Organocatalytic cascade reaction for asymmetric synthesis of novel

chroman-fused spirooxindoles that potently inhibit cancer cell proliferation

Rui Zhou, †^{*a*} Qinjie Wu, †^{*a*} MingruiGuo, †^{*a*} Wei Huang, ^{*b*} XianghongHe, ^{*b*} Lei Yang, ^{*b*} Fu Peng, ^{*c*}

Gu He*^a and Bo Han*^b

^a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China. E-mail: hegu@scu.edu.cn

^b State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. E-mail: hanbo@cdutcm.edu.cn

^c School of Chinese Medicine, University of Hong Kong, Hong Kong, China

[†]These authors contributed equally to this work.

Supporting Information

Table of Contents

1. Experimental details

- 1.1 General methods for synthesis
- 1.2 Cell culture and cellular proliferation assay
- 1.3 Molecular docking of **7e** to MDM2
- 1.4 Imaging the p53-MDM2 interactionin cytoplasm by fluorescent probe
- 1.5 Cell cycle and apoptosis assay by Flow Cytometry (FCM) and fluorescent microscopy
- 1.6 Western blot analysis

2. General procedure for the asymmetric synthesis of chroman-fused spirooxindoles

- 2.1 Procedure for the asymmetric synthesis of 5
- 2.2 Procedure for the asymmetric synthesis of 6a
- 2.3 Procedure for the asymmetric synthesis of 7
- 2.4 Procedure for the asymmetric synthesis of 8a
- 3. Crystal data of 5k
- 4. NMR spectra and HPLC chromatograms
- 5. Supplementary Table S1-2
- 6. Supplementary Figure S1-4

1. Experimental details

1.1 General methods for synthesis

NMR data was obtained for ¹H at 400 MHz, and for ¹³C at 100 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was recorded on a Waters SYNAPT G2. In each case, enantiomeric ratio was determined by HPLC analysis on chiral column in comparison with authentic racemates, using a Daicel Chiralpak AD-H Column (250 x 4.6 mm) or Daicel Chiralpak OD-H Column (250 x 4.6 mm). UV detection was monitored at 254 nm. Optical rotation data were examined in CHCl₃ solution at 20 °C. Column chromatography was performed on silica gel (300-400 mesh) eluting with ethyl acetate and petroleum ether.TLC was performed on glass-backed silica plates. UV light and I₂ were used to visualize products. Melting points were determined on a Mel-Temp apparatus and are uncorrected. All chemicals were used without purification as commercially available unless otherwise noted.

1.2 Cell culture and cellular proliferation assay

TheA549,HepG2, MCF-7, HCT116 and U87 human cancer cells were purchased from American Type Culture Collection (ATCC,Manassas, VA, U.S.A.). The cells were cultured in DMEM or RPMI-1640 medium (GIBCO, NY, U.S.A.) supplemented with 10 % fetal bovine serum (GE Healthcare, Hyclone Laboratories, Logan, Utah, U.S.A.), 100 μ g/ml streptomycin, 100 IU/ml penicillin, and0.03 % L-glutamine and maintained at 37 °C with 5 % CO₂ in a humidified atmosphere.

Human cancer cells were dispensed in 96-well flat bottom microtiter plates at a density of 5×10^4 to 1×10^5 cells/mL. After 24 h incubation, they were treated with different concentrations of 5a-5n, 6a, 7a-7f and 8a for the indicated time periods. Cell viability was measured by the 3-(4,5-dimetrylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

1.3 Molecular docking of 7e to MDM2

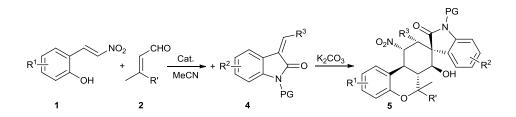
The initialthree dimensional geometric coordinates of the X-ray crystal structure of MDM2 (PDB code: 4LWU) was downloaded from the Protein Data Bank (PDB)(http://www.pdb.org/pdb/home/home.do). In addition, we used Accelrys Discovery Studioversion 3.5 (Accelrys Inc., USA) with CHARMm force-field parameters to dock

pre-generated conformations of 7e into its targets for testing the binding conformation of the complex. We performed flexible-ligand docking to a rigid receptor with grid-based scoring, in which 7e was allowed to be flexible and structurally rearranged in response to MDM2.

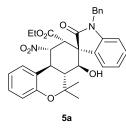
1.4 Imaging the p53-MDM2 interaction in cytoplasm by fluorescent probe

Human breast adenocarcinoma MCF-7 cells were plate on confocal dish and allowed to adhere for12-24 h. After the medium was removed, the cells werecarefully washed with culture medium without fetalbovine serum and then incubated at room temperature in the presence of the p53-MDM2fluorescent probe for 25 min. The fluorescence imaging was performed by using Zeiss AxioObserver A1 fluorescence microscope and Zeiss LSM780confocal fluorescence microscope.

1.5 Cell cycle and apoptosis assay by Flow Cytometry (FCM) and fluorescent microscopy

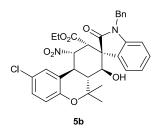

After incubation with 7e for 24 h, the cells were stained with PI at 37 $^{\circ}$ C for 30 min, and then the morphology was observed by a fluorescencemicroscopy (Olympus, Tokyo, Japan). Annexin V/PI dual staining assay was employed to determine the involvement ofapoptosis in 7e-induced cell death, using Annexin-V-FLUOS Staining Kit (Roche) as themanufacturer's instructions. In the caspase-dependent assay, pan-caspase inhibitor Z-VAD-FMK (5 μ M) was added to MCF-7 cells 2 h before 7e treatment.

1.6 Western blot analysis

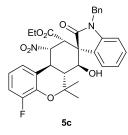

Antibodies against caspase-3, MDM2, β -actin andHRP-conjugated secondary antibodies were purchased from Santa Cruz Biotechnology (SantaCruz, CA, U.S.A.). Antibodies against p21 and p53 were purchased from Cell Signaling Technology (CST, Beverly, MA, U.S.A.). The MCF-7 cells were harvested, washed twice with cold PBS and then lysed incell lysis buffer, supplemented with the proteinase inhibitors 100 ug/mL at 4 °C for 1 h. After12,000 g centrifugation at 4 °C for 10 min, the protein concentration was determined by aBCA Protein Assay Kit (CWBIO, Beijing, China). Equal amounts of total proteins wereseparated by 12% SDS-PAGE, and transferred onto Immobilon-P Transfer Membrane(Millipore Corporation, Billerica, MA, USA). The membranes were blocked with 5 % skimmedmilk at room temperature for 1 h, incubated with indicated primary antibodies at 4 °Covernight and horseradish peroxidase (HRP)-conjugated secondary antibody at roomtemperature for 2 h, then visualized by using ECL reagents.

2. General procedure for the asymmetric synthesis of chroman-fused spirooxindoles

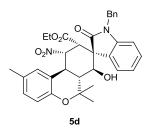
2.1 Procedure for the asymmetric synthesis of 5



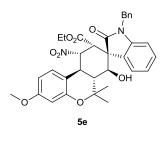
To a solution of 2-nitrovinyl phenol1 (0.5 mmol) and β , β -disubstitutedenal2 (0.5 mmol) in 2 mL of acetonitrile was added 10 mol% of catalyst and AcOH subsequently. The reaction was stirred at 0 °C for 3-4 hours, After which olefinicoxindole4 (0.4 mmol) was added followed by the addition of 0.2 mmol of K₂CO₃ in 0.4 mL of water. The reaction was kept in 0 °C for another 3 hours. Then water was added and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by silica-gel chromatographyto give chroman-fused spirooxindole5.


Compound **5a** was obtained as white solidin 64% yield for two steps after flash chromatography. The dr value was calculated to be 90:10 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 90/10, 1 mL/min), $t_{maior} = 7.9$ min, $t_{minor} = 11.0$ min.

m.p. 214.2-215.8°C, $[\alpha]_D^{20} = +151.5$ (C=0.068, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.22 (m, 7H), 7.21 - 7.15 (m, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.97 - 6.89 (m, 3H), 6.74 (d, J = 7.6 Hz, 1H), 6.36(dd, J = 11.6, 5.6 Hz, 1H), 5.24 (dd, J = 10.8, 4.8 Hz, 1H), 5.03 (d, J = 15.6 Hz, 1H), 4.78 (d, J = 15.6 Hz, 1H), 4.16 (m, 2H), 3.96 (t, J = 12.0 Hz, 1H), 3.56 (d, J = 5.6 Hz, 1H), 2.59 (dd, J = 12.2, 10.8 Hz, 1H), 1.68 (s, 3H), 1.42 (s, 3H), 1.39 (d, J = 4.8 Hz, 1H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.24, 168.68, 153.76, 143.74, 135.06, 129.96, 129.21, 128.92, 128.03, 127.83, 127.15, 127.09, 123.79, 123.31, 121.99, 121.75, 118.43, 109.86, 82.50, 80.94, 69.83, 62.25, 54.54, 50.19, 47.42, 43.94, 33.62, 31.25, 23.40, 13.89. HRMS (ESI-TOF) calcd for C₃₂H₃₂N₂NaO₇⁺ [M+Na]⁺579.2102, found 579.2101.


Compound **5b** was obtained as white solid in 60% yield for two steps after flash chromatography. The dr value was calculated to be 88:12 by ¹H NMR analysis of the crude reaction mixture andthe enantiomeric excess was determined to be 99% by HPLC on Chiralpak OD-H column at 254nm (Hexane/isopropanol = 90/10, 1 mL/min), $t_{major} = 16.3 \text{ min}, t_{minor} = 10.0$

min. m.p. 215.6-218.9 °C, $[\alpha]_D^{20} = +113.3$ (C=0.060, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.22 (m, 7H), 7.15 (dd, J = 8.4, 1.9 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.92 - 6.82 (m, 2H), 6.76 (d, J = 8.0 Hz, 1H), 6.31 (dd, J = 11.6, 5.6 Hz, 1H), 5.23 (dd, J = 10.4, 4.4 Hz, 1H), 5.03 (d, J = 15.6 Hz, 1H), 4.78 (d, J = 15.6 Hz, 1H), 4.23 - 4.10 (m, 2H), 3.93 (t, J = 12.0 Hz, 1H), 3.57 (d, J = 5.6 Hz, 1H), 2.60 - 2.51 (m, 1H), 1.67 (s, 3H), 1.46 - 1.36 (m, 4H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.16, 168.62, 152.41, 143.72, 134.98, 131.10, 130.06, 128.94, 128.05, 127.87, 127.17, 126.84, 126.78, 123.71, 123.36, 122.33, 119.68, 109.94, 82.03, 81.54, 69.64, 62.33, 54.42, 50.01, 47.18, 43.97, 33.67, 31.13, 23.33, 13.87. HRMS (ESI-TOF) calcd for C₃₂H₃₁ClN₂NaO₇⁺ [M+Na]⁺613.1712, found 613.1713.


Compound **5c** was obtained as white solid in 62% yield for two steps after flash chromatography. The dr value was calculated to be 90:10 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254 nm

(Hexane/isopropanol = 90/10, 1 mL/min), $t_{major} = 7.8$ min, $t_{minor} = 12.1$ min. m.p. 191.3-193.0 °C, $[\alpha]_D^{20} = +100.9$ (C = 0.114, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.22 (m, 7H), 7.10 - 6.98 (m, 3H), 6.91 - 6.83 (m, 1H), 6.73 (dd, J = 16.5, 7.8 Hz, 2H), 6.35 (dd, J = 11.7, 5.6 Hz, 1H), 5.25 (dd, J = 10.6, 4.7 Hz, 1H), 5.04 (d, J = 15.7 Hz, 1H), 4.77 (d, J = 15.7 Hz, 1H), 4.16 (qd, J = 7.1, 3.8 Hz, 2H), 3.98 (t, J = 11.9 Hz, 1H), 3.56 (d, J = 5.6 Hz, 1H), 2.61 (dd, J = 12.0, 10.8 Hz, 1H), 1.73 (s, 3H), 1.49 - 1.42 (m, 4H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.21, 168.64, 152.83 ($J_{CF} = 220$ Hz), 143.73, 141.49, 141.43 ($J_{CF} = 12$ Hz), 135.00, 132.23, 130.07, 128.88 ($J_{CF} = 15$ Hz), 127.88, 127.03 ($J_{CF} = 24$ Hz), 123.77, 123.39, 121.60, 121.53, 117.24, 114.99 ($J_{CF} = 18$ Hz), 109.95, 82.33, 69.66, 62.34, 54.46, 50.10, 47.36, 43.97, 33.80, 31.35, 23.25, 13.89. HRMS (ESI-TOF) calcd for C₃₂H₃₁FN₂NaO₇⁺ [M+Na]⁺ 597.2008, found 597.2005.


Compound **5d** was obtained as white solid in 52% yield for two steps after flash chromatography. The dr value was calculated to be 92:8 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak OD-H column at 254nm (Hexane/isopropanol = 95/5, 1 mL/min), t_{maior} =26.8 min, t_{minor} = 16.2 min.

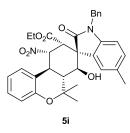
m.p. 121.2-123.1°C, $[\alpha]_D^{20} = +109.5$ (C = 0.116, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.21 (m, 7H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.77 - 6.68 (m, 2H), 6.35 (dd, *J* = 11.6, 5.6 Hz, 1H), 5.24 (dd, *J* = 10.8, 4.8 Hz, 1H), 5.02 (d, *J* = 15.6 Hz, 1H), 4.79 (d, *J* = 15.6 Hz, 1H), 4.23 - 4.09 (m, 2H), 3.92 (t, *J* = 12.0 Hz, 1H), 3.56 (d, *J* = 5.6 Hz, 1H), 2.59 - 2.47 (m, 1H), 2.26 (s, 3H), 1.66 (s, 3H), 1.45 - 1.32 (m, 4H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.28, 168.67, 151.42, 143.74, 135.09, 131.12 , 129.96, 129.46, 128.94, 128.42, 127.84, 127.16, 127.14, 123.80, 123.32, 122.45, 118.22, 109.85, 82.40, 80.77, 69.87, 62.24, 54.56, 50.20, 47.69, 43.94, 33.60, 31.10, 23.43, 21.11, 13.89. HRMS (ESI-TOF) calcdfor C₃₃H₃₄N₂NaO₇⁺[M+Na]⁺593.2258, found 593.2263.

Compound **5e** was obtained as white solid in 50% yield for two steps after flash chromatography. The dr value was calculated to be 92:8 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 90/10, 1 mL/min), $t_{maior} = 13.7 \text{ min}, t_{minor} = 15.8$

min. m.p.112.7-115.3 °C, $[\alpha]_D^{20} = +94.1$ (C = 0.136, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 - 7.17 (m, 7H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.74 (d, *J* = 7.6 Hz, 1H), 6.54 - 6.42 (m, 2H), 6.29 (dd, *J* = 11.6, 5.6 Hz, 1H), 5.20 (dd, *J* = 10.8, 4.8 Hz, 1H), 5.03 (d, *J* = 15.6 Hz, 1H), 4.78 (d, *J* = 15.6 Hz, 1H), 4.15 (qd, *J* = 7.2, 3.6 Hz, 2H), 3.93 (t, *J* = 12.0 Hz, 1H), 3.76 (s, 3H), 3.52 (d, *J* = 5.6 Hz, 1H), 2.67 - 2.55 (m, 1H), 1.65 (s, 3H), 1.49 - 1.38 (m, 4H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.26, 168.73, 159.73, 154.75, 143.75, 135.09, 129.95, 128.93, 127.83, 127.17, 127.11, 123.83, 123.30, 122.70, 120.59, 109.85, 107.21, 104.17, 82.95, 80.95, 69.81, 62.23, 55.35, 54.58, 50.23, 47.26, 43.94, 33.14, 31.33, 23.23, 13.89. HRMS (ESI-TOF) calcd for C₃₃H₃₄N₂NaO₈⁺[M+Na]⁺ 609.2207, found 609.2211.


Compound **5f** was obtained as white solid in 62% yield for two steps after flash chromatography. The dr value was calculated to be 88:12 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 98/2, 1 mL/min), $t_{major} = 40.1$ min, $t_{minor} = 45.2$ min.

