Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Iron-Catalyzed Direct α-Arylation of Ethers with Azoles

Arkaitz Correa, *^t Béla Fiser[§] and Enrique Gómez-Bengoa[§]

[†] Department of Organic Chemistry I, University of the Basque Country (UPV/EHU) Joxe Mari Korta R&D Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián (Spain) E-mail: arkaitz.correa@ehu.es
§ Department of Organic Chemistry I, University of the Basque Country (UPV/EHU),

P.O. Box 1072, 20080 Donostia-San Sebastián (Spain)

General Considerations	S2
Optimization Details	S3
Iron-Catalyzed Direct α -Arylation of Ethers with Azoles (Table 2-3)	S7
Kinetic Isotope Effect (KIE)	S17
Computational Methods	S18
Computational Discussion	S18
¹ H NMR and ¹³ C NMR Spectra	S30

General Considerations

Reagents. Commercially available materials were used without further purification. Anhydrous iron(II) fluoride (FeF₂, 99% purity) was purchased from Strem Chemicals. 1,2-Dichloroethane (spectrophotometric grade, \geq 99%), *tert*-butyl hydroperoxide solution (TBHP, 5.0-6.0 M in decane) and *tert*-butyl peroxybenzoate (technical, \geq 95.0%) were purchased from Sigma-Aldrich.

Analytical methods. ¹H NMR and ¹³C NMR spectra and melting points (where applicable) are included for all compounds. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz at 20 °C. All ¹H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals for CHCl₃ (7.26 ppm), unless otherwise indicated. All ¹³C NMR spectra were reported in ppm relative to residual CHCl₃ (77 ppm), unless otherwise indicated, and were obtained with ¹H decoupling, Coupling constants, J, are reported in hertz. Melting points were measured using open glass capillaries in a Büchi SMP-20 apparatus. Mass spectra were acquired on a time of flight (TOF) mass spectrometer (SYNAPT G2 HDMS from Waters, Milford, MA, USA) equipped with an electrospray source in positive mode (ESI⁺). The chromatographic separation was performed using an ACQUITY UPLC system from Waters (Milford, MA, USA) equiped with an Acquity UPLC BEH C18 1.7 µm, 50 x 2.1 mm column at 30 °C. Mobile phases consisted of 0.1% formic acid in water (A) and 0.1% formic acid in methanol (B). Separation was carried out in 5 min: initial conditions were 5 % B, raised to 100 % B over 2.5 min, held at 100 % B until 4 min, decreased to 5 % B over 0.1 min and held at 5 % B until 5 min for re-equilibration of the system. Flow rate was 0.25 mL/min and injection volume was 5 µL. Infrared spectra were recorded on a Bruker Alpha P. Flash chromatography was performed with EM Science silica gel 60 (230-400 mesh). The yields reported in tables 2-3 correspond to isolated yields and represent an average of at least two independent runs. The procedures described in this section are representative. Thus, the yields may differ slightly from those given in the tables of the manuscript.

Optimization Details

General Procedure: Cross-Dehydrogenative Coupling of 1a with THF

A reaction tube containing a stirring bar was charged with **1a** (0.5 mmol), metal source (10 mol%), oxidant (if solid) and additive (50 mol%), if applicable. The reaction tube was then evacuated and back-filled with dry argon (this sequence was repeated three times). Then, oxidant (if liquid), THF (1 mL) and solvent (if applicable) were subsequently added under argon atmosphere by syringe and the resulting solution was warmed up to the corresponding temperature and stirred for 24 hours. The mixture was then allowed to warm to room temperature, filtered off through a pad of celite and washed with CH_2Cl_2 . The resulting crude was evaporated and purified by conventional flash chromatography (hexanes/AcOEt 9/1). The purity of the corresponding product **3a** was verified by ¹H NMR.

Table S1: Influence of the nature of the catalyst on the CDC of 1a and THF

N S 1a	+ H	Metal salt (10 TBHP (2.0 90 °C, 2	0 mol%) equiv) 4 h	N S 3a
	Entry	Metal	$3a (\%)^a$	
	1	none	6	
	2	FeF ₂	62	
	3	FeF ₃	61	
	4	FeCl ₂	traces	
	5	FeCl ₃	traces	
	6	Fe(acac) ₃	35	
	7	Fe ₂ O ₃	traces	
	8	Fe(OAc) ₂	43	
	9	Co(acac) ₂	traces	
	10	Co(acac) ₃	38	
	11	CoF ₂	47	
	12	Cu(OTf) ₂	25	
	13	CuF ₂	29	
	14	CuCl ₂	traces	
	15	CuBr ₂	traces	
	16	CuCl	traces	
	17	Cu ₂ O	19	
	18	CuO	26	
	19 ^b	TBAI	traces	

^{*a*} Yield of isolated product after column chromatography. ^{*b*} 30 mol% of catalyst

Table S2: Optimization experiments of the CDC of 1a with THF

1	A S B A A A A A A A A A A	FeF ₂ (10 mo Oxidant (x eq solvent, addi 90 °C, 24	l%) uiv) tive h	S 3a
Entry	Oxidant (equiv)	Solvent	Additive	$3a (\%)^a$
1	TBHP (2.0)	none	none	$62(54)^b$
2	TBHP (1.0)	none	none	62
3	TBHP (0.5)	none	none	51
4	TBHPaq (2.0)	none	none	41
5	CHP (2.0)	none	none	traces
6	$H_2O_2(2.0)$	none	none	traces
7	tBuOOtBu (2.0)	none	none	traces
8	$(NH_4)_2S_2O_8(2.0)$	none	none	0
9	DDQ (2.0)	none	none	0
10	BzOOBz (2.0)	none	none	traces
11	BzOOtBu (2.0)	none	none	51
12	TBHP (1.0)	none	NaI	0
13	TBHP (1.0)	none	KF	0
14	TBHP (1.0)	AcOEt	none	50
15	TBHP (1.0)	DCE	none	82 (62) ^b
16 ^c	TBHP (1.0)	DCE	none	60
17^d	TBHP (1.0)	DCE	none	46

^{*a*} Yield of isolated product after column chromatography. ^{*b*} Under air. ^{*c*} 80 °C.

^{*d*} 5 mol% of catalyst. CHP = Cumene hydroperoxide

N S 1a	אשר + ⊢ ב	N S 3a		
	Entry	Lewis acid	3a (%) ^a	
	1	none	14	
	2	FeF ₂	82	
	3	Sc(OTf) ₃	28	
	4	Bi(OTf) ₃	21	
	5	GaCl ₃	traces	
	6	AlCl ₃	traces	

Table S3: Experiments in the presence of Lewis acids

^{*a*} Yield of isolated product after column chromatography.

Iron-Catalyzed Direct α-Arylation of Ethers with Azoles (Table 2-3)

General Procedure: A reaction tube containing a stirring bar was charged with azole **1** (if solid) (0.5 mmol, 1.0 equiv) and FeF₂ (0.05 mmol, 10 mol%). The reaction tube was then evacuated and back-filled with dry argon (this sequence was repeated up to three times). The azole **1** (if liquid) (0.5 mmol, 1.0 equiv), ether **2** (0.5 mL), 1,2-dichloroethane (0.5 mL) and TBHP (1.0 equiv, 100 μ L, 5.0-6.0 M in decane) were then added under argon atmosphere. The reaction tube was next warmed up to 90 °C and stirred for 24 hours. The mixture was then allowed to warm to room temperature, filtered off through a pad of celite and washed with CH₂Cl₂. The resulting mixture was concentrated under reduced pressure and the corresponding product was purified by flash chromatography (hexanes/AcOEt 9/1). The yields reported in the manuscript refer to isolated yields and represent an average of at least two independent runs.

