, 0.08 mmol, 1.0 M in CD$_2$Cl$_2$). 1H NMR spectra was recorded to follow the ring-closure.

1H NMR of the 4-membered cyclic ammonium ion
1H NMR of the 5-membered cyclic ammonium ion

![NMR spectrum of the 5-membered cyclic ammonium ion](image)

1H NMR of the 6-membered cyclic ammonium ion

![NMR spectrum of the 6-membered cyclic ammonium ion](image)
1H NMR of the 7-membered cyclic ammonium ion
NMR Spectra

1H NMR N-benzyl-N-methyl-2-fluoroethylamine (1a)

13C NMR N-benzyl-N-methyl-2-fluoroethylamine (1a)
19F NMR N-benzyl-N-methyl-2-fluoroethylamine (1a)

1H NMR N-benzyl-2-fluoro-N-methylacetamide (9)
13C NMR \(N\)-benzyl-2-fluoro-\(N\)-methylacetamide (9)

\[
\begin{align*}
\text{Structure Image}
\end{align*}
\]

19F NMR \(N\)-benzyl-2-fluoro-\(N\)-methylacetamide (9)

\[
\begin{align*}
\text{Structure Image}
\end{align*}
\]
1H NMR N-benzyl-3-fluoro-N-methylpropan-1-amine (1b)

13C NMR N-benzyl-3-fluoro-N-methylpropan-1-amine (1b)
19F NMR N-benzyl-3-fluoro-N-methylpropan-1-amine (1b)

1H NMR N-benzyl-4-fluoro-N-methylbutan-1-amine (1c)
13C NMR N-benzyl-4-fluoro-N-methylbutan-1-amine (1c)

19F NMR N-benzyl-4-fluoro-N-methylbutan-1-amine (1c)
1H NMR N-benzyl-5-fluoro-N-methylpentan-1-amine (1d)

13C NMR N-benzyl-5-fluoro-N-methylpentan-1-amine (1d)
19F NMR N-benzyl-5-fluoro-N-methylpentan-1-amine (1d)

1H NMR N-benzyl-6-fluoro-N-methylhexan-1-amine (1e)
13C NMR N-benzyl-6-fluoro-N-methylhexan-1-amine (1e)

19F NMR N-benzyl-6-fluoro-N-methylhexan-1-amine (1e)
1H NMR 1-(2-fluoroctyl)piperidine (1g)

13C NMR 1-(2-fluoroctyl)piperidine (1g)
19F NMR 1-(2-fluoroctyl)piperidine (1g)

1H NMR N-benzyl-2-fluoro-N-methyloctan-1-amine (1f)
13C NMR N-benzyl-2-fluoro-N-methyloctan-1-amine (1f)

19F NMR N-benzyl-2-fluoro-N-methyloctan-1-amine (1f)
1H NMR 2-fluoro-octyl benzyl ether (5b)

13C NMR 2-fluoro-octyl benzyl ether (5b)
19F NMR 2-fluroooctyl benzyl ether (5b)

1H NMR N-benzyl-2-fluoro-N-((trimethylsilyl)methyl)ethan-1-amine (1i)
13C NMR N-benzyl-2-fluoro-N-((trimethylsilyl)methyl)ethan-1-amine (1i)

19F NMR N-benzyl-2-fluoro-N-((trimethylsilyl)methyl)ethan-1-amine (1i)
1H NMR 4-(2,3-difluoropropyl)morpholine (1j)

13C NMR 4-(2,3-difluoropropyl)morpholine (1j)
19F NMR 4-(2,3-difluoropropyl)morpholine (1j)

1H NMR (1S,2R)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine (syn-1l)
13C NMR (15,2R)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine (syn-11)

19F NMR (15,2R)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine (syn-11)
\(^1\)H NMR (1S,2S)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine (anti-1I)

\(^{13}\)C NMR (1S,2S)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine (anti-1I)
19F NMR (1S,2S)-N-benzyl-2-fluoro-N-methylcyclohexan-1-amine (anti-11)

1H NMR $N1$-benzyl-$N2,N2$-dibutyl-$N1$-methylethane-1,2-diamine (2a)
13C NMR N_1-benzyl-N_2,N_2-dibutyl-N_1-methylethane-1,2-diamine (2a)

1H NMR N-(2-(benzylthio)ethyl)-N-butylbutan-1-amine (4)
$^{13}\text{C NMR } N\text{-}(2\text{-}(\text{benzylothio})\text{ethyl})\text{-}N\text{-butylbutan-1-amine (4)}$