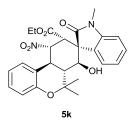
m.p. 257.8-258.2 °C, $[\alpha]_D^{20} = +98.1$ (C = 0.054, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.13 (m, 8H), 6.98 - 6.87 (m, 3H), 6.65 (d, *J* = 8.4 Hz, 1H), 6.30 (dd, *J* = 11.6, 5.6 Hz, 1H), 5.22 (dd, *J* = 10.4, 4.8 Hz, 1H), 5.04 (d, *J* = 15.6 Hz, 1H), 4.74 (d, *J* = 15.6 Hz, 1H), 4.31 - 4.07 (m, 2H), 3.95 (t, *J* = 12.0 Hz, 1H), 3.54 (d, *J* = 5.6 Hz, 1H), 2.70 - 2.46 (m, 1H), 1.68 (s, 3H), 1.49 - 1.37 (m, 4H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.82, 168.62, 153.72, 142.23, 134.59, 129.84, 129.03, 128.98, 128.94, 128.78, 128.14, 128.01, 127.10, 124.47, 121.99, 121.79, 118.48, 110.80, 82.39, 80.80, 69.84, 62.54, 54.79, 50.01, 47.51, 44.06, 33.60, 31.29, 23.44, 13.95. HRMS (ESI-TOF) calcd for C₃₂H₃₁ClN₂NaO₇⁺[M+Na]⁺613.1712, found 613.1711.


Compound **5g** was obtained as white solid in 65% yield for two steps after flash chromatography. The dr value was calculated to be 90:10 by ¹H NMR analysis of the crude reaction mixture and The enantiomeric excess was determined to be 97% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 95/5, 1 mL/min), $t_{major} = 14.5$ min, $t_{minor} = 15.8$ min.

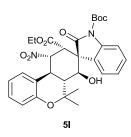
m.p. 251.6-252.4 °C, $[\alpha]_D^{20} = +129.2$ (C = 0.072, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.23 (m, 5H), 7.22 - 7.16 (m, 1H), 7.07 (dd, J = 8.4, 2.5 Hz, 1H), 6.99 - 6.89 (m, 4H), 6.65 (dd, J = 8.4, 4.4 Hz, 1H), 6.33 (dd, J = 11.6, 5.6 Hz, 1H), 5.23 (dd, J = 10.8, 5.2 Hz, 1H), 5.03 (d, J = 15.6 Hz, 1H), 4.75 (d, J = 15.6 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.92 (t, J = 12.0 Hz, 1H), 3.55 (d, J = 5.6 Hz, 1H), 2.58 (dd, J = 12.0, 10.8 Hz, 1H), 1.67 (s, 3H), 1.46 - 1.36 (m, 4H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 178.09, 171.46, 160.24, 157.85, 154.56, 137.63, 130.99, 130.92, 127.64, 122.30, 121.89, 118.73, 115.95, 115.71, 110.60, 110.53, 81.44, 61.08, 56.26, 55.39, 49.04, 31.31, 29.71, 23.08, 14.25. HRMS (ESI-TOF) calcd for C₃₂H₃₁FN₂NaO₇⁺[M+Na]⁺ 597.2008, found 597.2021.


Compound **5h** was obtained as white solid in 58% yield for two steps after flash chromatography. The dr value was calculated to be 85:15 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 90/10, 1 mL/min), $t_{major} = 29.8$ min, $t_{minor} = 16.4$ min.

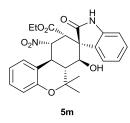
m.p. 118.5-122.3 °C, $[\alpha]_D^{20} = -96.0$ (C = 0.076, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.19 (m, 7H), 7.14 (t, *J* = 7.2 Hz, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.90 (t, *J* = 7.6 Hz, 1H), 6.81 (d, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 7.6 Hz, 1H), 6.00 (dd, *J* = 9.6, 8.0 Hz, 1H), 5.15 - 5.04 (m, 2H), 4.77 (d, *J* = 16.0 Hz, 1H), 4.66 (d, *J* = 9.6 Hz, 1H), 4.51 (dd, *J* = 13.6, 7.6 Hz, 1H), 3.88 (m, 2H), 3.15 (dd, *J* = 13.6, 4.8 Hz, 1H), 2.25 (d, *J*= 11.2 Hz, 1H), 1.63 (s, 3H), 1.30 (s, 3H), 0.86 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.06, 169.15, 154.07, 145.24, 134.75, 130.75, 128.96, 128.91, 128.68, 127.97, 127.90, 127.41, 127.16, 120.90, 120.23, 118.79, 118.20, 108.84, 86.84, 76.97, 69.91, 61.92, 57.40, 46.56, 44.45, 43.57, 31.50, 26.90, 21.98, 13.49. HRMS (ESI-TOF) calcd for C₃₂H₃₁BrN₂NaO₇⁺[M+Na]⁺ 657.1207, found 657.1205.


Compound **5i** was obtained as white solid in 60% yield for two steps after flash chromatography. The dr value was calculated to be 92:8 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 90/10, 1 mL/min), $t_{maior} = 6.6 \text{ min}, t_{minor} = 7.4 \text{ min}.$

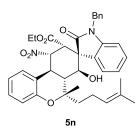
m.p. 159.3-162.1 °C, $[\alpha]_D^{20} = +93.5$ (C = 0.23, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.20 (m, 7H), 7.06 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.77 - 6.69 (m, 2H), 6.35 (dd, J = 11.6, 5.6 Hz, 1H), 5.24 (dd, J = 10.8, 4.8 Hz, 1H), 5.02 (d, J = 15.6 Hz, 1H), 4.79 (d, J = 15.6 Hz, 1H), 4.21 - 4.10 (m, 2H), 3.92 (t, J = 12.0 Hz, 1H), 3.56 (d, J = 5.6 Hz, 1H), 2.65 - 2.46 (m, 1H), 2.26 (s, 3H), 1.66 (s, 3H), 1.44 - 1.33 (m, 4H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.28, 168.67, 151.42, 143.74, 135.09, 131.12, 129.96, 129.46, 128.94, 128.42, 127.84, 127.16, 127.14, 123.80, 123.32, 122.45, 118.22, 109.85, 82.40, 80.77, 69.87, 62.24, 54.56, 50.20, 47.69, 43.94, 33.60, 31.10, 23.43, 21.11, 13.89. HRMS (ESI-TOF) calcd for C₃₃H₃₄N₂NaO₇⁺[M+Na]⁺ 593.2258, found 593.2260.


Compound **5j** was obtained as white solid in 66% yield for two steps after flash chromatography. The dr value was calculated to be 93:7 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 92/8, 1 mL/min), $t_{major} = 7.6 \text{ min}, t_{minor} = 16.0 \text{ min}. \text{ m.p.}$

224.0-226.2 °C, $[\alpha]_D^{20} = +123.5$ (C = 0.098, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.24 (m, 7H), 7.24 - 7.18 (m, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 7.00 - 6.91 (m, 3H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.36 (dd, *J* = 11.6, 5.6 Hz, 1H), 5.28 (dd, *J* = 10.8, 4.8 Hz, 1H), 5.16 - 5.02 (m, 2H), 4.79 (d, *J* = 15.6 Hz, 1H), 3.99 (t, *J* = 12.0 Hz, 1H), 3.53 (d, *J* = 5.6 Hz, 1H), 2.61 (dd, *J* = 12.0, 10.8 Hz, 1H), 1.70 (s, 3H), 1.45 (s, 3H), 1.41 (d, *J* = 4.8 Hz, 1H), 1.21 (d, *J* = 6.4 Hz, 3H), 1.17 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.30, 168.22, 153.77, 143.74, 135.11, 129.98, 129.31, 128.94, 128.02, 127.84, 127.19, 127.07, 123.94, 123.19, 122.01, 121.75, 118.42, 109.84, 82.43, 80.99, 70.40, 69.82, 54.57, 50.09, 47.40, 43.95, 33.59, 31.27, 23.44, 21.74, 21.37. HRMS (ESI-TOF) calcd for C₃₃H₃₄N₂NaO₇⁺[M+Na]⁺ 593.2258, found 593.2261.

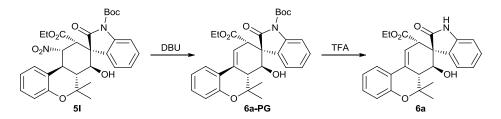

Compound **5k** was obtained as white solid in 58% yield for two steps after flash chromatography. The dr value was calculated to be 90:10 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 95/5, 1 mL/min), $t_{major} = 17.8$ min, $t_{minor} = 21.4$

min.m.p. 178.2-181.4 °C, $[\alpha]_D^{20} = +107.3$ (C = 0.082, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, J = 7.6 Hz, 1H), 7.31 - 7.25 (m, 1H), 7.21 - 7.15 (m, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.91 (dd, J = 16.0, 8.0 Hz, 4H), 6.27 (dd, J = 11.6, 5.6 Hz, 1H), 5.20 (dd, J = 10.4, 3.6 Hz, 1H), 4.15 (q, J = 7.2 Hz, 2H), 3.93 (t, J = 12.0 Hz, 1H), 3.50 (d, J = 5.6 Hz, 1H), 3.20 (s, 3H), 2.52 (dd, J = 12.0, 10.8 Hz, 1H), 1.65 (s, 3H), 1.39 - 1.33 (m, 4H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.01, 168.69, 153.74, 144.60, 130.11, 129.16, 128.04, 127.00, 123.73, 123.33, 122.01, 121.77, 118.41, 108.85, 82.44, 80.91, 69.56, 62.21, 54.50, 50.11, 47.43, 33.57, 31.25, 26.44, 23.35, 13.90. HRMS (ESI-TOF) calcd for C₂₆H₂₈N₂NaO₇⁺[M+Na]⁺ 503.1789, found 503.1790.

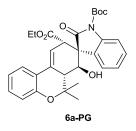

Compound **51** was obtained as white solid in 68% yield for two steps after flash chromatography. The dr value was calculated to be 92:8 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 95/5, 1 mL/min), $t_{maior} = 7.5 \text{ min}$, $t_{minor} = 42.8 \text{ min.m.p.}$

178.2-181.4 °C, $[\alpha]_D^{20} = +111.8$ (C = 0.068, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 1H), 7.45 - 7.38 (m, 1H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.20 (dd, *J* = 13.2, 6.8 Hz, 2H), 6.98 - 6.84 (m, 3H), 6.14 (dd, *J* = 11.6, 5.6 Hz, 1H), 5.15 (dd, *J* = 10.8, 5.2 Hz, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.96 (t, *J* = 12.0 Hz, 1H), 3.61 (d, *J* = 5.6 Hz, 1H), 2.51 (dd, *J* = 12.0, 10.8 Hz, 1H), 1.66 (s, 3H), 1.64 (s, 9H), 1.44 (d, *J* = 5.2 Hz, 1H), 1.40 (s, 3H), 1.16 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.44, 168.34, 153.72, 148.60, 140.84, 130.29, 128.83, 128.13, 125.96, 125.11, 123.44, 122.11, 121.67, 118.41, 115.59, 85.45, 82.54, 80.87, 70.14, 62.37, 54.82, 50.35, 47.31, 33.47, 31.25, 28.08, 23.36, 13.84. HRMS (ESI-TOF) calcd for C₃₀H₃₄N₂NaO₉⁺[M+Na]⁺ 589.2157, found 589.2151.

Compound **5m** was obtained by deprotection of compound **5l** with 25% CF₃COOH in DCM as white solid in 94% yield. The enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 93/7, 1 mL/min), $t_{major} = 35.1$ min, $t_{minor} = 32.4$ min. m.p. 208.5 - 210.2 °C, $[\alpha]_D^{20} = +188.5$ (C = 0.076, CHCl₃). ¹H NMR (600

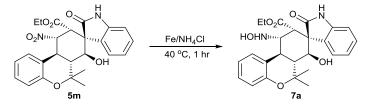

MHz, CDCl₃) δ 8.14 (s, 1H), 7.31 - 7.23 (m, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.97 - 6.86 (m, 3H), 6.84 (d, *J* = 7.6 Hz, 1H), 6.18 (dd, *J* = 11.6, 5.6 Hz, 1H), 5.19 (dd, *J* = 10.8, 5.2 Hz, 1H), 4.20 - 4.10 (m, 2H), 3.93 (t, *J* = 12.0 Hz, 1H), 3.57 (d, *J* = 5.6 Hz, 1H), 2.55 - 2.41 (m, 1H), 1.76 (s, 1H), 1.65 (s, 3H), 1.37 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H).¹³C NMR (150 MHz, CDCl₃) δ 176.89, 168.55, 153.73, 141.52, 130.04, 128.83, 128.08, 127.60, 124.09, 123.29, 122.00, 121.67, 118.43, 110.32, 82.47, 80.79, 69.63, 62.24, 54.87, 49.98, 47.36, 33.55, 31.27, 23.27, 13.85.HRMS (ESI-TOF) calcd for C₂₅H₂₆N₂NaO₇⁺ [M+Na]⁺ 489.1632, found 489.1636.

Compound **5n** was obtained as white solid in 48% yield for two steps after flash chromatography. The dr value was calculated to be 88:12 by ¹H NMR analysis of the crude reaction mixture and the enantiomeric excess was determined to be 99% by HPLC on Chiralpak OD-H column at 254nm (Hexane/isopropanol = 95/5, 1 mL/min), $t_{major} = 26.0 \text{ min}, t_{minor} = 11.7 \text{ min}.$

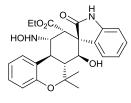

m.p. 83.5-85.3 °C, $[\alpha]_D^{20} = +123.9$ (C = 0.046, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.15 (m, 8H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.97 - 6.88 (m, 3H), 6.73 (d, *J* = 7.6 Hz, 1H), 6.36 (dd, *J* = 11.6, 5.6 Hz, 1H), 5.27 (dd, *J* = 10.8, 4.8 Hz, 1H), 5.10 - 5.00 (m, 2H), 4.75 (d, *J* = 15.6 Hz, 1H), 4.15 (m, 2H), 3.97 (t, *J* = 12.0 Hz, 1H), 3.56 (d, *J* = 5.6 Hz, 1H), 2.75 - 2.60 (m, 1H), 2.33 - 2.19 (m, 1H), 2.11 - 1.99 (m, 1H), 1.92 - 1.78 (m, 1H), 1.66 (s, 3H), 1.62 (s, 3H), 1.56 (s, 3H), 1.40 (d, *J* = 4.8 Hz, 1H), 1.19 (t, *J* = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 175.19, 168.72, 154.25, 143.75, 135.09, 131.45, 129.96, 129.00, 128.93, 128.09, 127.82, 127.17, 127.10, 124.42, 123.76, 123.29, 122.01, 121.60, 118.15, 109.87, 82.88, 82.54, 69.78, 62.26, 54.54, 50.17, 46.11, 43.93, 43.36, 33.40, 25.69, 22.11, 21.37, 17.57, 13.90.HRMS (ESI-TOF) calcd for C₃₇H₄₀N₂NaO₇⁺ [M+Na]⁺ 647.2728, found 647.2733.

2.2 Procedure for the synthesis of compound 6a

To a solution of compound **51** (113.2 mg, 0.2 mmol) in 1 mL of DMF was added 15.2 mg of DBU (0.1 mmol) and heated at 60 °C for 4 hours. The reaction mixture was cooled to room temperature before the addition of water, then extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄, concentrated and purified by silica-gel chromatography to afford the elimination product **6a-PG** (41.5 mg, 40% yield). **6a-PG** (31mg, 0.06 mmol) was subsequently dissolved in a mixture of 25% TFA in DCM (2 mL) and stirred for 30 min. The solvent was then distilled under reduced pressure. The residue was added to saturated NaHCO₃ and extracted with DCM. The organic layer was distilled under reduced pressure to afforded compound **6a** (23.9 mg, 38%


two-step yield) as white solid. The enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254 nm (Hexane/isopropanol = 90/10, 1 mL/min), t_{major} = 15.8 min, t_{minor} = 9.4 min. m.p. 142.5-144.3 °C, $[\alpha]_D{}^{20}$ = -76.2 (C = 0.042, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 8.33 (brs, 1H), 7.89 (s, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.30 - 7.23 (m, 1H), 7.21 - 7.10 (m, 2H), 7.06 - 6.90 (m, 3H), 6.84 (d, *J* = 8.0 Hz, 1H), 4.10 (d, *J* = 12.0 Hz, 1H), 4.04 - 3.92 (m, 2H), 3.91 - 3.80 (m, 1H), 2.82 (d, *J* = 12.0 Hz, 1H), 2.01 (s, 1H), 1.45 (s, 3H), 1.36 (s, 3H), 0.93 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.86, 165.64, 153.39, 146.71, 141.82, 130.06, 128.96, 128.30, 127.82, 126.51, 124.76, 122.30, 121.65, 120.13, 117.85, 110.27, 67.54, 60.72, 57.49, 43.21, 30.95, 29.03, 27.36, 22.60, 13.64.HRMS (ESI-TOF) calcd for C₂₅H₂₅NNaO₅⁺[M+Na]⁺ 442.1625, found 442.1627.