2-(Tetrahydrofuran-2-yl)benzothiazole (3a) (Table 2). Following the general procedure, using benzothiazole (**1a**) (0.50 mmol, 54 µL) and THF (0.5 mL) provided 81 mg (80% yield) of the corresponding coupling product **3a** as a colorless oil. The spectroscopic data correspond to those previously reported in the literature.¹ ¹H NMR (400 MHz, CDCl₃): δ 7.91 (dd, *J* = 41.2, 8.1 Hz, 2H), 7.39 (dt, *J* = 40.6, 7.5 Hz, 2H), 5.34 (t, *J* = 7.8 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 1H), 3.99 (q, *J* = 7.4 Hz, 1H), 2.50 (dt, *J* = 14.9, 7.4 Hz, 1H), 2.25 (dt, *J* = 12.8, 6.3 Hz, 1H), 2.02 (p, *J* = 7.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 176.3, 153.5, 134.6, 125.8, 124.7, 122.6, 121.7, 78.6, 69.3, 33.3, 25.6 ppm.

5-Bromo-2-(tetrahydrofuran-2-yl)benzothiazole (3b) (Table 2). Following the general procedure, using 5-bromobenzothiazole (**1b**) (0.50 mmol, 107 mg) and THF (0.5 mL) provided 77 mg (54% yield) of the corresponding coupling product **3b** as a white solid.

¹ T. He, L. Yu, L. Zhang, L. Wang, M. Wang, Org. Lett. 2011, 13, 5016-5019.

Mp 57-58 °C. ¹H NMR (400 MHz, CDCl₃): $\delta \delta 8.11$ (s, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 8.5 Hz, 1H), 5.32 (t, J = 7.8 Hz, 1H), 4.14 (q, J = 7.1 Hz, 1H), 4.00 (q, J = 7.4 Hz, 1H), 2.51 (tt, J = 11.4, 5.8 Hz, 1H), 2.25 (dq, J = 12.6, 6.3 Hz, 1H), 2.13-1.93 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta 178.5$, 154.6, 133.5, 127.9, 125.6, 122.8, 119.5, 78.6, 69.5, 33.3, 25.7 ppm. IR (neat, cm⁻¹): 1512, 1428, 1074, 917, 860. MS (ESI⁺) *m/z* (%) 283 (M+H). HRMS *calcd.* for (C₁₁H₁₁NOSBr): 283.9745, *found* 283.9746.

Tert-butyl 2-(tetrahydrofuran-2-yl)benzothiazole-6-carboxylate (3c) (Table 2). Following the general procedure, using *tert*-butyl benzothiazole-6-carboxylate² (1c) (0.50 mmol, 117 mg), TBHP (2.0 equiv, 200 µL) and THF (1 mL) provided 91 mg (60% yield) of the corresponding coupling product **3c** as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.53 (s, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.6 Hz, 1H), 5.34 (t, J = 8.0, 1H), 4.16 (q, J = 7.1 Hz, 1H), 4.01 (q, J = 7.4 Hz, 1H), 2.53 (dt, J = 15.0, 7.6 Hz, 1H), 2.27 (dq, J = 12.8, 6.4 Hz, 1H), 2.04 (dd, J = 9.0, 6.2 Hz, 2H), 1.62 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 179.9, 165.3, 156.3, 134.5, 128.5, 127.1, 123.7, 122.2, 81.4, 78.8, 69.5, 33.3, 28.2, 25.7 ppm. IR (neat, cm⁻¹): 1698, 1290, 899. MS (ESI⁺) *m/z* (%) 306 (M+H). HRMS *calcd*. for (C₁₆H₂₀NO₃S): 306.1164, *found* 306.1165.

N-[2-(Tetrahydrofuran-2-yl)benzothiazol-6-yl]benzamide (3d) (Table 2). Following the general procedure, using 2-(benzothiazol-6-yl)benzamide³ (1d) (0.50 mmol, 127 mg), TBHP (2.0 equiv, 200 µL) and THF (1 mL) provided 127 mg (78% yield) of the corresponding coupling product 3d as a white solid. Mp 160-162 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.53 (s, 1H), 8.30 (br s, 1H), 7.87 (d, *J* = 7.5 Hz, 3H), 7.66-7.35 (m, 4H), 5.40-5.15 (m, 1H), 4.13 (p, *J* = 6.9 Hz, 1H), 3.98 (q, *J* = 7.5 Hz, 1H), 2.51-2.46 (m, 1H), 2.26-2.21 (m, 1H), 2.02 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 175.6, 166.2, 150.2, 135.4, 135.1, 134.5, 131.7, 128.4, 127.0, 122.5, 119.4, 113.2, 78.5, 69.2, 33.2, 25.5 ppm. IR (neat, cm⁻¹): 3274, 1642, 1570, 1520, 1490, 1329, 933. MS (ESI⁺) *m/z* (%) 325 (M+H). HRMS *calcd.* for (C₁₈H₁₇N₂O₂S): 325.1011, *found* 325.1009.

² Y. Tani, K. Kobayashi, K. Nomura, PCT Int. Appl. 2013, WO 2013088898 A1.

³ M. Chakrabarty, A. Mukherji, S. Karmakar, R. Mukherjee, K. Nagai, A. Geronikaki, P. Eleni, *ARKIVOC* **2010**, *11*, 265-290.

6-Fluoro-2-(tetrahydrofuran-2-yl)benzothiazole (3e) (Table 2). Following the general procedure, using 6-fluorobenzothiazole (**1e**) (0.50 mmol, 76.5 mg), TBHP (2.0 equiv, 200 μ L) and THF (1 mL) provided 58 mg (51% yield) of the corresponding coupling product **3e** as a white solid. The spectroscopic data correspond to those previously reported in the literature.⁴ Mp 53-54 °C, (Lit. 74-76 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (dd, *J* = 8.9, 4.8 Hz, 1H), 7.53 (dd, *J* = 8.1, 2.6 Hz, 1H), 7.17 (td, *J* = 8.9, 2.6 Hz, 1H), 5.29 (t, *J* = 7.8 Hz, 1H), 4.13 (q, *J* = 7.2 Hz, 1H), 3.98 (q, *J* = 7.4 Hz, 1H), 2.48 (dt, *J* = 14.9, 7.5 Hz, 1H), 2.24 (dq, *J* = 13.0, 6.5 Hz, 2H), 2.02 (p, *J* = 8.0, 7.6 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 176.0 (d, *J* = 3.0 Hz), 160.1 (d, *J* = 246.4 Hz), 150.1, 135.6 (d, *J* = 11.1 Hz), 123.5 (d, *J* = 9.1 Hz), 114.4 (d, *J* = 24.2 Hz), 107.8 (d, *J* = 26.2 Hz), 78.5, 69.4, 33.2, 25.6 ppm.

6-Methoxy-2-(tetrahydrofuran-2-yl)benzothiazole (3f) (Table 2). Following the general procedure, using 6-methoxybenzothiazole (**1f**) (0.50 mmol, 82.5 mg), TBHP (2.0 equiv, 200 µL) and THF (1 mL) provided 73 mg (62% yield) of the corresponding coupling product **3f** as a white solid. The spectroscopic data correspond to those previously reported in the literature.⁴ Mp 80-82 °C, (Lit. 81-83 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.9 Hz, 1H), 7.32 (s, 1H), 7.05 (dd, *J* = 8.9, 2.6 Hz, 1H), 5.32 (t, *J* = 8.0 Hz, 1H), 4.13 (q, *J* = 7.1 Hz, 1H), 3.98 (q, *J* = 7.4 Hz, 1H), 3.85 (s, 3H), 2.48 (dt, *J* = 14.8, 7.6 Hz, 1H), 2.25 (dt, *J* = 12.7, 6.3 Hz, 1H), 2.02 (p, *J* = 7.1 Hz, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 176.0 (d, *J* = 3.0 Hz), 160.1 (d, *J* = 246.4 Hz), 150.1, 135.6 (d, *J* = 11.1 Hz), 123.5 (d, *J* = 9.1 Hz), 114.4 (d, *J* = 24.2 Hz), 107.8 (d, *J* = 26.2 Hz), 78.5, 69.4, 33.2, 25.6 ppm.