$^{1}\text{H NMR } N\text{-}(2\text{-}(\text{benzyloxy})\text{ethyl})\text{-}N\text{-butylbutan-1-amine (6)}$
13C NMR N-(2-(benzyloxy)ethyl)-N-butylbutan-1-amine (6)

1H NMR N,N-dibutyl-4-phenylbutan-1-amine (8)
13C NMR N,N-dibutyl-4-phenylbutan-1-amine (8)

1H NMR $N1$-benzyl-$N3,N3$-dibutyl-$N1$-methylpropane-1,3-diamine (2n)
13C NMR $N1$-benzyl-$N3,N3$-dibutyl-$N1$-methylpropane-1,3-diamine (2n)

1H NMR N-benzyl-N-methyl-2-morpholinoethan-1-amine (2b)
13C NMR N-benzyl-N-methyl-2-morpholinoethan-1-amine (2b)

1H NMR N-benzyl-2-($1H$-imidazol-1-yl)-N-methylethan-1-amine (2c)
13C NMR N-benzyl-2-(1H-imidazol-1-yl)-N-methylethan-1-amine (2c)

1H NMR N-benzyl-2-(benzylthio)-N-methylethan-1-amine (2d)
\(^{13} \text{C NMR}\) N-benzyl-2-(benzylthio)-N-methylethan-1-amine (2d)

\[\text{Structure Image} \]

\(^1 \text{H NMR}\) N-benzyl-2-(benzyloxy)-N-methylethan-1-amine (2e)

\[\text{Structure Image} \]
13C NMR N-benzyl-2-(benzyloxy)-N-methylethan-1-amine (2e)

1H NMR 2,2'-'oxybis(N-benzyl-N-methylethan-1-amine) (2g)
13C NMR $2,2'$-oxybis(N-benzyl-N-methylethan-1-amine) (2g)

1H NMR N-benzyl-N-methyl-2-(pyridin-2-yl oxy)ethan-1-amine (2h)
13C NMR N-benzyl-N-methyl-2-(pyridin-2-yloxy)ethan-1-amine (2h)

1H NMR N-benzyl-N-methyl-4-(trimethylsilyl)but-3-yn-1-amine (2l)
13C NMR N-benzyl-N-methyl-4-(trimethylsilyl)but-3-yn-1-amine (2l)

1H NMR 2-((benzyl(methyl)amino)ethyl)isoindoline-1,3-dione (2m)
13C NMR 2-(2-(benzyl(methyl)amino)ethyl)isoindoline-1,3-dione (2m)

1H NMR N1,N2-dibenzyl-N1,N2-dimethyloctane-1,2-diamine (2o)

13C NMR N_1,N_2-dibenzyl-N_1,N_2-dimethyloctane-$1,2$-diamine (2o)

1H NMR N,N-dibutyl-2-(piperidin-1-yl)octan-1-amine (2p)
13C NMR N,N-dibutyl-2-(piperidin-1-yl)octan-1-amine (2p)

1H-13C HSQC NMR N,N-dibutyl-2-(piperidin-1-yl)octan-1-amine (2p)
1H-1H TOCSY NMR N,N-dibutyl-2-(piperidin-1-yl)octan-1-amine (2p)

1H-13C HMBC NMR N,N-dibutyl-2-(piperidin-1-yl)octan-1-amine (2p)
1H NMR N_1-allyl-N_1-benzyl-N_2,N_2-dibutylethane-1,2-diamine (2q)

13C NMR N_1-allyl-N_1-benzyl-N_2,N_2-dibutylethane-1,2-diamine (2q)
1H NMR N_1,N_2-dibenzyl-N_1-methyl-N_2-((trimethylsilyl)methyl)ethane-$1,2$-diamine (2r)

13C NMR N_1,N_2-dibenzyl-N_1-methyl-N_2-((trimethylsilyl)methyl)ethane-$1,2$-diamine (2r)
1H NMR 4,4',4''-(propane-1,2,3-triyl)trimorpholine (2s)

\[
\begin{array}{c}
\text{H NMR} 4,4',4''-(propane-1,2,3-triyl)trimorpholine (2s)
\end{array}
\]

13C NMR 4,4',4''-(propane-1,2,3-triyl)trimorpholine (2s)

\[
\begin{array}{c}
\text{C NMR 4,4',4''-(propane-1,2,3-triyl)trimorpholine (2s)}
\end{array}
\]
References