Compound **6a-PG** was obtained as white solid, m.p. 186.5-187.8 °C, $[\alpha]_D^{20} =$ -50.9 (C = 0.112, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.89 (s, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.42 - 7.34 (m, 1H), 7.21 - 7.10 (m, 3H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 4.08 (d, *J* = 12.0 Hz, 1H), 3.98 (s, 1H), 3.88 (qd, *J* = 7.2, 2.8 Hz, 2H), 2.78 (d, *J* = 12.0 Hz, 1H),


1.89 (d, J = 1.6 Hz, 1H), 1.63 (s, 9H), 1.45 (s, 3H), 1.35 (s, 3H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.63, 165.34, 153.37, 149.35, 147.15, 140.58, 129.23, 128.33, 128.23, 127.92, 126.48, 124.38, 124.25, 121.43, 120.18, 117.91, 115.41, 84.46, 67.56, 60.87, 57.09, 43.21, 30.97, 28.97, 28.11, 27.29, 22.62, 13.54. HRMS (ESI-TOF) calcd for C₃₀H₃₃NNaO₇⁺[M+Na]⁺ 542.2149, found 542.2152.

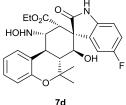
2.3 Procedure for the synthesis of compound 7

To a suspension of compound **5m** (46.6 mg, 0.1 mmol) and Fe powder (28mg, 0.5 mmol) in 3 mL of ethanol was added NH₄Cl (13.5 mg, 0.25 mmol) in 1 mL of water. The reaction mixture was heated at 40 $^{\circ}$ C for 1 hour, then filtrated. The filtrate was diluted with ethyl acetate and washed with saturated NaHCO₃, then saline. The organic layer was dried over anhydrous NaSO₄ and concentrated. The residue was purified by silica-gel chromatography to afford compound **7a** (29.8


mg, 66% yield). Compound 7b - 7f was synthesized following the same procedure using related substrate.

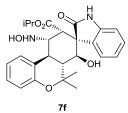
7a was obtained as white solid in 66% yield. The enantiomeric excess was determined to be 99% by HPLC on Chiralpak OD-H column at 254nm (Hexane/isopropanol = 90/10, 1 mL/min), $t_{maior} = 16.5$ min, $t_{minor} = 13.4$ min. m.p. 68.5-72.3 °C, $[\alpha]_D^{20} = +13.3$ (C = 0.060, CHCl₃). ¹H NMR (400 MHz,

7a CDCl₃) δ 8.90 - 8.52 (m, 1H), 7.31 - 7.26 (m, 1H), 7.22 - 7.08 (m, 3H), 7.03 - 6.91 (m, 2H), 6.89 (d, J = 8.0 Hz, 1H), 6.69 - 6.57 (m, 1H), 5.64 (brs, 1H), 5.03 (d, J = 5.6 Hz, 1H), 4.85 (s, 1H), 4.46 (d, J = 4.8 Hz, 1H), 4.31 - 4.06 (m, 2H), 3.52 - 3.39 (m, 1H), 2.86 (t, J = 11.6 Hz, 1H), 2.40 (t, J = 11.2Hz, 1H), 2.32 - 2.09 (m, 1H), 1.58 (s, 3H), 1.31 - 1.18 (m, 6H).¹³C NMR (100 MHz, CDCl₃) δ 178.23, 171.64, 154.57, 141.76, 131.21, 129.34, 129.25, 127.55, 123.54, 122.67, 122.30, 121.90, 118.71, 110.09, 81.61, 70.13, 60.89, 56.22, 54.79, 49.16, 48.47, 32.63, 31.34, 23.10, 14.26. HRMS (ESI-TOF) calcd for $C_{25}H_{28}N_2NaO_6^+$ [M+Na]⁺ 475.1840, found 475.1843.


7b was obtained as white solid in 67% yield, m.p.138.1-148.5 °C, $[\alpha]_D^{20} =$ EtO₂C HOHN¹¹ +17.7 (C = 0.062, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.23 -7.11 (m, 2H), 7.10 - 6.87 (m, 4H), 6.71 (d, J = 7.2 Hz, 1H), 5.57 (brs, 1H), 5.14 - 4.94 (m, 1H), 4.76 (s, 1H), 4.56 - 4.40 (m, 1H), 4.31 - 4.06 (m, 2H), 7b 3.47 (d, J = 4.8 Hz, 1H), 2.89 (t, J = 11.2 Hz, 1H), 2.44 (t, J = 11.2 Hz, 1H), 2.25 (brs, 1H), 1.65 (s, 3H), 1.33 (s, 3H), 1.28 - 1.14 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ 178.10, 171.56, 154.36, 142.04, 141.93, 141.69, 129.41, 129.13, 123.64, 122.80, 121.72, 121.65, 117.60, 114.70, 114.51, 110.04, 82.95, 70.01, 60.96, 56.20, 54.70, 49.09, 48.41, 32.88, 31.37, 22.92, 14.25. HRMS (ESI-TOF) calcd for $C_{25}H_{27}FN_2NaO_6^+$ [M+Na]⁺ 493.1745, found 493.1748.

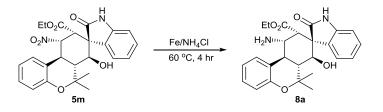
7c was obtained as white solid in 62% yield, m.p. 148.3-155.2 °C, $[\alpha]_D^{20} =$ +18.4 (C = 0.114, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.52 - 8.25 (m, 1H), 7.32 - 7.27 (m, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.09 - 6.93 (m, 3H), 6.88 (d, J =7.6 Hz, 1H), 6.68 - 6.54 (m, 1H), 5.62 (brs, 1H), 5.14 - 4.92 (m, 1H), 4.79 (s, 1H), 4.63 - 4.38 (m, 1H), 4.35 - 4.01 (m, 2H), 3.46 (d, J = 5.2 Hz, 1H), 2.87 (t, J = 11.2 Hz, 1H),

2.42 (t, J = 11.2 Hz, 1H), 2.24 (s, 3H), 2.02 (brs, 1H), 1.61 (s, 3H), 1.29 - 1.21 (m, 6H). ¹³C NMR

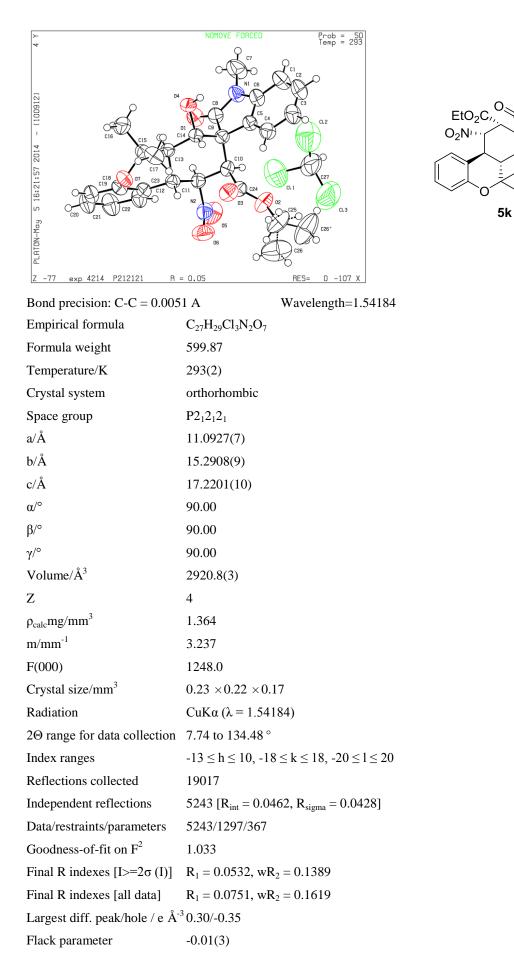

(100 MHz, CDCl₃) δ 178.26, 171.46, 154.47, 140.20, 131.03, 129.68, 127.95, 127.70, 123.97, 122.07, 121.88, 120.36, 118.86, 111.02, 81.46, 69.97, 61.14, 56.12, 55.26, 49.01, 48.54, 32.48, 31.42, 26.92, 23.07, 14.29. HRMS (ESI-TOF) calcd for C₂₆H₃₀N₂NaO₆⁺ [M+Na]⁺ 489.1996, found 489.2001.

+16.6 (C = 0.048, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.59 - 8.43 (m, 1H), 7.32 - 7.28 (m, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.04 - 6.93 (m, 2H), 6.92 - 6.82 (m, 2H), 6.67 - 6.57 (m, 1H), 5.66 (brs, 1H), 5.13 - 4.91 (m, 1H), 4.73 (s, 1H), 7d 4.47 (dd, J = 10.8, 6.1 Hz, 1H), 4.28 - 4.10 (m, 2H), 3.48 (d, J = 5.9 Hz, 1H), 2.85 (t, J = 11.6 Hz, 1H), 2.41 (t, J = 11.2 Hz, 1H), 2.13 (brs, 1H), 1.59 (s, 3H), 1.30 - 1.24 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 178.09, 171.46, 159.05 (J_{CF} = 239 Hz), 154.56, 137.63, 130.99, 130.92, 127.64, 122.30, 121.89, 118.73, 115.83 ($J_{CF} = 24$ Hz), 110.57 ($J_{CF} = 7$ Hz), 81.44, 61.08, 56.26, 55.39, 49.04, 31.31, 29.71, 23.08, 14.25. HRMS (ESI-TOF) calcd for C₂₅H₂₇FN₂NaO₆⁺ [M+Na]⁺ 493.1745, found 493.1740.

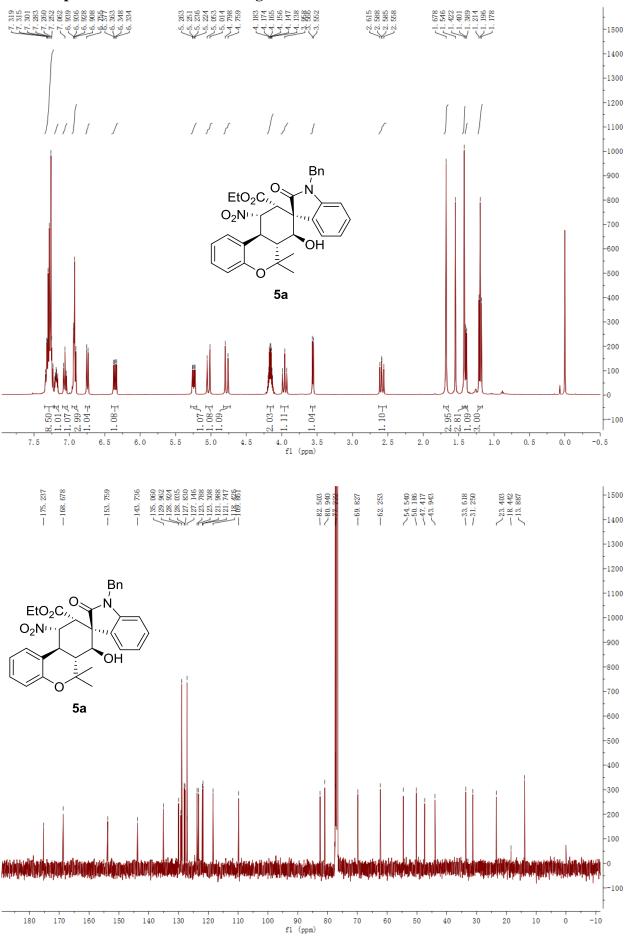
7d was obtained as white solid in 50% yield, m.p. 133.2-144.5 °C, $[\alpha]_D^{20} =$


7e was obtained as white solid in 67% yield, m.p. 147.2-152.3 °C, $\left[\alpha\right]_{D}^{20} =$ EtO₂0 +13.6 (C=0.102, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 9.03 (s, 1H), 7.23 -HOHN 7.11 (m, 3H), 7.07 (d, J = 7.6 Hz, 1H), 6.95 (t, J = 7.2 Hz, 1H), 6.86 (d, J =8.0 Hz, 1H), 6.49 (d, J = 8.0 Hz, 1H), 5.59 (brs, 1H), 5.11 - 4.91 (m, 1H), 7e 4.80 (s, 1H), 4.37 (dd, J = 10.8, 6.0 Hz, 1H), 4.32 - 4.03 (m, 2H), 3.43 (d, J = 5.6 Hz, 1H), 2.83 (t, J = 11.6 Hz, 1H), 2.75 - 2.50 (m, 1H), 2.33 (t, J = 11.2 Hz, 1H), 1.60 (s, 3H), 1.28 - 1.11 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 178.10, 171.74, 154.60, 139.19, 132.20, 129.57, 129.27, 127.50, 124.37, 122.86, 122.36, 121.85, 118.66, 109.72, 81.63, 70.17, 60.79, 56.29, 54.75, 49.20, 48.46, 32.62, 31.29, 23.15, 14.28. HRMS (ESI-TOF) calcd for C₂₅H₂₇ClN₂NaO₆⁺ [M+Na]⁺ 509.1450, found 509.1454.

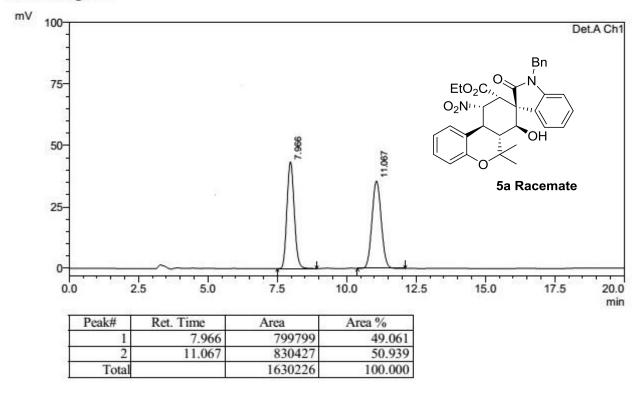
7f was obtained as white solid in 66% yield, m.p. 136.5-142.8 °C, $[\alpha]_D^{20} =$ +33.3 (C = 0.024, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.41 -7.10 (m, 5H), 7.08 - 6.95 (m, 2H), 6.90 (d, J = 7.6 Hz, 1H), 6.73 (d, J = 7.2 Hz, 1H), 5.66 (brs, 1H), 5.26 - 4.98 (m, 2H), 4.64 (s, 1H), 4.57 - 4.39 (m, 1H),

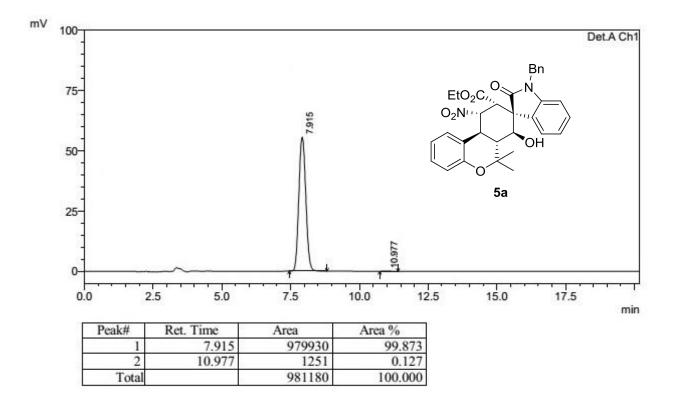

3.45 (d, J = 5.2 Hz, 1H), 2.87 (t, J = 11.6 Hz, 1H), 2.45 (t, J = 11.2 Hz, 1H), 1.95 (s, 1H), 1.60 (s, 3H), 1.33 - 1.24 (m, 6H), 1.15 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 178.02, 171.06, 154.61, 141.75, 131.16, 129.31, 129.24, 127.52, 123.97, 122.64, 122.39, 121.84, 118.64, 109.93, 81.58, 68.67, 56.35, 54.80, 49.13, 48.26, 32.70, 31.29, 23.13, 21.96, 21.88, 14.15. HRMS (ESI-TOF) calcd for C₂₆H₃₀N₂NaO₆⁺ [M+Na]⁺ 489.1996, found 489.1993.