4-Methyl-2-(tetrahydrofuran-2-yl)thiazole (3g) (Table 2). Following the general procedure, using 4-methylthiazole (**1g**) (0.50 mmol, 46 μ L), TBHP (2.0 equiv, 200 μ L) and THF (1 mL) provided 44 mg (53% yield) of the corresponding coupling product **3g** as a colorless oil. The spectroscopic data correspond to those previously reported in the

⁴ Xie, Z.; Cai, Y.; Hu, H.; Lin, C.; Jiang, J.; Chen, Z.; Wang, L.; Pan, Y. Org. Lett. 2013, 15, 4600-4603.

literature.⁴ ¹H NMR (400 MHz, CDCl₃): δ 6.78 (s, 1H), 5.20 (dd, J = 7.6, 5.5 Hz, 1H), 4.09 (q, J = 7.0 Hz, 1H), 3.92 (q, J = 7.4 Hz, 1H), 2.41 (s, 3H), 2.05-1.96 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 174.3, 152.5, 112.9, 69.1, 33.4, 25.6, 16.9 ppm.

4,5-Dimethyl-2-(tetrahydrofuran-2-yl)thiazole (3h) (Table 2). Following the general procedure, using 4,5-dimethylthiazole (**1h**) (0.50 mmol, 53 μ L) and THF (0.5 mL) provided 48 mg (52% yield) of the corresponding coupling product **3h** as a colorless oil. The spectroscopic data correspond to those previously reported in the literature.⁴ ¹H NMR (400 MHz, CDCl₃): δ 5.14 (t, *J* = 6.2 Hz, 1H), 4.16-3.97 (m, 1H), 3.89-3.91 (m, 1H), 2.42-2.38 (m, 1H), 2.30 (d, *J* = 4.9 Hz, 6H), 2.12-1.94 (m, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 169.9, 147.5, 125.8, 78.2, 69.0, 33.3, 25.6, 14.5, 11.2 ppm.

Ethyl 2-(tetrahydrofuran-2-yl)-1*H*-benzimidazole-1-carboxylate (3i) (Table 2). Following the general procedure, using ethyl 1*H*-benzimidazole-1-carboxylate⁵ (1i) (0.50 mmol, 95 mg) and THF (0.5 mL) provided 66 mg (50% yield) of the corresponding coupling product **3i** as a white solid. Mp 74-75 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.96-7.82 (m, 1H), 7.81-7.69 (m, 1H), 7.37-7.27 (m, 2H), 5.72 (t, *J* = 7.9 Hz, 1H), 4.55 (q, *J* = 7.1 Hz, 2H), 4.26-4.07 (m, 1H), 3.99 (q, *J* = 7.2 Hz, 1H), 2.57-2.21 (m, 2H), 2.10-1.98 (m, 2H), 1.51 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 156.5, 150.1, 141.8, 132.9, 124.8, 124.4, 120.2, 114.8, 75.1, 69.1, 64.2, 31.1, 25.0, 14.1 ppm. IR (neat, cm⁻¹): 1741, 1472, 1300, 1074. MS (ESI⁺) *m/z* (%) 261 (M+H). HRMS *calcd.* for (C₁₄H₁₇N₂O₃): 261.1239, *found* 261.1235.

2-(Tetrahydrofuran-2-yl)benzoxazole (3j) (Table 2). Following the general procedure, using benzoxazole (**1j**) (0.50 mmol, 60 mg), *tert*-butyl perbenzoate (2.0 equiv, 190 μ L) and THF (1 mL) provided 64 mg (72% yield) of the corresponding coupling product **3j** as a colorless oil which was found to be thermally unstable. In this case, the reaction crude was washed with NaOH 1M before purification by column chromatography to remove the

⁵ A. P. Venkova, S. Statkova-Abeghea, *Synth. Commun.* **1998**, *28*, 1857-1864.

benzoic acid side-product. The spectroscopic data correspond to those previously reported in the literature.⁶ ¹H NMR (400 MHz, CDCl₃): δ 7.75-7.65 (m, 1H), 7.55-7.44 (m, 1H), 7.37-7.27 (m, 2H), 5.20 (t, *J* = 6.7 Hz, 1H), 4.11 (q, *J* = 7.3 Hz, 1H), 4.00 (q, *J* = 7.3 Hz, 1H), 2.39 (q, *J* = 7.2 Hz, 2H), 2.20-2.02 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 166.2, 150.8, 140.8, 125.1, 124.3, 120.1, 110.7, 73.9, 69.3, 30.7, 25.7 ppm.

5-Methyl-2-(tetrahydrofuran-2-yl)benzoxazole (3k) (Table 2). Following the general procedure, using 5-methylbenzoxazole (**1k**) (0.50 mmol, 66 mg), *tert*-butyl perbenzoate (2.0 equiv, 190 µL) and THF (1 mL) provided 65 mg (65% yield) of the corresponding coupling product **3k** as a colorless oil which was found to be thermally unstable. In this case, the reaction crude was washed with NaOH 1M before purification by column chromatography to remove the benzoic acid side-product. The spectroscopic data correspond to those previously reported in the literature.^{6 1}H NMR (400 MHz, CDCl₃): δ 7.48 (s, 1H), 7.37 (d, J = 8.3 Hz, 1H), 7.12 (d, J = 8.3 Hz, 1H), 5.17 (t, J = 6.8 Hz, 1H), 4.11 (q, J = 7.3 Hz, 1H), 3.99 (q, J = 7.3 Hz, 1H), 2.44 (s, 3H), 2.37 (q, J = 7.1 Hz, 2H), 2.18-2.01 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 166.2, 149.0, 140.9, 134.1, 126.2, 119.9, 110.0, 73.9, 69.2, 30.7, 25.7, 21.4 ppm.

5-Chloro-2-(tetrahydrofuran-2-yl)benzoxazole (31) (Table 2). Following the general procedure, using 5-chlorobenzoxazole (11) (0.50 mmol, 77 mg), *tert*-butyl perbenzoate (2.0 equiv, 190 µL) and THF (1 mL) provided 63 mg (57% yield) of the corresponding coupling product **3k** as a colorless oil which was found to be thermally unstable. In this case, the reaction crude was washed with NaOH 1M before purification by column chromatography to remove the benzoic acid side-product. ¹H NMR (400 MHz, CDCl₃): δ 7.68 (s, 1H), 7.43 (d, *J* = 8.6 Hz, 1H), 7.30 (d, *J* = 8.7 Hz, 1H), 5.18 (t, *J* = 6.8 Hz, 1H), 4.11 (q, *J* = 7.3 Hz, 1H), 4.00 (q, *J* = 7.2 Hz, 1H), 2.40-2.33 (m, 2H), 2.26-1.95 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 167.7, 149.4, 141.9, 129.8, 125.5, 120.1, 111.5, 73.8, 69.4, 30.8, 25.8 ppm. IR (neat, cm⁻¹): 1655, 1449, 1375, 799. MS (ESI⁺) *m/z* (%) 224 (M+H). HRMS *calcd.* for (C₁₁H₁₁NO₂Cl): 224.0478, *found* 224.0473.

⁶ T. Okitsu, K. Nagase, N. Nishio, A. Wada, Org. Lett. 2012, 14, 708-711.

2-(1,3-Dioxolan-2-yl)benzothiazole (3m) (Table 3). Following the general procedure, using benzothiazole (**1a**) (0.50 mmol, 54 µL) and 1,3-dioxolane (0.5 mL) provided 75 mg (73% yield) of the corresponding coupling product **3m** as a colorless oil along with 10 mg (9% yield) of the isomer 2-(1,3-dioxolan-4-yl)benzothiazole (**3m'**) (82% overall yield, 9:1, **3m:3m'**). The spectroscopic data correspond to those previously reported in the literature.⁴ **3m:** ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, *J* = 8.2 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 6.21 (s, 1H), 4.30-3.87 (m, 5H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 169.0, 153.0, 134.7, 126.0, 125.5, 123.5, 121.7, 100.3, 65.5 ppm. **3m'**: ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 5.52-5.36 (m, 1H), 5.30 (s, 1H), 5.11 (s, 1H), 4.38 (t, *J* = 7.8 Hz, 1H), 4.22 (dd, *J* = 8.6, 4.5 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 172.5, 153.2, 134.6, 126.2, 125.2, 122.9, 121.8, 96.3, 75.1, 71.0 ppm.