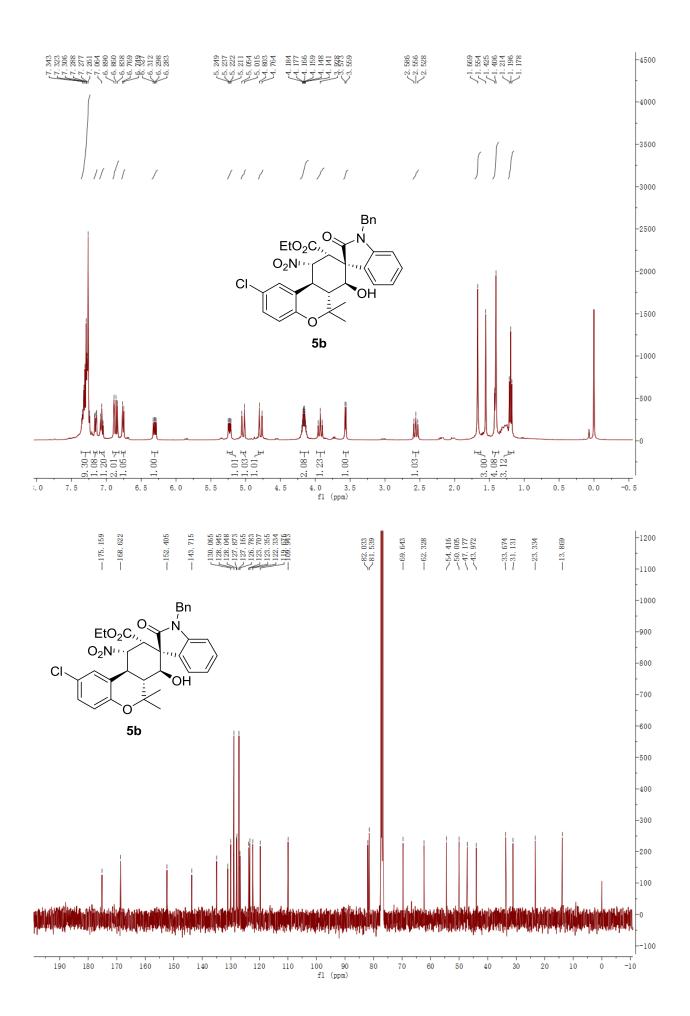
2.4 Procedure for the synthesis of compound 8a

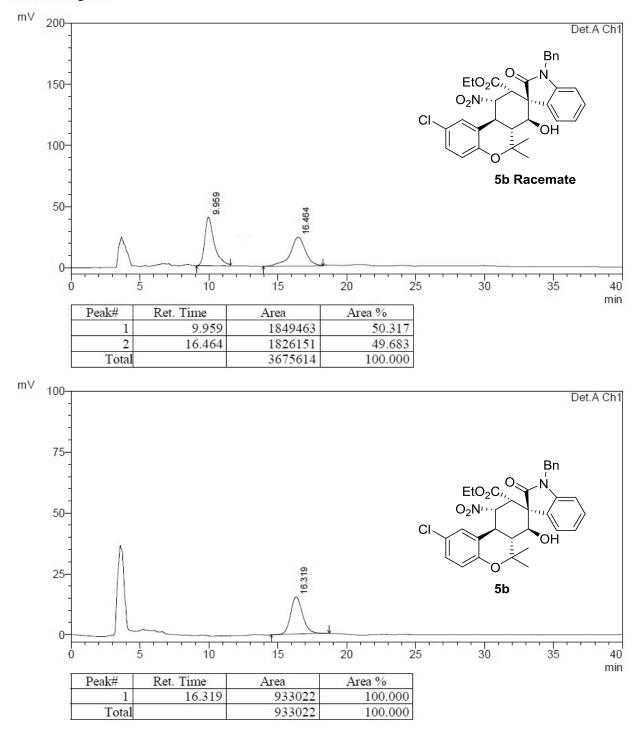


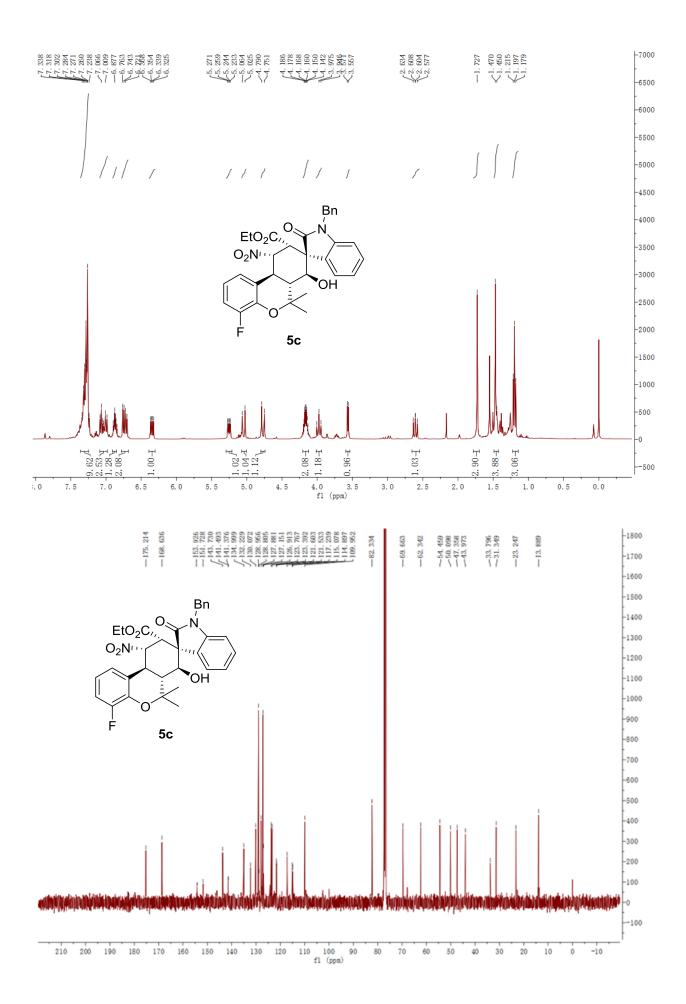
To a suspension of compound **5m** (46.6 mg, 0.1 mmol) and Fe powder (56 mg, 1 mmol) in 3 mL of ethanol was added NH₄Cl (27 mg, 0.5 mmol) in 1 mL of water. The reaction mixture was heated at 60 °C for 4 hours, then filtrated. The filtrate was diluted with ethyl acetate and washed with saturated NaHCO₃, then saline. The organic layer was dried over anhydrous NaSO₄ and concentrated. The residue was purified by silica-gel chromatography to afford compound **8a** (27 mg, 62% yield) as white solid. The enantiomeric excess was determined to be 99% by HPLC on Chiralpak AD-H column at 254nm (Hexane/isopropanol = 90/10, 1 mL/min), t_{major} = 39.5 min, t_{minor} = 20.6 min. mp. 156.3- 159.5 °C, $[\alpha]_D^{20} = +107.5$ (C = 0.036, CHCl₃).¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.23 - 7.14 (m, 3H), 7.03 - 6.95 (m, 2H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 4.93 (d, *J* = 10.8 Hz, 1H), 4.39 (dd, *J* = 10.4, 6.0 Hz, 1H), 4.25 - 4.03 (m, 2H), 3.17 - 2.93 (m, 2H), 2.40 (t, *J* = 11.2 Hz, 1H), 1.30 (s, 3H), 1.26 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 178.24, 171.80, 154.75, 141.67, 131.89, 129.31, 129.22, 127.15, 124.59, 123.71, 122.65, 121.39, 118.36, 109.97, 81.37, 70.56, 60.73, 55.43, 53.35, 48.48, 45.59, 31.28, 29.70, 23.13, 14.18. HRMS (ESI-TOF) calcd for C₂₅H₂₉N₂O₅⁺ [M+Na]⁺ 437.2071, found 437.2074.

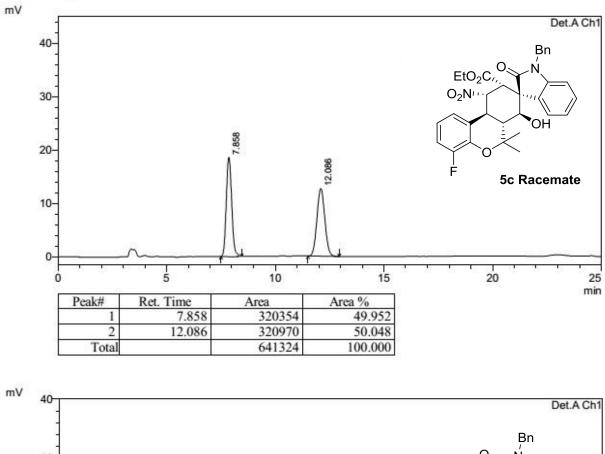

3. Crystal data of compound 5k

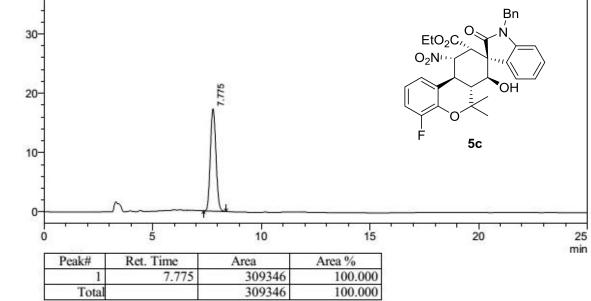


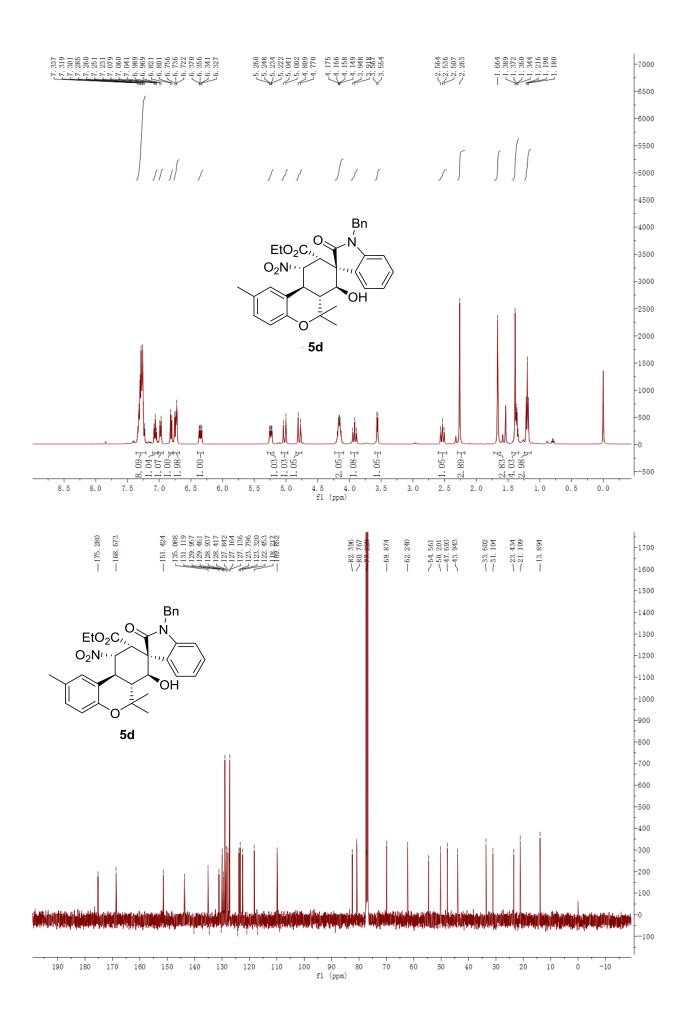

4. NMR spectra and HPLC chromatograms

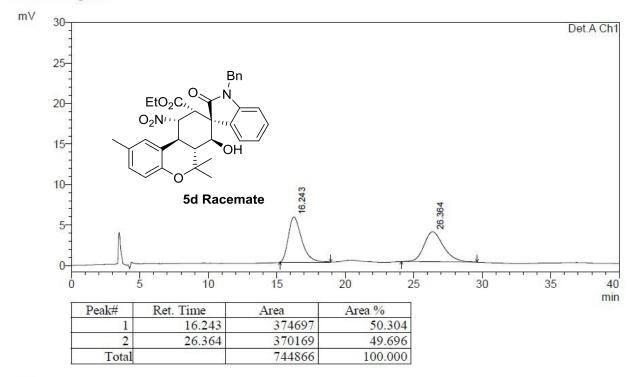


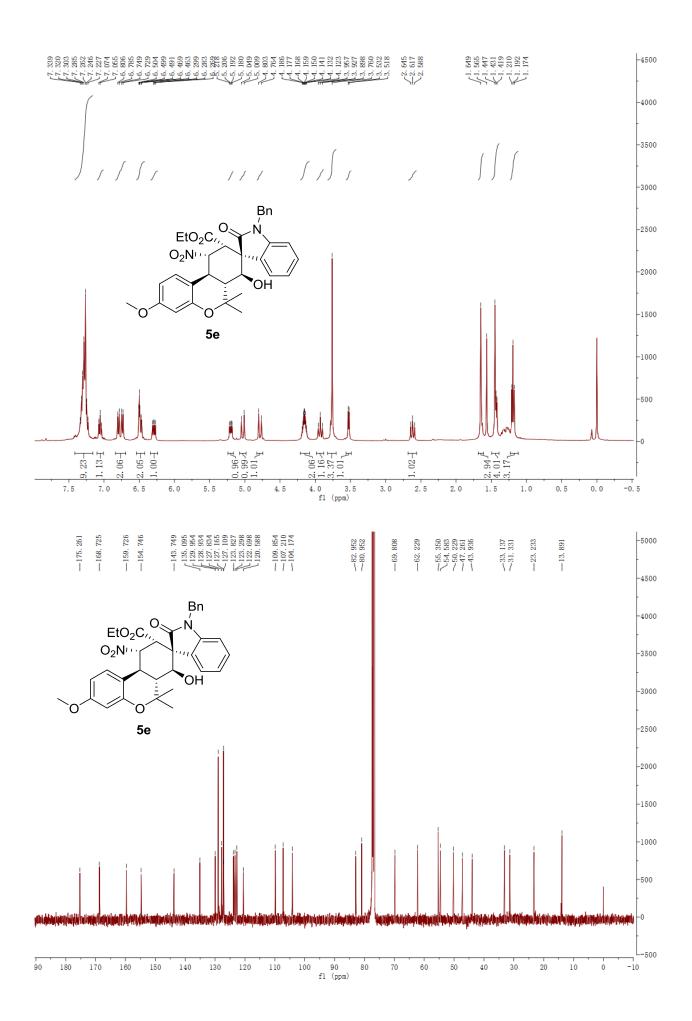

<Chromatogram>

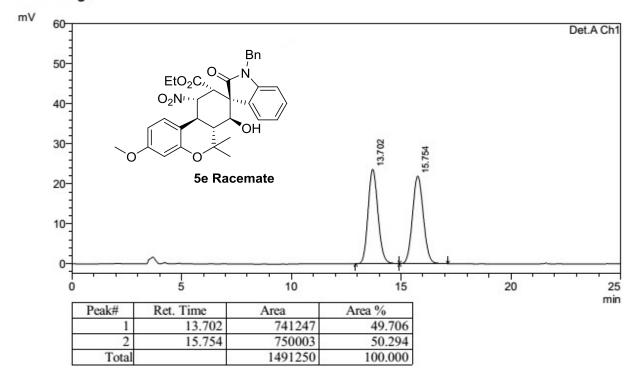


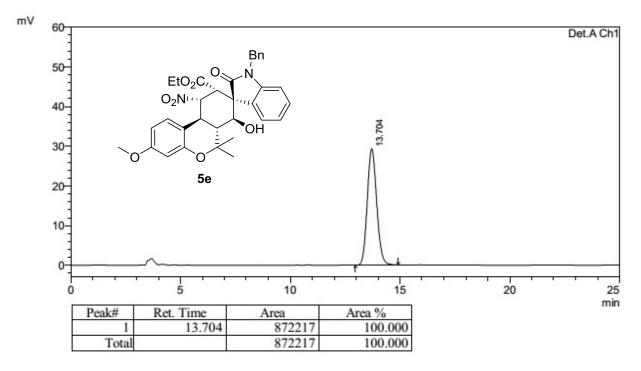


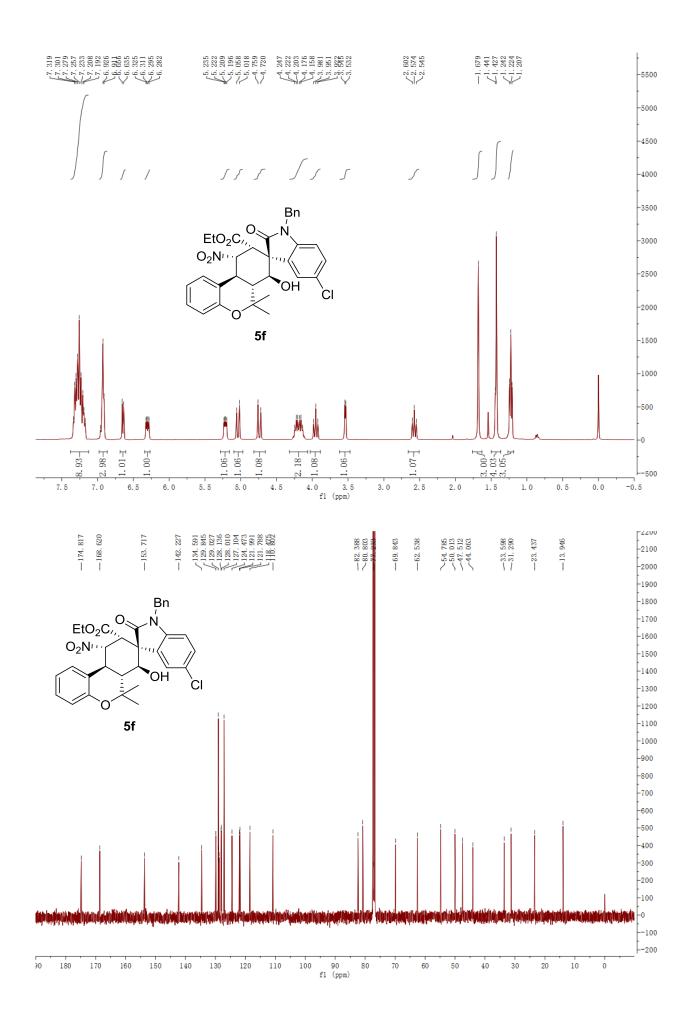


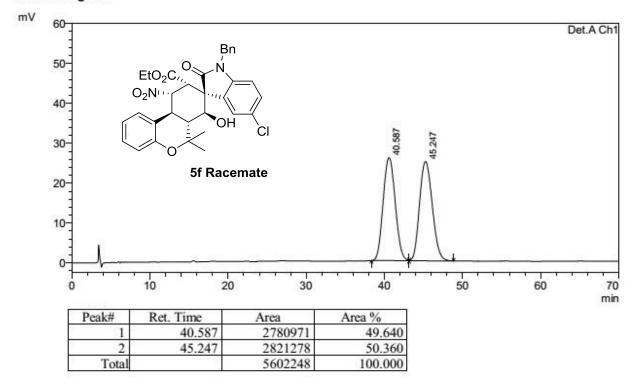


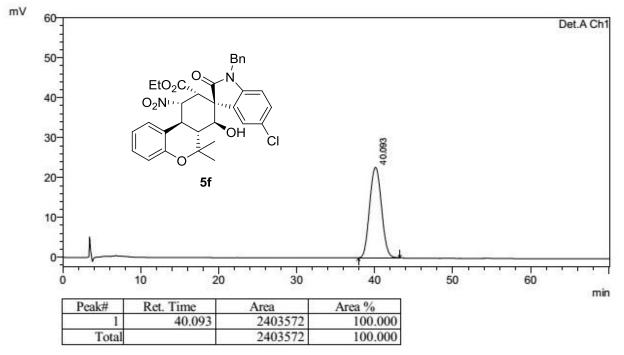


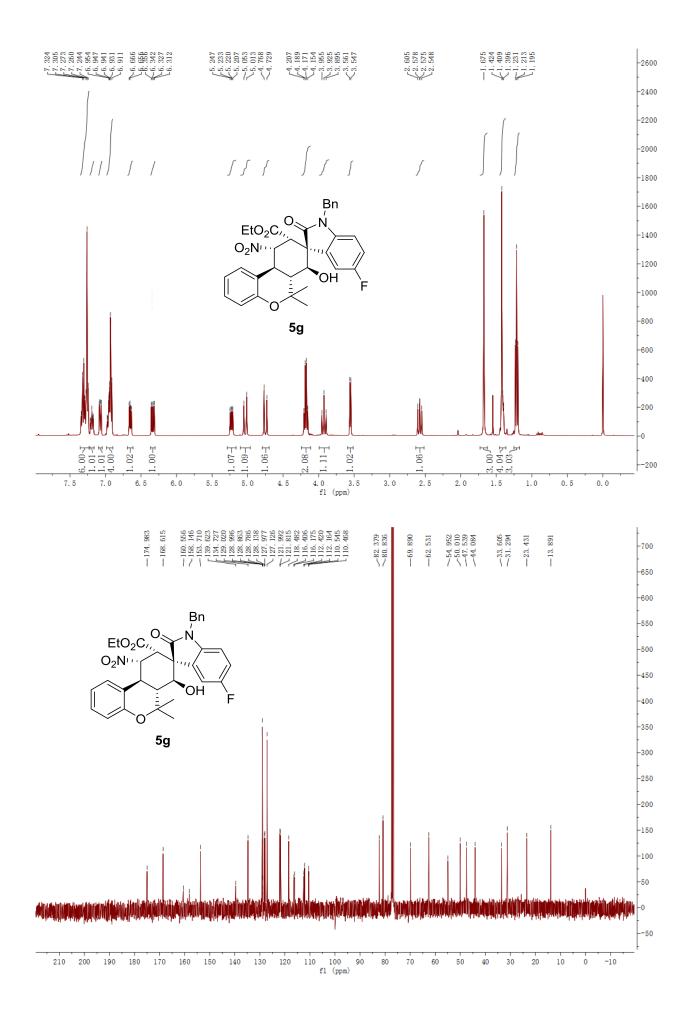


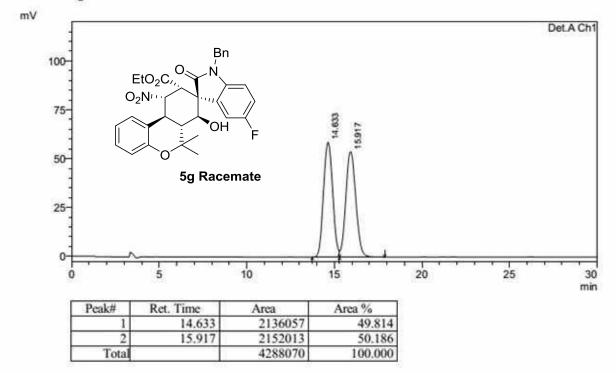


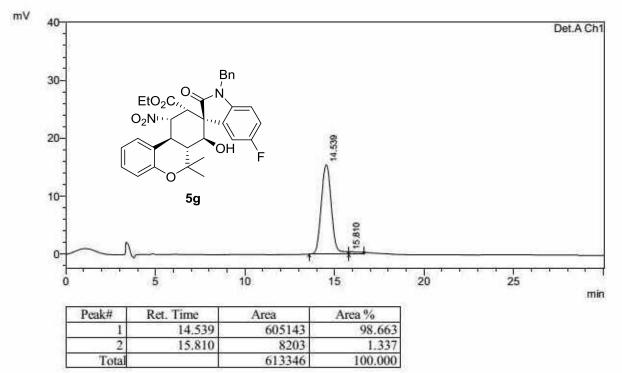


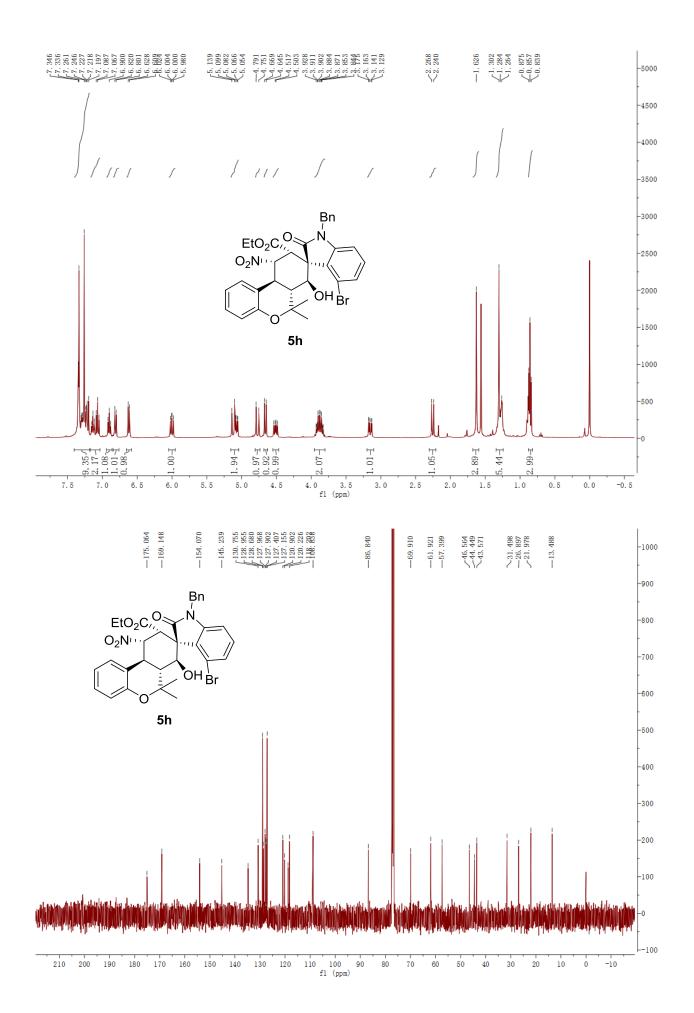


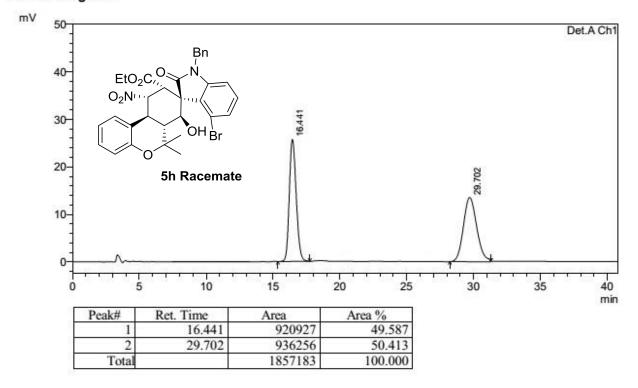


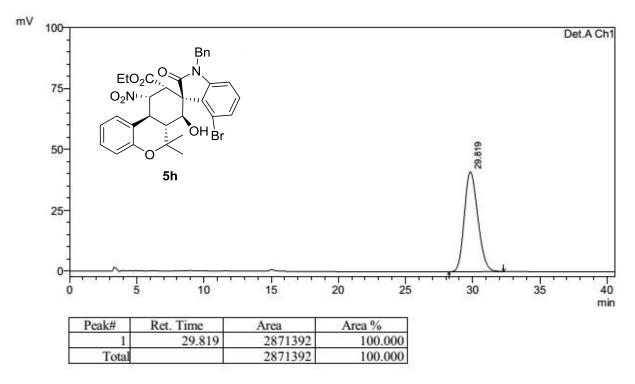


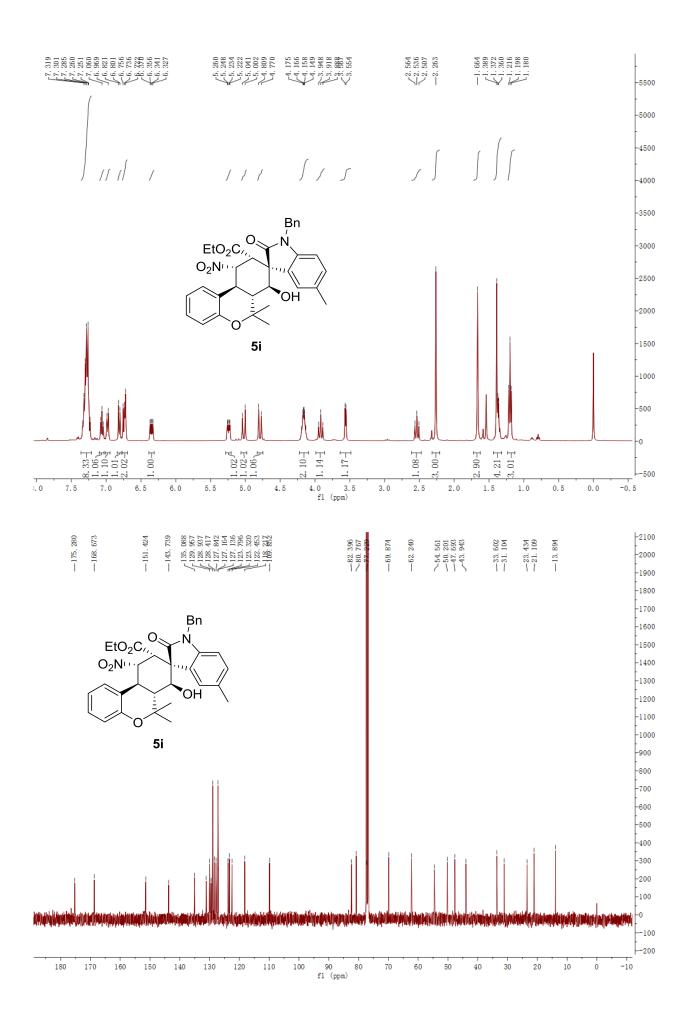



<Chromatogram>

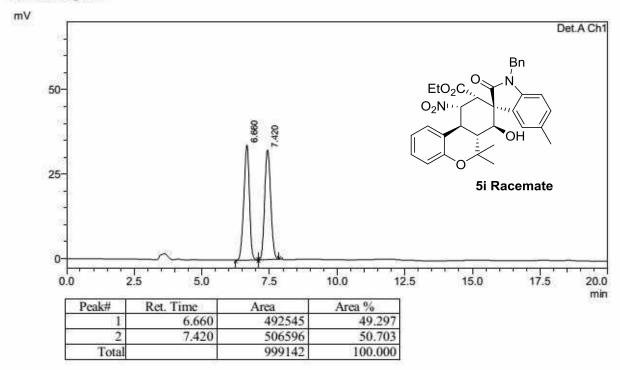


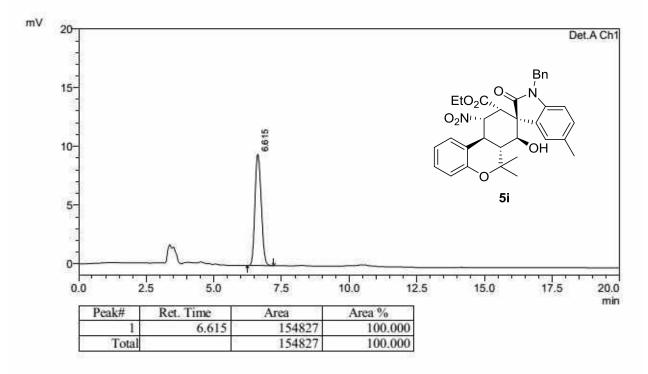


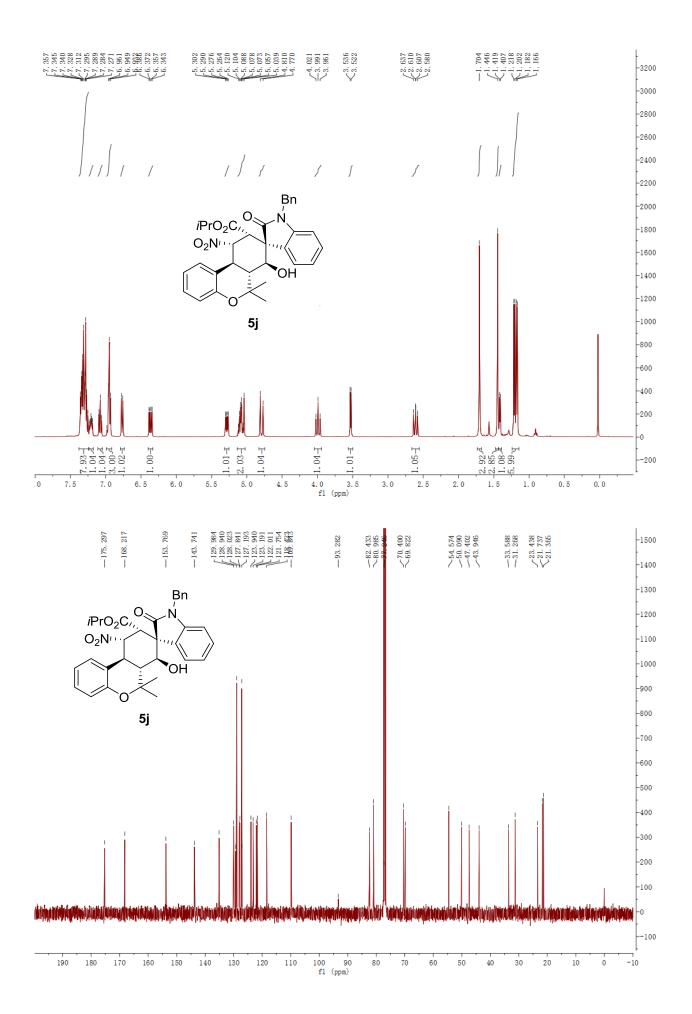


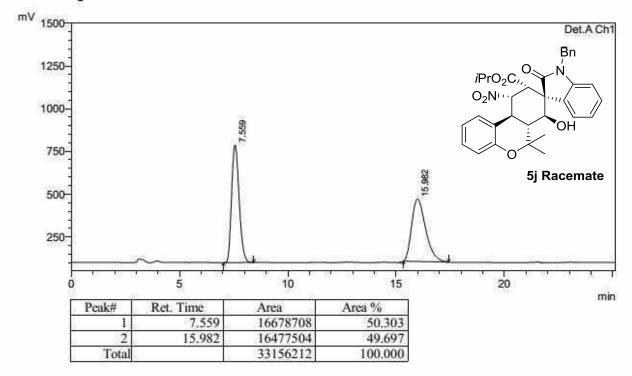


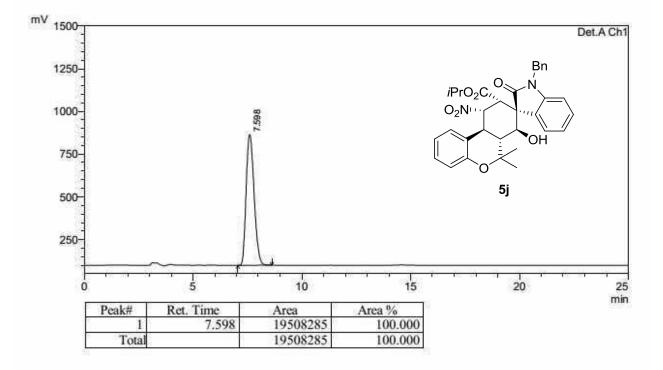


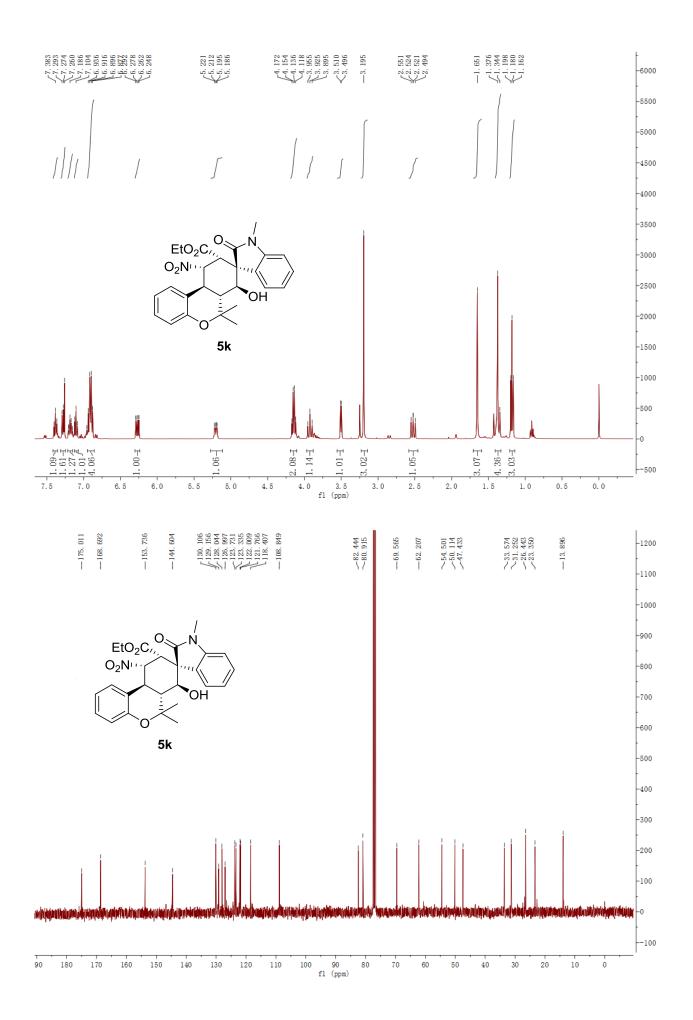




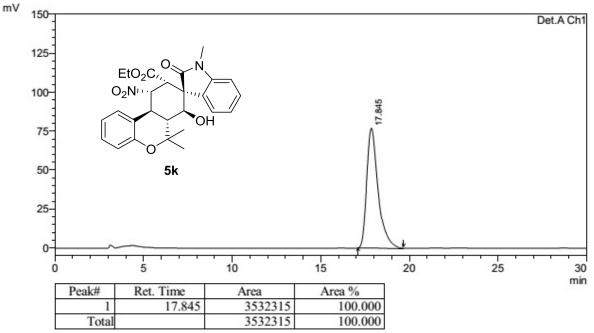


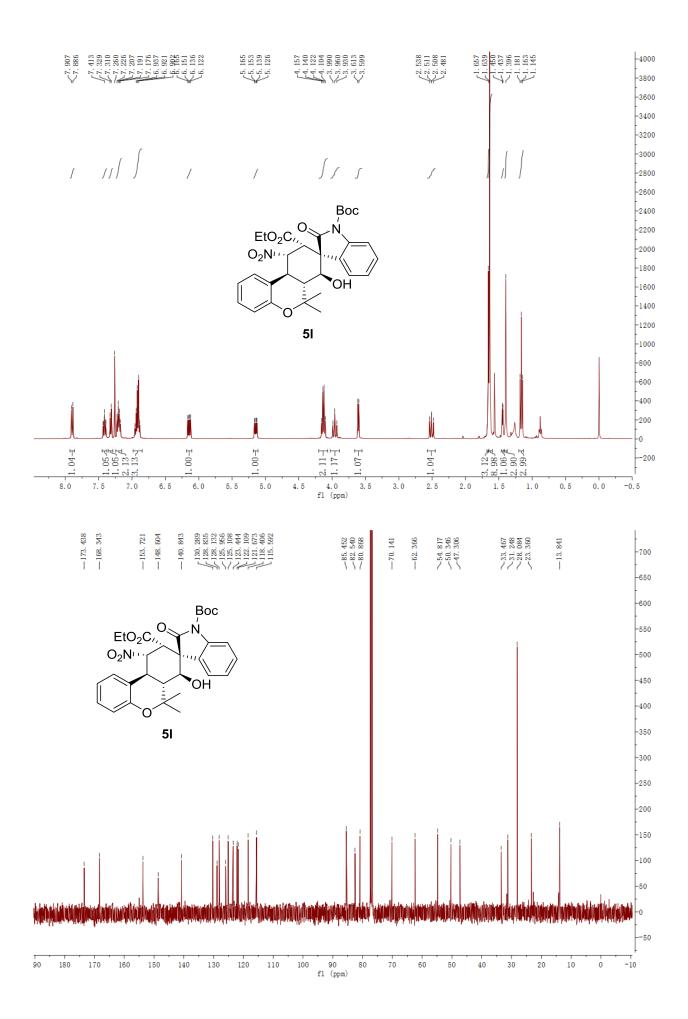


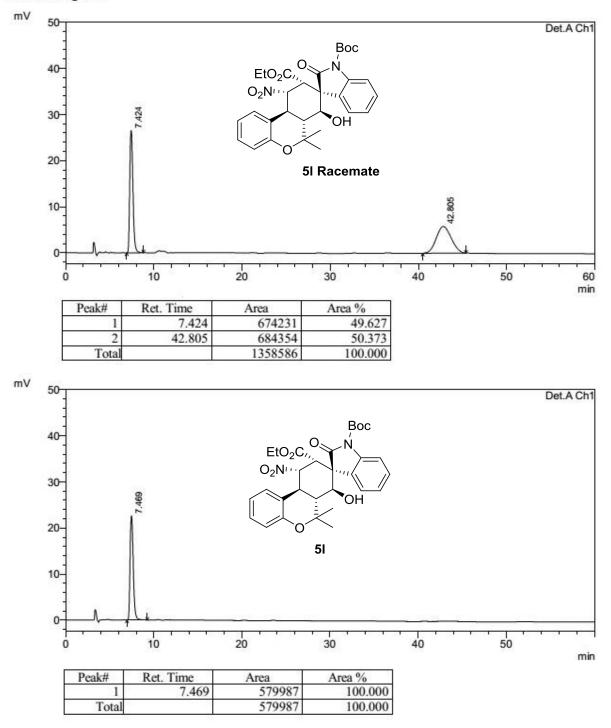


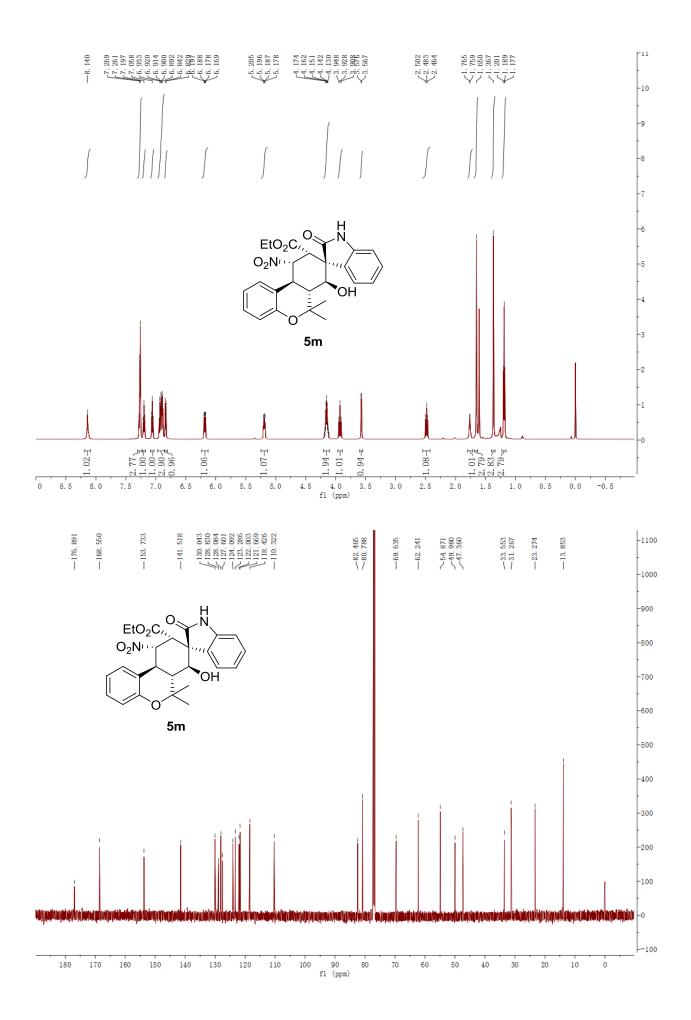


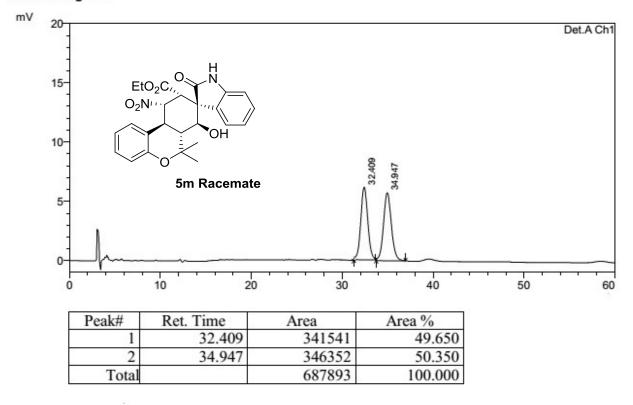


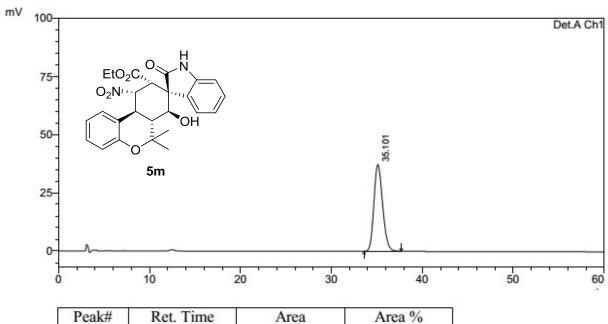

<Chromatogram>



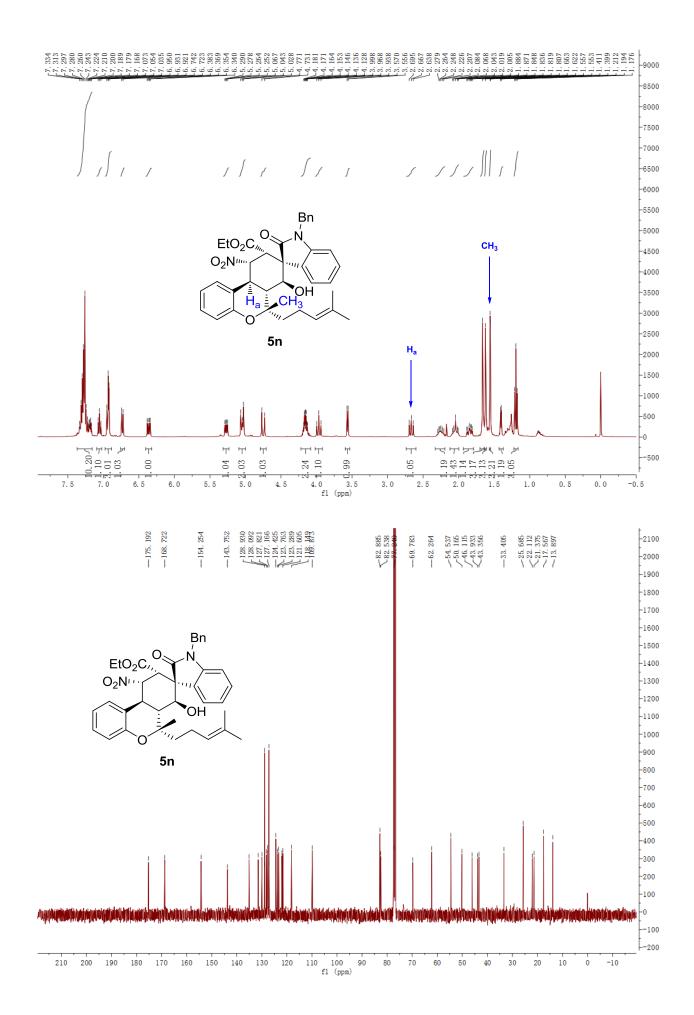


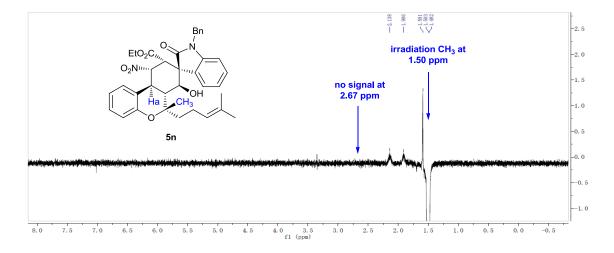


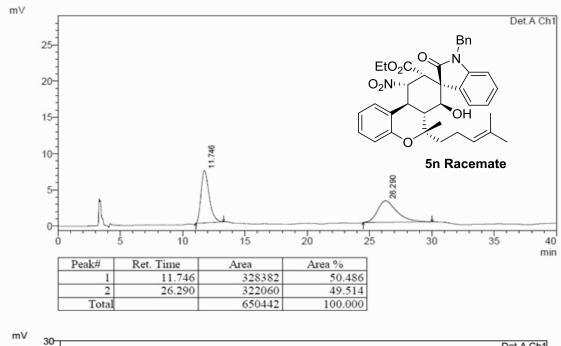


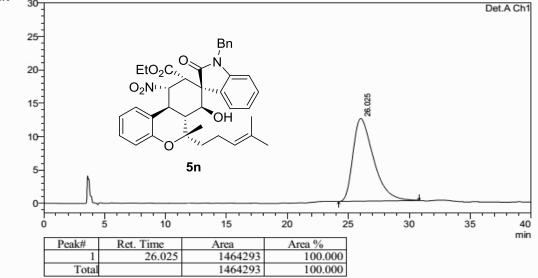


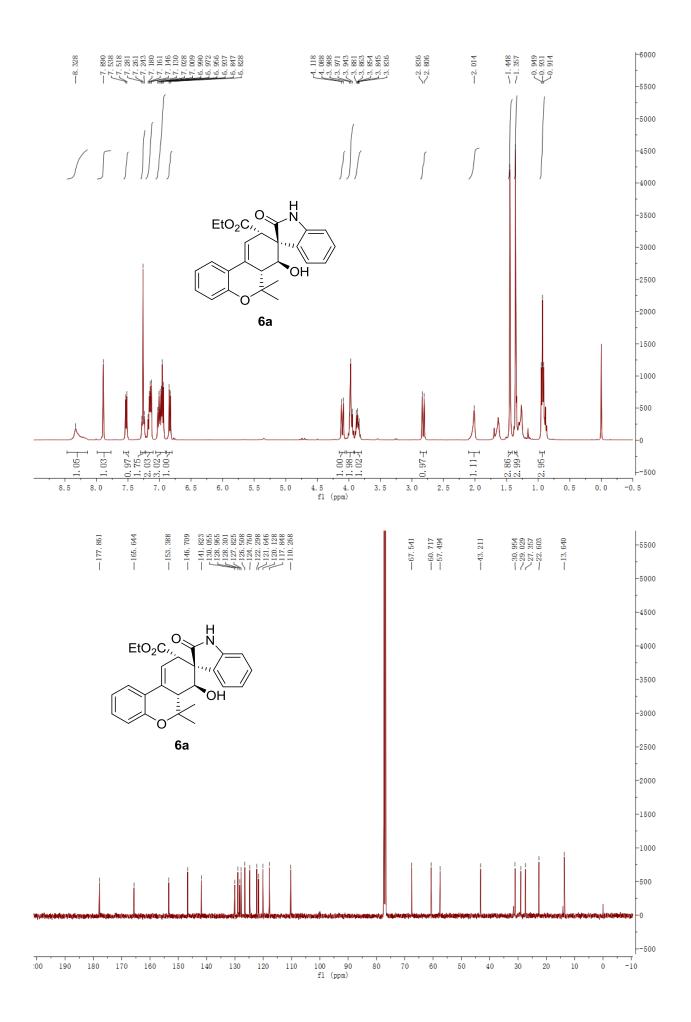
<Chromatogram>

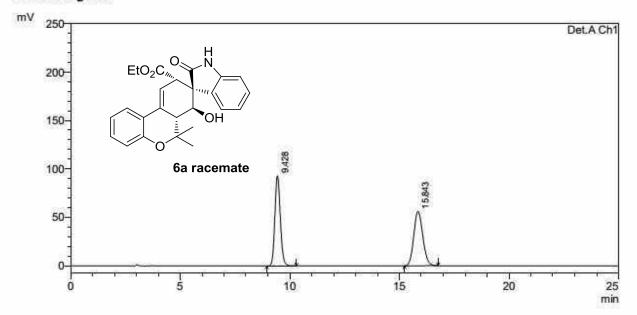




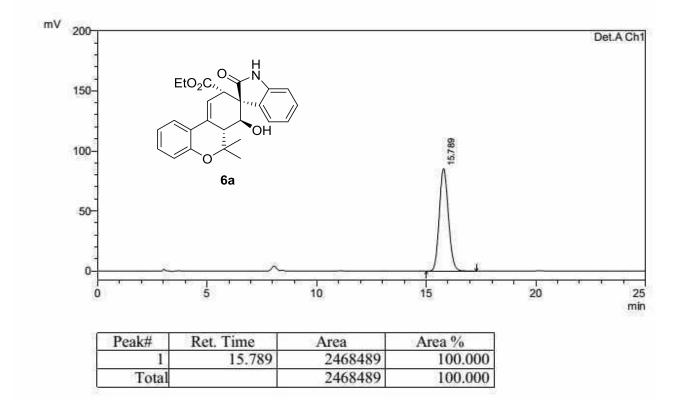