N-(2-(1,3-Dioxolan-2-yl)benzothiazol-6-yl)benzamide (3n) (Table 3). Following the general procedure, 2-(benzothiazol-6-yl)benzamide³ (1d) (0.50 mmol, 127 mg) and 1,3-dioxolane (0.5 mL) provided 109 mg (67% yield) of the corresponding coupling product **3n** as a white solid. Mp 199-200 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.58 (s, 1H), 8.75 (s, 1H), 8.05 (t, *J* = 10.4 Hz, 3H), 7.88 (d, *J* = 8.9 Hz, 1H), 7.62 (dt, *J* = 14.5, 7.1 Hz, 3H), 6.21 (s, 1H), 4.20-4.09 (m, 4H) ppm. ¹³C NMR (101 MHz, DMSO-*d*₆): δ 167.9, 165.8, 148.8, 137.2, 134.9, 134.7, 131.7, 128.4, 127.7, 123.1, 120.1, 120.0, 112.9, 112.8, 99.6, 65.4 ppm. IR (neat, cm⁻¹): 3285, 1645, 1568, 1518, 1358, 1083. MS (ESI⁺) *m/z* (%) 327 (M+H). HRMS *calcd.* for (C₁₇H₁₅N₂O₃S): 327.0803, *found* 327.0807.

Tert-butyl 2-(1,3-dioxolan-2-yl)benzothiazole-6-carboxylate (30) (Table 3). Following the general procedure, using *tert*-butyl benzothiazole-6-carboxylate² (1c) (0.50 mmol, 117 mg) and 1,3-dioxolane (0.5 mL) provided 98 mg (64% yield) of the corresponding coupling product **30** as a white solid. Mp 93-95 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.58 (s, 1H), 8.22-7.98 (m, 2H), 6.25 (s, 1H), 4.31-4.07 (m, 4H), 1.64 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 172.4, 165.0, 155.7, 134.6, 129.3, 127.2, 123.8, 123.2, 100.2, 81.4,

65.7, 28.1 ppm. IR (neat, cm⁻¹): 1698, 1368, 1264, 1135, 899. MS (ESI⁺) *m/z* (%) 308 (M+H). HRMS *calcd*. for (C₁₅H₁₈NO₄S): 308.0957, *found* 308.0949.

6-Fluoro-2-(1,3-dioxolan-2-yl)benzothiazole (3p) (Table 3). Following the general procedure, using 6-fluorobenzothiazole (1e) (0.50 mmol, 76.5 mg), TBHP (2.0 equiv, 200 μ L) and 1,3-dioxolane (1 mL) provided 65 mg (62% yield) of the corresponding coupling product **3p** as a white solid oil along with 13 mg (12% yield) of the isomer 6-fluoro-2-(1,3-dioxolan-4-yl)benzothiazole (**3p**') (74% overall yield, 9:1, **3p**:**3p**'). The spectroscopic data correspond to those previously reported in the literature.⁴ Mp 93-94 °C, (Lit. 89-90 °C). **3p:** ¹H NMR (400 MHz, CDCl₃): δ 7.98 (dd, J = 9.0, 4.8 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.20 (td, J = 8.9, 2.5 Hz, 1H), 6.18 (s, 1H), 4.23-3.99 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 168.8 (d, J = 3.0 Hz), 160.5 (d, J = 247.4 Hz), 149.7, 135.9 (d, J = 11.1 Hz), 124.6 (d, J = 10.1 Hz), 114.9 (d, J = 25.2 Hz), 107.9 (d, J = 10.1 Hz) 27.3 Hz), 100.2, 65.6 ppm. **3p':** ¹H NMR (400 MHz, CDCl₃): δ 7.95 (dd, J = 8.9, 4.8 Hz, 1H), 7.60 (dd, J = 8.0, 2.5 Hz, 1H), 7.37-7.13 (m, 1H), 5.46 (dd, J = 6.8, 4.4 Hz, 1H), 5.32 (s, 1H), 5.12 (s, 1H), 4.38 (t, J = 7.9 Hz, 1H), 4.25 (dd, J = 8.7, 4.5 Hz, 1H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 172.3 (d, J = 3.0 Hz), 160.4 (d, J = 3.0 Hz), 149.7, 135.6 d, J= 11.1 Hz), 123.8 (d, J = 10.1 Hz), 114.1 (d, J = 25.2 Hz), 107.9 (d, J = 26.3 Hz), 96.3, 74.9, 71.0 ppm.

2-(1,3-Dioxolan-2-yl)benzoxazole (3q) (Table 3). Following the general procedure, using benzoxazole (**1j**) (0.50 mmol, 60 mg), *tert*-butyl perbenzoate (2.0 equiv, 190 µL) and 1,3-dioxolane (1 mL) provided 68 mg (72% yield) of the corresponding coupling product as an inseparable mixture (85:15, **3q:3q'**). In this case, the reaction crude was washed with NaOH 1M before purification by column chromatography to remove the benzoic acid side-product. The signals corresponding to the major isomer are provided. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.36 (t, *J* = 6.0 Hz, 2H), 6.19 (s, 1H), 4.29 (s, 2H), 4.14 (s, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 161.8, 150.6, 140.3, 125.8, 124.6, 120.7, 111.0, 97.1, 65.7 ppm. IR (neat, cm⁻¹): 1453, 1113, 935, 841. MS (ESI⁺) *m/z* (%) 192 (M+H). HRMS *calcd.* for (C₁₀H₉NO₃): 192.0582, *found* 192.0657.

2-(1,3-Dioxolan-2-yl)-5-methylbenzoxazole (3r) (Table 3). Following the general procedure, using 5-methylbenzoxazole (**1k**) (0.50 mmol, 66 mg), *tert*-butyl perbenzoate (2.0 equiv, 190 µL) and 1,3-dioxolane (1 mL) provided 65 mg (63% yield) of the corresponding coupling product as an inseparable mixture (85:15, **3r:3r')**. In this case, the reaction crude was washed with NaOH 1M before purification by column chromatography to remove the benzoic acid side-product. The signals corresponding to the major isomer are provided. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (s, 1H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.17 (d, *J* = 8.3 Hz, 1H), 6.16 (s, 1H), 4.28 (s, 2H), 4.12 (s, 2H), 2.45 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 161.9, 148.9, 140.4, 134.5, 127.0, 120.5, 110.3, 97.1, 65.6, 21.4 ppm. IR (neat, cm⁻¹): 1481, 1258, 1101, 851. MS (ESI⁺) *m/z* (%) 206 (M+H). HRMS *calcd*. for (C₁₁H₁₁NO₃): 206.0739, *found* 206.0813.

5-Chloro-2-(1,3-Dioxolan-2-yl)benzoxazole (3s) (Table 3). Following the general procedure, using 5-chlorobenzoxazole (**11**) (0.50 mmol, 77 mg), *tert*-butyl perbenzoate (2.0 equiv, 190 µL) and 1,3-dioxolane (1 mL) provided 69 mg (62% yield) of the corresponding coupling product as an inseparable mixture (6:4, **3s:3s'**). In this case, the reaction crude was washed with NaOH 1M before purification by column chromatography to remove the benzoic acid side-product. The signals corresponding to the major isomer are provided. ¹H NMR (400 MHz, CDCl₃): δ 7.75-7.66 (m, 1H), 7.45 (dd, *J* = 8.6, 3.2 Hz, 1H), 7.37-7.28 (m, 1H), 6.16 (s, 1H), 4.27 (s, 2H), 4.13 (s, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 163.2, 149.2, 141.4, 130.2, 126.2, 120.6, 111.8, 96.9, 65.7 ppm. IR (neat, cm⁻¹): 1450, 1159, 960, 915. MS (ESI⁺) *m/z* (%) 226 (M+H). HRMS *calcd.* for (C₁₀H₉NO₃Cl): 226.0271, *found* 226.0271.