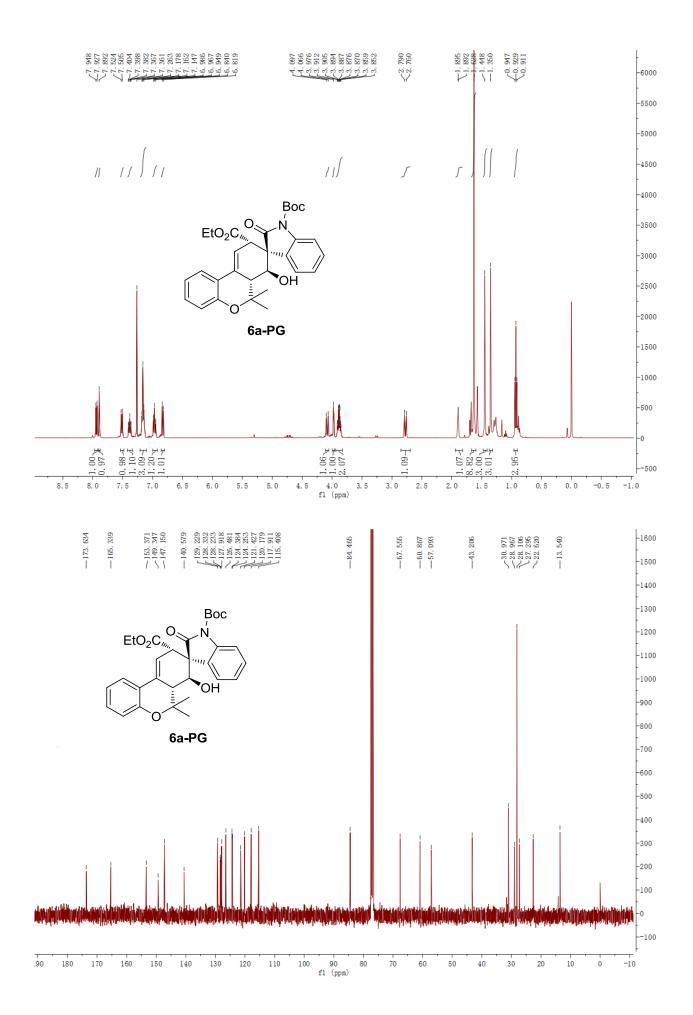

Peak#	Ret. Time	Area	Area %
1	35.101	2486580	100.000
Total		2486580	100.000

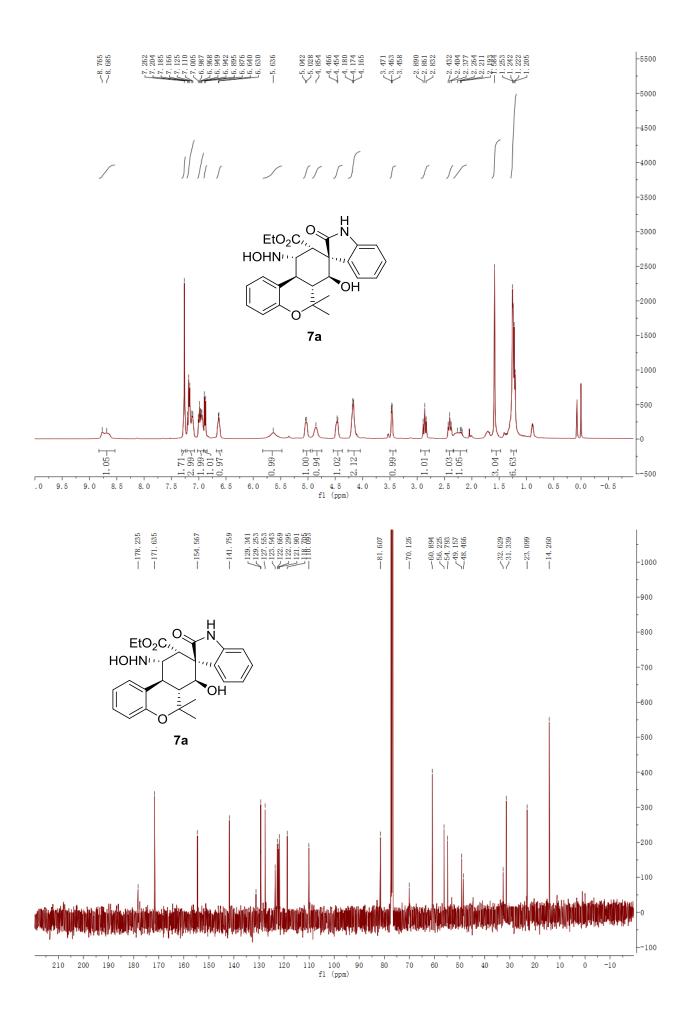


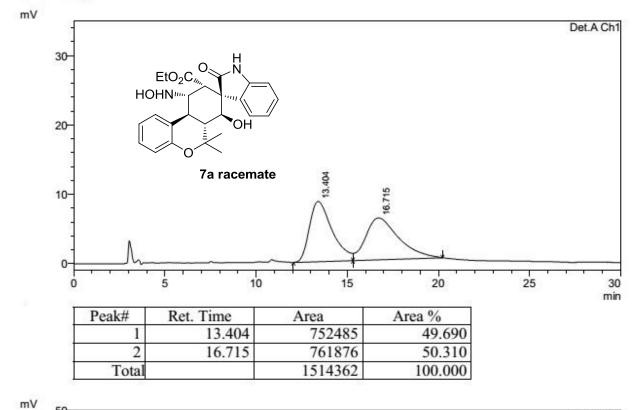


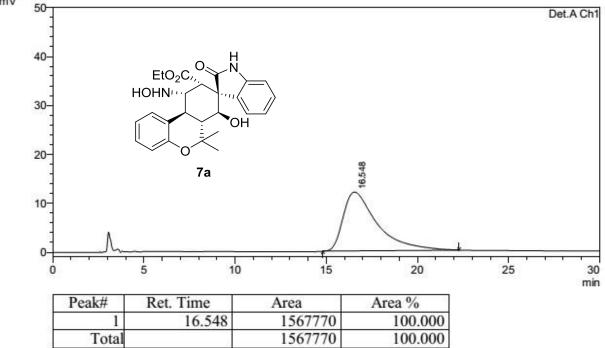
<Chromatogram>

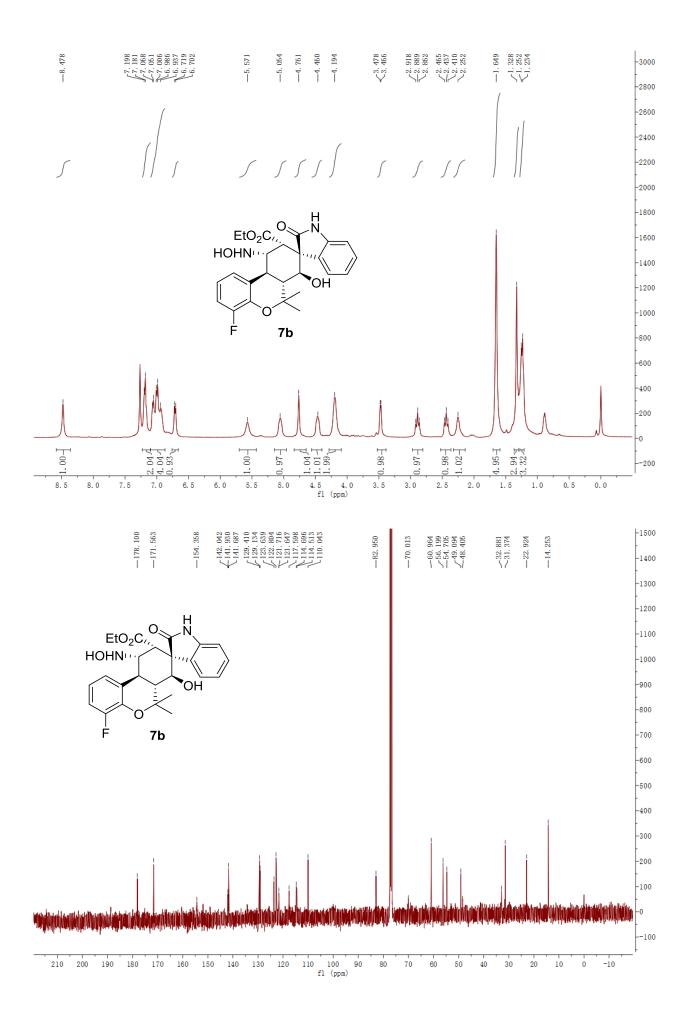


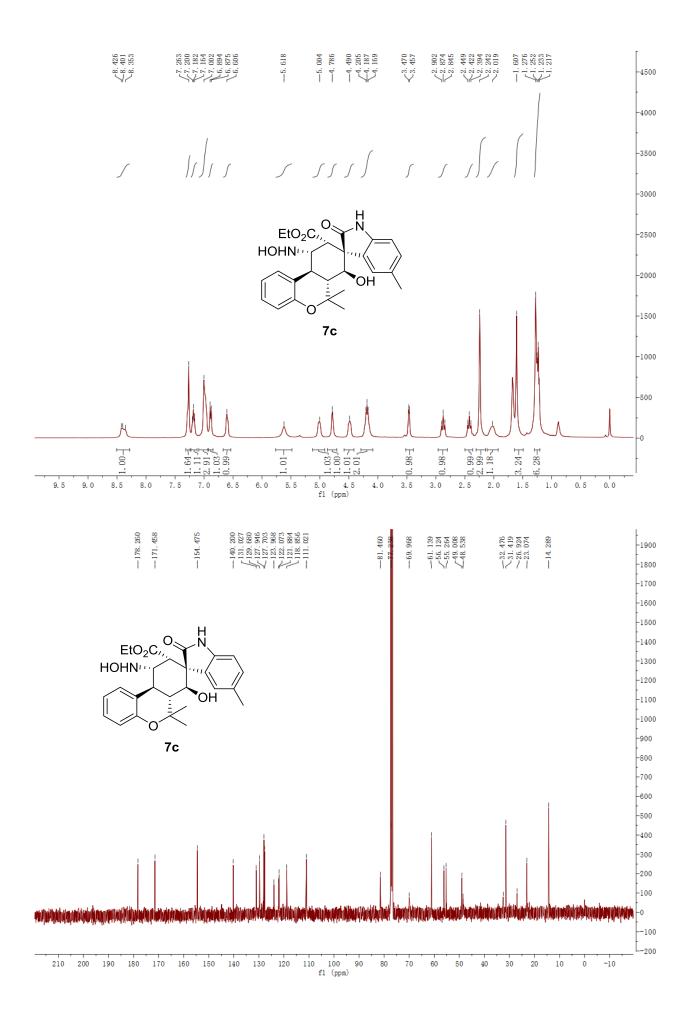


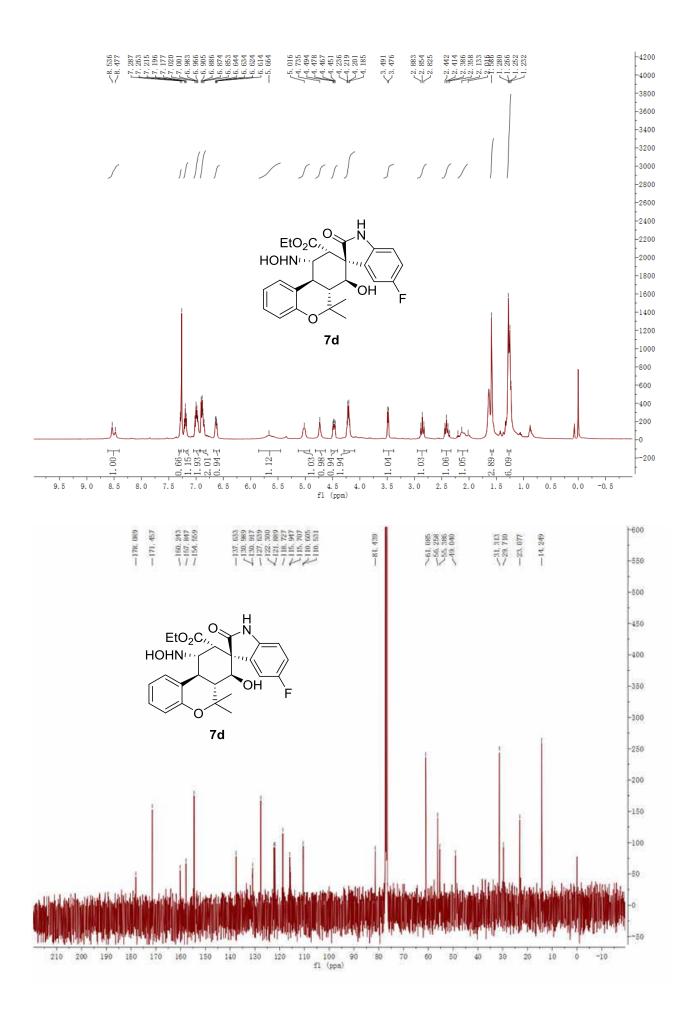


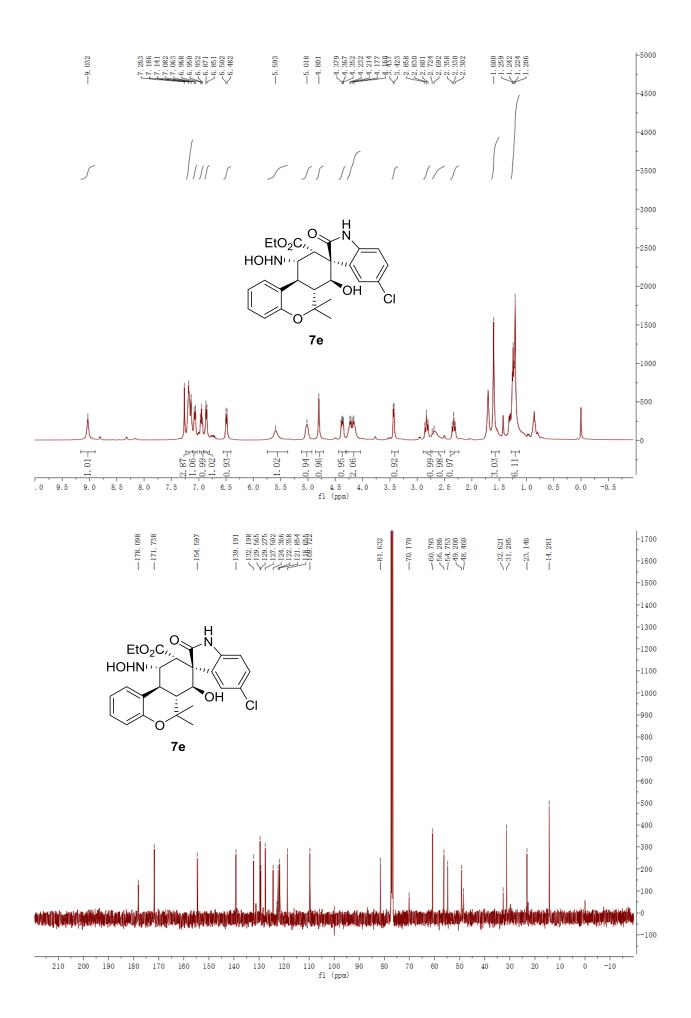


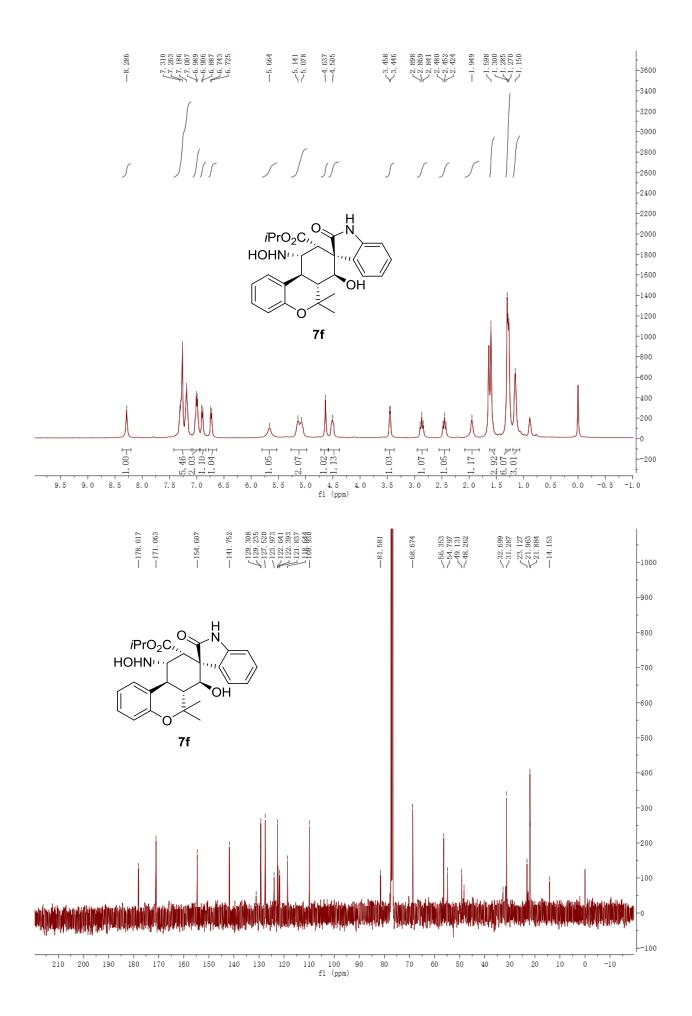

Peak#	Ret. Time	Area	Area %
1	9.428	1607431	49.949
2	15.843	1610697	50.051
Total	3	3218128	100.000

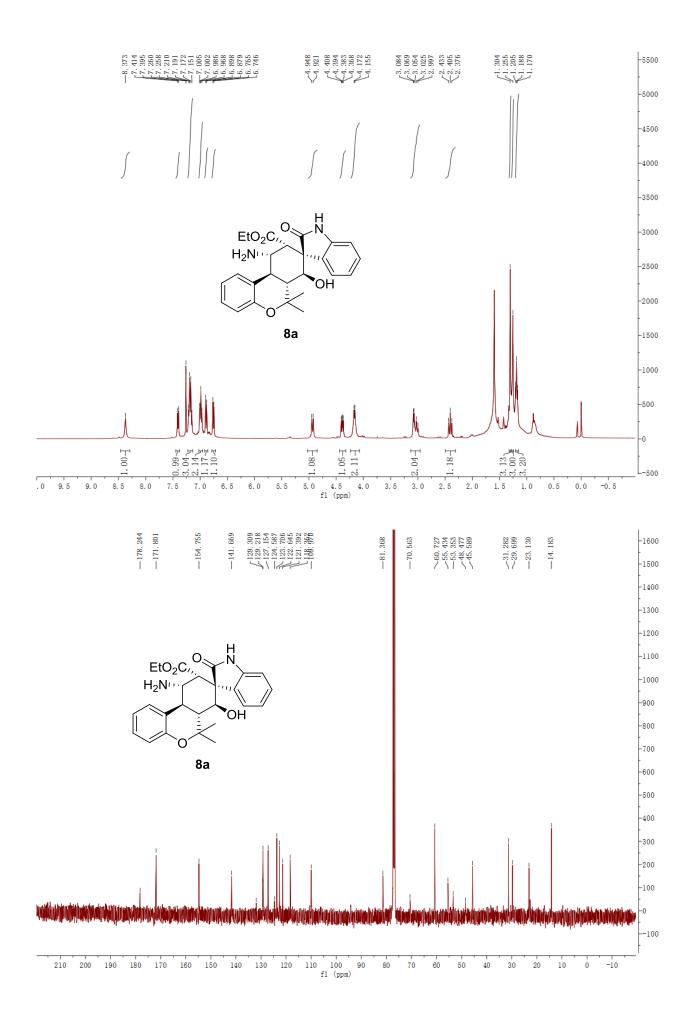


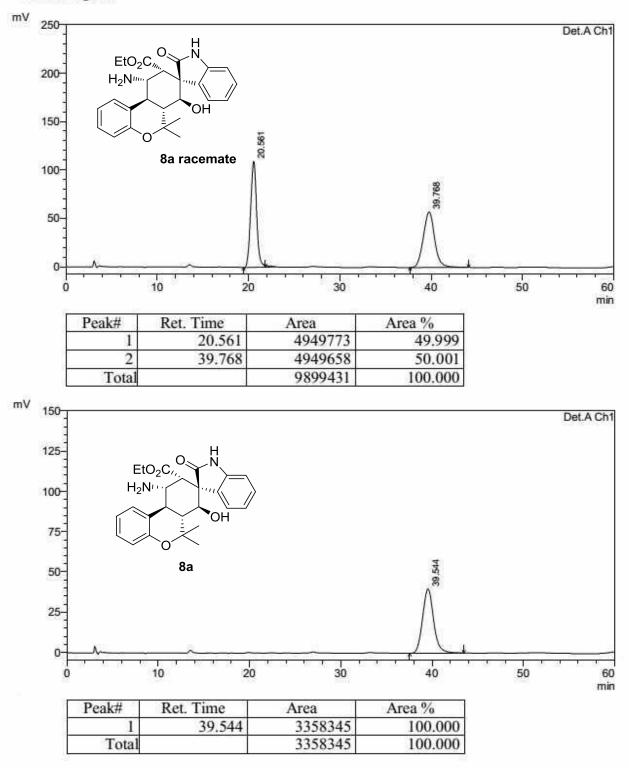












5. SupplementaryTable S1-2

	MCF-7	A549	HepG2	HCT116	U87
5a	71.4	84.6	71.7	83.3	86.4
5b	82.0	87.1	82.6	87.6	72.7
5c	76.4	73.2	85.1	70.1	85.6
5d	70.6	75.7	71.2	74.4	70.1
5e	75.0	86.6	73.7	76.9	72.4
5f	82.0	80.4	75.5	79.9	76.6
5g	79.2	76.1	89.0	75.4	90.3
5h	78.6	91.6	78.0	91.1	88.0
5i	72.2	87.5	91.6	88.6	75.1
5ј	90.0	85.0	89.5	86.3	90.6
5k	46.5	66.7	56.4	57.2	63.7
51	68.2	75.5	65.2	72.9	63.6
5m	32.3	29.3	33.5	21.7	60.2
5n	59.1	66.1	68.4	65.3	63.7
6a	40.3	56.0	65.5	73.2	75.9
7a	30.1	36.9	55.7	32.8	24.1
7b	46.7	67.1	64.7	54.6	87.2
7c	23.6	14.8	52.6	37.5	40.3
7d	12.3	18.6	24.5	27.0	36.5
7e	15.7	15.4	21.3	23.9	40.4
7f	29.9	67.9	66.1	68.6	65.3
8 a	45.7	51.0	58.9	61.4	66.9

Table S1. Sensitivity of Different Cancer Cell Linesto Compounds 5a-5n, 6a, 7a-7f and 8a^a.

 a The cellular viable percentage (%) at 50 μM were obtained by the MTT assay.

•

	MCF-7	A549	HepG2	HCT116	U87
5k	49.8±9.6	>50	>50	>50	>50
5m	27.6±6.5	38.0±7.3	46.9±8.0	33.2±9.4	>50
6a	41.9±8.2	>50	>50	>50	>50