2-(1,4-Dioxan-2-yl)benzoxazole (3t) (Table 3). Following the general procedure, using benzoxazole (**1j**) (0.50 mmol, 60 mg), *tert*-butyl perbenzoate (2.0 equiv, 190 μ L) and dioxane (1 mL) provided 78 mg (77% yield) of the corresponding coupling product **3t** as a white solid. In this case, the reaction crude was washed with NaOH 1M before purification by column chromatography to remove the benzoic acid side-product. The spectroscopic data correspond to those previously reported in the literature. Mp 60-62 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.77-7.64 (m, 1H), 7.57-7.47 (m, 1H), 7.37-7.28 (m, 2H), 4.95 (dd, J = 9.2, 3.0 Hz, 1H), 4.18 (dd, J = 11.9, 3.0 Hz, 1H), 4.07-3.85 (m, 3H), 3.85-3.71 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 150.5, 140.5, 125.4, 124.6, 120.3, 110.8, 71.0, 68.4, 66.5, 66.3 ppm.

2-(1,4-Dioxan-2-yl)benzothiazole (3u) (Table 3). Following the general procedure, using benzothiazole (**1a**) (0.50 mmol, 54 µL), TBHP (2.0 equiv, 200 µL) and dioxane (1 mL) provided 65 mg (59% yield) of the corresponding coupling product **3u** as a white solid. The spectroscopic data correspond to those previously reported in the literature.⁴ Mp 71-72 °C, (Lit. 66-68 °C). ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.38 (t, J = 7.7 Hz, 1H), 5.06 (dd, J = 9.9, 3.1 Hz, 1H), 4.32 (dd, J = 11.8, 3.0 Hz, 1H), 3.99 (td, J = 11.0, 9.9, 5.6 Hz, 2H), 3.88-3.61 (m, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 168.8, 152.8, 134.3, 125.9, 124.9, 122.9, 121.6, 75.2, 70.3, 66.8, 66.2 ppm.

2-(1,4-Dioxan-2-yl)-6-methoxybenzothiazole (3v) (Table 3). Following the general procedure, using 6-methoxybenzothiazole (**1f**) (0.50 mmol, 82 mg), TBHP (2.0 equiv, 200 μ L) and dioxane (1 mL) provided 63 mg (51% yield) of the corresponding coupling product **3v** as a white solid. The spectroscopic data correspond to those previously reported in the literature.⁴ Mp 105-107 °C, (Lit. 96-98 °C). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.9 Hz, 1H), 7.35 (s, 1H), 7.08 (dd, *J* = 8.8, 2.7 Hz, 1H), 5.02 (dd, *J* = 9.8, 3.1 Hz, 1H), 4.42-4.19 (m, 1H), 4.09-3.60 (m, 5H), 3.87 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 166.1, 157.6, 147.3, 135.8, 123.4, 115.5, 104.0, 75.2, 70.4, 66.9, 66.3, 55.7 ppm.

2-(1,2-Dimethoxyethyl)benzothiazole (3w) (Table 3). Following the general procedure, using benzothiazole (1a) (0.50 mmol, 54 μ L), *tert*-butyl perbenzoate (2.0 equiv, 190 μ L) and 1,2-dimethoxyethane (1 mL) provided 51 mg (46% yield) of the corresponding coupling product 3w as a colorless oil along with 26 mg (23% yield) of 2-[(2-methoxyethoxy)methyl]benzothiazole 3w' (69% overall yield, 7:3 3w:3w'). In this case,

the reaction crude was washed with NaOH 1M before purification by column chromatography to remove the benzoic acid side-product. The spectroscopic data correspond to those previously reported in the literature.¹ **3w**: ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 4.83 (dd, J = 6.4, 3.8 Hz, 1H), 3.79 (qd, J = 10.4, 5.1 Hz, 2H), 3.51 (s, 3H), 3.40 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 171.4, 152.8, 134.9, 125.9, 125.1, 122.9, 121.7, 81.0, 75.1, 59.3, 58.4 ppm. **3w**': ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.7 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 4.97 (s, 2H), 3.78 (t, J = 4.5 Hz, 2H), 3.68-3.52 (m, 2H), 3.40 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 170.0, 152.5, 134.6, 125.7, 124.7, 122.5, 121.4, 71.4, 70.3, 70.3, 58.7 ppm.

2-(1,2-Dimethoxyethyl)-6-fluorobenzothiazole (3x) (Table 3). Following the general procedure, using 6-fluorobenzothiazole (1e) (0.50 mmol, 77 mg), tert-butyl perbenzoate (2.0 equiv, 190 µL) and 1,2-dimethoxyethane (1 mL) provided 66 mg (54% yield) of the corresponding coupling product 3x as a colorless oil along with 13 mg (11% yield) of 2-6-fluoro-[(2-methoxyethoxy)methyl]benzothiazole 3x' (65% overall yield, 8:2 3m:3m'). In this case, the reaction crude was washed with NaOH 1M before purification by column chromatography to remove the benzoic acid side-product. 3x: ¹H NMR (400 MHz. $CDCl_3$): δ 7.92 (dd, J = 8.9, 4.8 Hz, 1H), 7.55 (dd, J = 7.9, 2.6 Hz, 1H), 7.18 (td, J = 9.0, 2.7 Hz, 1H), 4.78 (dd, J = 6.4, 3.8 Hz, 1H), 3.78 (qd, J = 10.5, 5.0 Hz, 2H), 3.51 (s, 3H), 3.40 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 171.2 (d, J = 4.0 Hz), 160.3 (d, J = 246.4 Hz), 149.5, 136.1 (d, J = 11.1 Hz), 123.9 (d, J = 9.1 Hz), 114.6 (d, J = 25.2 Hz), 107.9 (d, J = 27.3 Hz), 75.0, 59.4, 58.45 ppm. IR (neat, cm⁻¹): 1566, 1454, 1127, 813. MS (ESI⁺) *m/z* (%) 242 (M+H). HRMS *calcd*. for (C₁₁H₁₃NO₂SF): 242.0651, *found* 242.0649. **3w'**: ¹H NMR (400 MHz, CDCl₃): δ 7.92 (dd, J = 9.0, 4.8 Hz, 1H), 7.56 (dd, J= 8.1, 2.6 Hz, 1H), 7.20 (td, J = 9.1, 2.6 Hz, 1H), 4.95 (s, 3H), 3.85-3.72 (m, 2H), 3.69-3.56 (m, 2H), 3.40 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 170.1 (d, J = 4.0 Hz), 160.3 (d, J = 246.4 Hz) 149.4, 136.0 (d, J = 11.1 Hz), 123.8 (d, J = 9.1 Hz), 114.7 (d, J =24.2 Hz) 108.0 (d, J = 26.3 Hz), 71.8, 70.7, 70.6, 59.1 ppm. IR (neat, cm⁻¹): 1566, 1453, 1046, 816. MS (ESI⁺) *m/z* (%) 242 (M+H). HRMS *calcd*. for (C₁₁H₁₃NO₂SF): 242.0651, found 242.0651.

Kinetic Isotope Effect (KIE) experiment with benzoxazole 1j: A reaction tube containing a stirring bar was charged with 5-methylbenzoxazole 1j (0.5 mmol, 66 mg) and FeF₂ (0.05 mmol, 4.76 mg). The reaction tube was then evacuated and back-filled with dry argon (this sequence was repeated up to three times). Then THF (0.5 mL), THF- d_8 (0.5 mL) and *tert*-butyl perbenzoate (2.0 equiv, 190 µL) were then added under argon atmosphere. The reaction tube was next warmed up to 90 °C and stirred for 24 hours. The mixture was then allowed to warm to room temperature, washed with NaOH 1M and extracted with CH₂Cl₂. The resulting mixture was concentrated under reduced pressure and the corresponding product (3j and [D]-3j) was purified by flash chromatography (hexanes/AcOEt 9/1). The KIE value was calculated by analysis of the ¹H NMR spectra:

^{7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9} ft (gom)

Computational Methods

All reported structures were optimized at DFT level by using the M06⁷ hybrid functional as implemented in Gaussian 09.⁸ Optimizations were carried out by using the standard 6-311++G(d,p) basis set for C, H, O, and N, and the SDD basis set for Fe.⁹ Implicit solvent (Tetrahydrofuran) was included in all the optimizations by means of a CPCM solvent model system.¹⁰ Reported energy values correspond to Gibbs Free (G) energies. The critical stationary points were characterized by frequency calculations in order to verify that they have the right number of imaginary frequencies, and the intrinsic reaction coordinates (IRC)¹¹ were followed to verify the energy profiles connecting those transition structures to the correct associated local minima.

Computational Discussion

Computational data confirm that the homolytic cleavage of the peroxide substrate tBuOOH to form the hydroxide and t-butoxide radical species is a highly endergonic process, with an uphill Gibbs Free energy of 5.1 kcal/mol (Figure S1.1). Thus, in the absence of iron catalyst, this step is probably rate-determining, severely limiting the feasibility of the background reaction. However, FeF₂ helps stabilizing the arising radical species by formation of a very stable Fe(III) complex, which lies ca. 80 kcal/mol lower in energy than the starting reactants. Two possible product combinations are outlined in Figures S1.2 and S1.3, showing the preferential formation of FeF₂(OH) complex and tert-butoxy radical by more than 6 kcal/mol vs the alternative formation of FeF₂(OtBu) and hydroxyl radical. Finally, doublet and quartet spin states were considered for F₂Fe(OH) and F₂Fe(OtBu), the latter (quartet) being lower in energy by more than 5 kcal/mol in

⁷ Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* **2008**, *120*, 215-241.

⁸ Gaussian 09, Revision D.01; M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.

⁹ P. Fuentealba, H. Preuss, H. Stoll, L. v. Szentpály, Chem. Phys. Lett. 1982, 89, 418-22.

¹⁰ a) E. Cancès, B. Mennucci, J. Tomasi, *J. Chem. Phys.* **1997**, *107*, 3032-3047; b) M. Cossi, V. Barone, B. Mennuci, J. Tomasi, *Chem. Phys. Lett.* **1998**, *286*, 253-260; c) J. Tomasi, B. Mennucci, E. Cancès, *J. Mol. Struct. (Theochem)* **1999**, *464*, 211-226.

¹¹ C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523-5527.

both species, regardless the computational conditions used. Thus, only energy values for high spin Fe(III) are shown in the figures and Table S4.

	<i>t</i> BuO-OH	← →	<i>t</i> BuO⁺ + ⁺OH	∆G _R = +5.1	(1)
FeF ₂	+ <i>t</i> BuO-OH		F₂Fe(O <i>t</i> Bu) + ⁺OH	∆G _R = -76.5	(2)
FeF ₂	+ <i>t</i> BuO-OH	₹	F₂Fe(OH) + ⁺O <i>t</i> Bu	∆G _R = -82.9	(3)

Figure S1. Gibbs Free energies for the homolytic cleavage of TBHP in the absence or presence of FeF_2 catalyst.

Next, the deprotonation of the O-C-H in the THF molecule 2a is predicted to be an easy process, with an activation energy of only 12.5 kcal/mol (TS1, Figure S2.1). As mentioned before, we have found a significant experimental kinetic isotope effect between 2a and 2a-d, indicating that this step should be the rate-determining step in our reaction. In this regard, its low activation energy can be accepted if we consider also the low concentration of the *tert*-butoxide radical in the reaction media. This radical will be probably involved in an equilibrium between its free form and a Fe(III)-OtBu complex, by combination with the Fe(II) catalyst. This equilibrium would compromise the availability of the free radical, decreasing the deprotonation rate in Figure S2.1. In agreement with the experimental findings, the deuterium cleavage in 2a-d presents an activation energy of 13.6 kcal/mol (Figure S2.2), corresponding to a computed KIE of 5.3. The subsequent SET event that affords a highly electrophilic oxonium cation **5** (Figure S2.3) and a hydroxide anion is also a favorable process, lying ca. 5 kcal/mol lower in energy than the sum of the starting Fe(III) complex and radical species.

$$tBuO + H \longrightarrow O \qquad TS-1 \qquad tBuOH + O \qquad \Delta G_R = -11.5 \quad (1)$$

$$tBuO \cdot + D \longrightarrow O \qquad \xrightarrow{TS-2} tBuOD + O O \qquad (2)$$

2a-d

Figure S2. Computed formation of the electrophilic oxonium species 5.

Finally, we also confirmed that the hydroxide anion formed in the previous step is basic enough to easily deprotonate the azole **1a** through **TS3** (Figure S3.1) with a low

activation energy of only 10.1 kcal/mol in a slightly exergonic process (-0.6 kcal/mol). The low energy barrier of TS-3 confirms the radical-mediated deprotonation event in Figure S2.1 (TS-1) as the rate-determining step. Obviously, the final C-C bond formation should be a barrierless step in an extremely favorable process, where the product 3a lies 82 kcal/mol lower in energy than the sum of the anionic/cationic species (Figure S3.2).

Figure S3. Final steps in the formation of product 3a.

Table S3. Energies of all stationary points shown in the study							
	M06/6-	Correctio	M06/6-	relativ	Frequency		
	311++G**	n to G	311++G**	e G			
	Electronic		Gibbs Free	M06			
	energy						
	All Sta	tionary poin	ts				
THF	-232.351720	0.085652	-232.266068				
THF-d	-232.351720	0.081945	-232.269774				
<i>t</i> BuOOH	-308.699834	0.107074	-308.592760				
<i>t</i> BuOO (rad)	-308.058556	0.094603	-307.963913				
<i>t</i> BuOO- (anion)	-308.188813	0.095351	-308.095300				
FeF ₂	-323.570284	-	-323.594122				
		0.023838					
1a	-722.529832	0.070589	-722.459243				
1a-rad	-721.846442	0.057355	-721.789087				
1a-anion	-722.001791	0.055967	-721.945824				
H ₂ O	-76.425040	0.003861	-76.421179				
HO (rad)	-75.725808	-	-75.734143				
		0.008335					
HO- (anion)	-75.899517	-	-75.906850				
		0.007333					
<i>t</i> BuO (rad)	-232.905755	0.091324	-232.814431				
<i>t</i> BuO- (anion)	-233.059196	0.092137	-232.967059				
<i>t</i> BuOH	-233.583257	0.105659	-233.477598				
FeF ₂ (OtBu)	-556.662891	0.088311	-556.574580				
FeF ₂ (OH)	-399.516823	0.012334	-399.504489				
THF rad	-231.695062	0.073852	-231.621210				
THF-cation	-231.541397	0.077445	-231.463952				
TS1	-465.256306	0.195739	-465.060567				
TS2	-465.256306	0.193903	-465.062402				
TS3	-798.432676	0.070805	-798.361870				
3a	-953.700125	0.159535	-953.540591				

.

equation S1.1

<i>t</i> BuOOH		-308.592760		
<i>t</i> BuO (rad)+ HO		-308.584574	5.1	
(rad)				
_()	equation S1.2			
FeF ₂ + <i>t</i> BuOOH	1	-632,186882		
$FeF_2(OtBu) + HO$		-632 308723	-76 5	
(rad)		052.500725	10.0	
	equation S1.3			
FeF ₂ + <i>t</i> BuOOH	•	-632.186882		
$FeF_2(OH) + tBuO$		-632.318920	-82.9	
(rad)				
	equation S2.1			
THF + t BuO (rad)		-465.080499		
THF (rad) + t BuOH		-465.098808	-11.5	
TS1		-465.060567	12.5	-1341.2
	equation S2.2			
THF- $d + t$ BuO (rad)		-464.747372		
TS2		-465.062402	13.7	-1027.9
	equation S2.3			
$FeF_2(OH) + THF$		-555.050494		
(rad)				
FeF_2 + -OH		-555.058074	-4.8	
+THF(cation)				
	equation S3.1			
1a + -OH	.	-798.366093		
1a (anion) + H ₂ O		-798.367003	-0.6	
TS3		-798.361870	2.6	-1663.7
	equation S3.2			
1a(anion) +		-953.409776		
THF(cation)				
3a		-953.540591	-82.1	
			U-	