7a	21.8±6.4	44.2±12.1	>50	37.1±10.7	42.3±8.6
7b	47.6±7.1	>50	>50	>50	>50
7c	9.4±3.5	17.3±7.2	>50	43.8±10.1	36.6±7.6
7d	2.5 ± 1.1	4.8 ± 1.8	16.2±5.0	25.4±6.9	41.9±13.8
7e	1.7±0.5	5.9±3.2	18.4±5.1	13.0±3.5	37.5±8.4
7f	35.3±8.8	>50	40.8±13.6	>50	>50
8 a	47.5±11.3	>50	>50	>50	>50

Table S2. The cellular proliferation IC_{50} of different cancer cell linesto Compounds **5k**, **5m**, **6a**, **7a-7f** and **8a**^a.

^a The cellular proliferation IC_{50} were obtained by the MTT assay and were expressed as the mean \pm SD of three independent experiments.

6. Supplementary Figure S1-4

Figure S1. Fluorescence microscopic imaging of MCF-7cells. A1: bright-field image of blank cells;A2: fluorescence microscopic image of blank cells;B1: bright-field image of cell treated with 10µM probe; B2: fluorescence microscopic image of cells stained by 10µM probe; C1: bright-field image of cell treated with 0.1µM **7e** and 10µM probe; C2: fluorescence microscopic image of celltreated with 0.1µM **7e** and 10µM probe; D2: fluorescence microscopic image of celltreated with 0.25µM **7e** and 10µM probe; D2: fluorescence microscopic image of celltreated with 0.25µM **7e** and 10µM probe; E1: bright-field image of cell treated with 1µM **7e** and 10µM probe; E2: fluorescence microscopic image of celltreated with 1µM **7e** and 10µM probe; F2: fluorescence microscopic image of celltreated with 5µM **7e** and 10µM probe; G1: bright-field image of cell treated with 25µM **7e** and 10µM probe; G2: fluorescence microscopic image of celltreated with 5µM **7e** and 10µM probe; G2: fluorescence microscopic image of celltreated with 5µM **7e** and 10µM probe; G2: fluorescence microscopic image of