Atomic Coordinates for the compounds described in the Manuscript and Supporting Information

THF

Standard orientation:

Center	Atomic Atomic		Atomic	Coordinate	es (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	6	0	1.079952	-0.524977	0.213713
2	8	0	-0.063795	-1.199305	-0.277408
3	6	0	-1.170128	-0.388172	0.086601
4	6	0	-0.680623	1.068114	0.035336
5	6	0	0.839252	0.932467	-0.138998
6	1	0	1.153835	-0.655583	1.307270
7	1	0	1.965619	-0.966095	-0.249390
8	1	0	-1.988468	-0.604953	-0.604265
9	1	0	-1.499736	-0.650972	1.103841
10	1	0	-1.132845	1.622000	-0.790775
11	1	0	1.127900	1.111692	-1.179510
12	1	0	1.407593	1.619695	0.492286
13	1	0	-0.934260	1.594060	0.959901

tBuOOH

200011		Standa	rd orientation:		
Center Number	Aton Nu	nic mber	Atomic Type	Coordinate X Y	es (Angstroms) Z Z
1	6	0	-0.383687	-0.000715	0.033610
2	6	0	-1.552845	-0.117458	-0.924581
3	1	0	-1.505930	-1.055636	-1.486165
4	1	0	-1.558716	0.717387	-1.631953
5	1	0	-2.490383	-0.098733	-0.360763
6	6	0	-0.321369	-1.195055	0.966395
7	1	0	-0.232523	-2.125244	0.394707
8	1	0	-1.236754	-1.247058	1.564616
9	1	0	0.523884	-1.120282	1.656662
10	6	0	-0.427201	1.308983	0.795700
11	1	0	-0.455574	2.155151	0.101619
12	1	0	0.445707	1.415353	1.444834
13	1	0	-1.325084	1.345090	1.421458
14	8	0	0.744474	-0.011277	-0.875571
15	8	0	1.961621	0.115249	-0.146782
16	1	0	2.297222	-0.792343	-0.152943

tBuOO (rad)

Center	Atom	ic	Atomic	Coordinate	es (Angstroms
Number	Nun	nber	Туре	X Y	Z
1	6	0	0.363625	0.000217	0.046305
2	6	0	1.489320	-0.001067	-0.960073
3	1	0	1.447078	0.888308	-1.596003
4	1	0	1.446899	-0.892052	-1.593723
5	1	0	2.447296	-0.000534	-0.431901
6	6	0	0.335528	1.259857	0.879345
7	1	0	0.302279	2.148355	0.241278
8	1	0	1.243266	1.307434	1.488685
9	1	0	-0.528671	1.267897	1.548426
10	6	0	0.336373	-1.257167	0.883011
11	1	0	0.304889	-2.147381	0.247232
12	1	0	-0.528681	-1.264501	1.551012
13	1	0	1.243376	-1.302017	1.493606
14	8	0	-0.849534	-0.001731	-0.831508
15	8	0	-1.966317	-0.000338	-0.173509

Standard orientation:

tBuOO (anion)

Standard orientation:							
Center Number	Ator Nu	nic mber	Atomic Type	Coordinat X Y	es (Angstroms) Z Z		
1	6	0	0.321373	-0.000004	0.009263		
2	6	0	1.541238	-0.000016	-0.899260		
3	1	0	1.543231	0.888613	-1.540751		
4	1	0	1.543097	-0.888558	-1.540872		
5	1	0	2.463757	-0.000128	-0.307395		
6	6	0	0.325839	1.250788	0.879904		
7	1	0	0.339590	2.149097	0.250966		
8	1	0	1.208675	1.270735	1.530631		
9	1	0	-0.572663	1.278470	1.501079		
10	6	0	0.325791	-1.250776	0.879936		
11	1	0	0.339911	-2.149111	0.251044		
12	1	0	-0.572929	-1.278553	1.500799		
13	1	0	1.208399	-1.270563	1.530977		
14	8	0	-0.777520	-0.000026	-0.882717		
15	8	0	-2.045794	0.000032	-0.166725		

FeF₂

Standard orientation:						
Center	Aton	nic A	tomic	Coordinat	es (Angstroms)	
Number	Nu	mber	Type	X Y	Z Z	
1	26	0	0.000000	0.449256	0.000000	
2	9	0	1.459668	-0.649047	0.000000	
3	9	0	-1.459668	-0.648802	0.000000	

1a

Standard orientation:

Center Number	Aton Nur	nic nber	Atomic Type	Coordinate X Y	es (Angstroms) Z Z
1	6	0	-0.081444	-0.566322	0.000012
2	6	0	0.092532	0.829909	0.000018
3	6	0	1.383388	1.363752	-0.000077
4	6	0	2.462849	0.502417	-0.000119
5	6	0	2.275324	-0.885760	-0.000112
6	6	0	1.006107	-1.435428	-0.000072
7	6	0	-2.099109	0.787662	0.000419
8	1	0	1.514260	2.441378	-0.000089
9	1	0	3.471038	0.904296	-0.000177
10	1	0	3.139786	-1.542158	-0.000170

11	1	0	0.865349	-2.511124	-0.000111
12	1	0	-3.128866	1.130539	0.000254
13	7	0	-1.076767	1.567409	0.000081
14	16	0	-1.785130	-0.935761	-0.000043

1a (rad)

Standard orientation:

Center	Atom	nic	Atomic	Coordinat	es (Angstroms
Number	Nur	nber	Туре	X Y	ΖZ
1	1	0	-3.039816	-1.636024	0.000025
2	1	0	-0.729434	-2.521600	0.000023
3	16	0	1.879820	-0.850946	-0.000007
4	1	0	-3.462453	0.793730	0.000027
5	1	0	-1.564756	2.406377	-0.000055
6	6	0	0.139915	-0.543059	0.000017
7	6	0	-0.910262	-1.452015	0.000028
8	6	0	-1.393394	1.334873	-0.000050
9	6	0	2.091215	0.881524	-0.000091
10	7	0	1.078158	1.612247	0.000132
11	6	0	-0.091386	0.843964	-0.000033
12	6	0	-2.440024	0.430211	-0.000010
13	6	0	-2.200691	-0.947678	0.000000

tBuO (rad)

Center Number	Atomic Numł	e ber	Atomic Type	Coordinate X Y	es (Angstroms) ZZ
1	8	0	0.000086	0.288812	1.419434
2	6	0	-0.000010	-0.030575	0.086001
3	6	0	-1.264507	-0.789078	-0.301690
4	1	0	-2.154218	-0.214211	-0.028470
5	1	0	-1.298572	-1.753137	0.215573
6	1	0	-1.284184	-0.978685	-1.379929
7	6	0	0.000456	1.364183	-0.593189
8	1	0	-0.892065	1.929681	-0.315613
9	1	0	0.000549	1.198129	-1.675524
10	1	0	0.893235	1.929163	-0.315397
11	6	0	1.263986	-0.789910	-0.301677
12	1	0	1.297485	-1.753916	0.215721
13	1	0	2.154076	-0.215557	-0.028612
14	1	0	1.283457	-0.979676	-1.379892

tBuO (anion)

				•	
Center Number	Aton Nu	nic mber	Atomic Type	Coordinat X	tes (Angstroms) Y Z
1	8	0	0.000480	-0.001999	1.494289
2	6	0	0.000044	-0.000146	0.134472
3	6	0	-0.155052	1.427741	-0.429070
4	1	0	0.668848	2.056840	-0.067383
5	1	0	-1.095450	1.865068	-0.068621
6	1	0	-0.158109	1.462923	-1.528920
7	6	0	1.313288	-0.578816	-0.431585
8	1	0	2.162387	0.016622	-0.070847
9	1	0	1.344756	-0.592837	-1.531475
10	1	0	1.446744	-1.607182	-0.070676
11	6	0	-1.158739	-0.847165	-0.431191
12	1	0	-2.115703	-0.447658	-0.070624
13	1	0	-1.068201	-1.880159	-0.070428
14	1	0	-1.186358	-0.867315	-1.531090