celltreated with 5µM **7e** and 10µM probe; G2: fluorescence microscopic image of celltreated with 5µM **7e** and 10µM probe; G2: fluorescence microscopic image of celltreated with 5µM **7e** and 10µM probe; G2: fluorescence microscopic image of celltreated with 5µM **7e** and 10µM probe; G2: fluorescence microscopic image of celltreated with 5µM **7e** and 10µM probe; G2: fluorescence microscopic image of celltreated with 50µM **7e** and 10µM probe; H2: fluorescence microscopic image of celltreated with 50µM **7e** and 10µM probe; H2: fluorescence microscopic image of celltreated with 50µM **7e** and 10µM probe; H2: fluorescence microscopic image of celltreated with 50µM **7e** and 10µM probe; H2: fluorescence microscopic image of celltreated with 50µM **7e** and 10µM probe; H2: fluorescence microscopic image of celltreated with 50µM **7e** and 10µM probe;

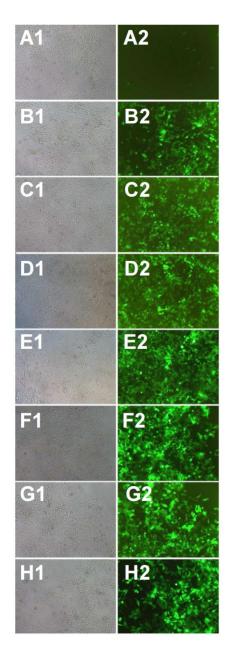


Figure S2. Cell cycle analysis of blank cells (A), Nutlin-3 5µM treated cells(B), Nutlin-3 10µM treated cells(C),**7e** 5µM treated cells(D), **7e** 10µM treated cells(E).

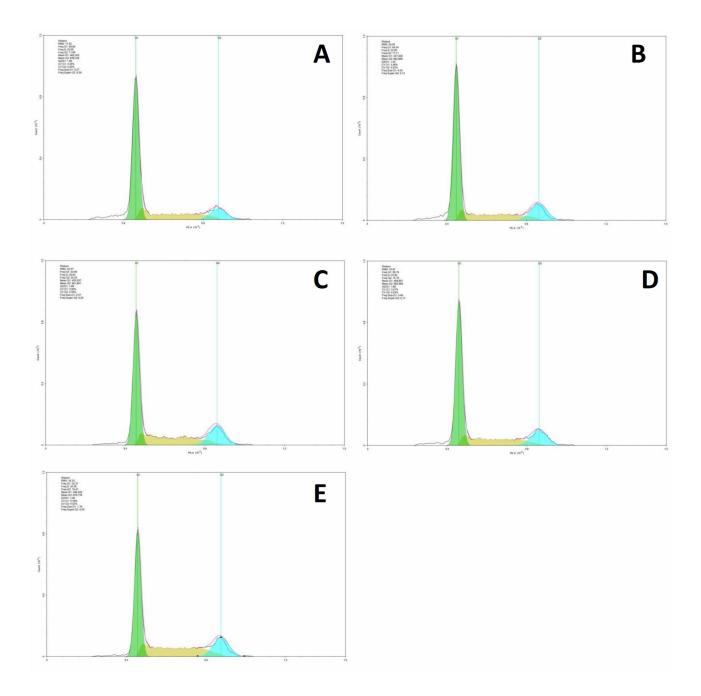


Figure S3. The MCF-7 cells were treated with Nutlin-3 (5 μ M) or 7e (5 μ M) for 24 h thenstained with PI and observed by fluorescence microscope (×200 magnification), the blue arrow suggested mitotic cells, the yellow arrow suggested apoptotic cells.

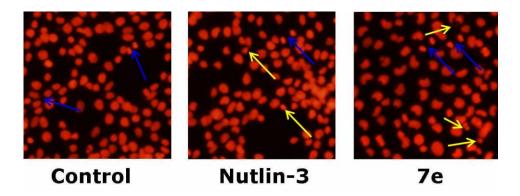
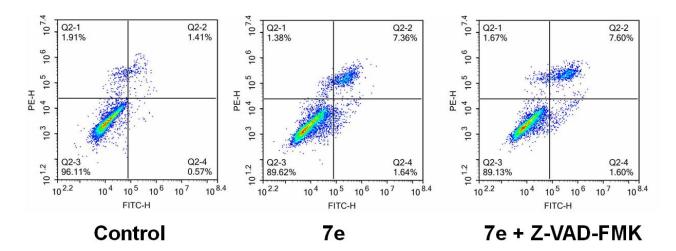



Figure S4. The MCF-7 cells weretreated with 7e (5 μ M) for 24 h without or with co-incubation of pan-caspase inhibitorZ-VAD-FMK (5 μ M), then revealed by Annexin-V/PI double staining using flow cytometryanalysis.