Standard orientation:

tBuOH

Standard orientation:

Center Number	Atomic Num	c ber	Atomic Type	Coordinate X Y	es (Angstroms) Z Z
1	8	0	0.067611	-0.000076	1.447645
2	6	0	-0.006714	-0.000106	0.014965
3	6	0	-1.486280	-0.010937	-0.309227
4	1	0	-1.976508	0.873435	0.110757
5	1	0	-1.963231	-0.903528	0.108792
6	1	0	-1.640755	-0.011075	-1.392821
7	6	0	0.655418	1.255650	-0.528217
8	1	0	0.175396	2.149016	-0.115528
9	1	0	0.581109	1.294881	-1.620384
10	1	0	1.719120	1.280430	-0.262530
11	6	0	0.674393	-1.245145	-0.529239
12	1	0	0.208082	-2.146369	-0.117868
13	1	0	1.738363	-1.254209	-0.263458
14	1	0	0.601029	-1.284198	-1.621490
15	1	0	0.995609	0.005448	1.703682

FeF₂(OtBu)

	Stand	lard orient	ation:				
Center Number	Atomic Number	Atomic Type		Coor X	dinates (A Y	Angstrom Z	s)

1	26	0	1.422858	0.090316	-0.000770
2	9	0	2.461639	-1.397008	0.000461
3	9	0	0.942805	1.830507	0.000719
4	8	0	-0.317106	-0.743476	-0.004248
5	6	0	-1.564395	-0.127573	0.000346
6	6	0	-1.784232	0.692187	-1.260741
7	1	0	-1.629494	0.074954	-2.150764
8	1	0	-1.082389	1.531052	-1.281494
9	1	0	-2.804356	1.087708	-1.281252
10	6	0	-2.509549	-1.361473	-0.006927
11	1	0	-2.350904	-1.961451	-0.905005
12	1	0	-3.533000	-0.972159	-0.002971
13	1	0	-2.348714	-1.974067	0.882175
14	6	0	-1.781960	0.676377	1.271914
15	1	0	-1.079099	1.514276	1.302809
16	1	0	-1.627176	0.047650	2.153843
17	1	0	-2.801520	1.073017	1.298494

FeF₂(OH)

Standard orientation:

Center	Atom	nic A	Atomic	Coordinate	es (Angstroms)
Number	Nur	nber	Type	X Y	ZZZ
1	26	0	-0.000626	-0.147754	-0.058011
2	9	0	-1.642355	-0.608327	0.074360
3	9	0	1.639387	-0.614625	0.073851
4	8	0	0.003693	1.606962	-0.079542
5	1	0	0.013447	1.992474	0.810721

THF (cation)

Standard orientation:

Center Number	Aton Nu	nic mber	Atomic Type	Coordinate X Y	es (Angstroms) Z Z
1	6	0	0.542947	-1.107808	0.030556
2	8	0	-0.807525	-0.946621	-0.118237
3	6	0	-1.112924	0.420233	0.182516
4	6	0	0.128139	1.187410	-0.228369
5	6	0	1.242017	0.202810	0.147179
6	1	0	0.935981	-2.030725	-0.377143
7	1	0	-2.020998	0.689095	-0.359949
8	1	0	-1.300785	0.513281	1.261719
9	1	0	0.120423	1.357334	-1.310399
10	1	0	0.209921	2.154499	0.272080
11	1	0	2.119408	0.278778	-0.504408
12	1	0	1.595175	0.394841	1.172702

THF (rad)

Standard orientation:										
Center Number	Ator Nu	nic mber	Atomic Type	Coordinate X Y	es (Angstroms) Z Z					
1	6	0	1.100759	-0.450634	-0.049347					
2	8	0	0.117167	-1.219400	-0.064790					
3	6	0	-1.151600	-0.439171	0.114278					
4	6	0	-0.729477	0.992906	-0.141029					
5	6	0	0.781571	0.962870	0.103205					
6	1	0	2.087306	-0.905944	-0.125723					
7	1	0	-1.858537	-0.869519	-0.590676					
8	1	0	-1.455355	-0.655374	1.139286					
9	1	0	-0.938776	1.282010	-1.172589					
10	1	0	-1.244814	1.684936	0.523496					
11	1	0	1.392329	1.590761	-0.550499					
12	1	0	1.072995	1.232503	1.132390					

TS1

Standard orientation:

Center	Atomic		Atomic	Coordinate	es (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-1.249785	-0.556674	0.773506
2	8	0	-1.649002	0.778229	0.886433
3	6	0	-2.378117	1.111637	-0.305699
4	6	0	-3.178058	-0.153596	-0.626381
5	6	0	-2.209308	-1.277227	-0.190374
6	1	0	-1.123707	-0.984114	1.772206
7	1	0	-2.984679	1.992459	-0.083328
8	1	0	-1.671336	1.355721	-1.111256
9	1	0	-4.092118	-0.178065	-0.024868
10	1	0	-3.461696	-0.216800	-1.680012
11	1	0	-2.726960	-2.112173	0.290357
12	1	0	-1.650503	-1.678192	-1.041546
13	1	0	-0.150739	-0.622106	0.240150
14	6	0	2.002372	0.008206	-0.081698
15	6	0	3.163180	-0.335045	-1.042527
16	1	0	4.053790	0.245338	-0.778855
17	1	0	3.405790	-1.399552	-0.982304
18	1	0	2.883884	-0.101387	-2.073498
19	6	0	2.384538	-0.373211	1.360175
20	1	0	3.279011	0.164496	1.692902
21	1	0	1.571391	-0.128732	2.051872
22	1	0	2.578913	-1.447880	1.425251
23	6	0	1.652238	1.504337	-0.182599
24	1	0	1.399574	1.760322	-1.216371

25	1	0	0.789938	1.737088	0.449551
26	1	0	2.490447	2.134688	0.134535
27	8	0	0.934832	-0.789688	-0.547834

TS2

Standard orientation:

Center	Atomic		tomic	Coordinates (Angstrom	
Number	Number		Туре	X Y	Z
1	6	0	-1.248056	-0.655699	0.725122
2	8	0	-1.567934	0.673136	0.946326
3	6	0	-2.245731	1.137269	-0.223219
4	6	0	-3.117822	-0.032571	-0.632584
5	6	0	-2.234897	-1.235540	-0.280372
6	1	0	-1.115653	-1.175050	1.678634
7	1	0	-2.785752	2.047819	0.041117
8	1	0	-1.500268	1.374384	-0.998259
9	1	0	-4.034209	-0.038295	-0.033934
10	1	0	-3.398660	0.001314	-1.686950
11	1	0	-2.803567	-2.069249	0.139358
12	1	0	-1.701812	-1.612264	-1.160268
13	1	0	-0.158746	-0.718769	0.177956
14	6	0	1.954600	0.004747	-0.087364
15	6	0	3.183030	-0.304335	-0.943667
16	1	0	4.028257	0.308893	-0.611334
17	1	0	3.458364	-1.359685	-0.853842
18	1	0	2.982253	-0.081281	-1.996099
19	6	0	2.239667	-0.338898	1.369668
20	1	0	3.084559	0.245790	1.750142
21	1	0	1.368400	-0.117841	1.996954
22	1	0	2.479060	-1.402744	1.470288
23	6	0	1.574506	1.473964	-0.229326
24	1	0	1.367445	1.710460	-1.278879
25	1	0	0.679242	1.696712	0.361741
26	1	0	2.385312	2.123746	0.119371
27	8	0	0.947184	-0.826581	-0.609519

TS3

Standard orientation:

Center Number	Aton Nu	nic mber	Atomic Type	Coordinate X Y	es (Angstroms) ZZZ
1	1	0	3.994737	0.834543	0.015359
2	1	0	2.010582	2.312628	0.010151
3	1	0	-3.031978	-0.358889	-0.007508
4	16	0	-0.950919	1.403143	-0.005244
5	1	0	3.729957	-1.624035	0.007109

	6	8	0	-4.321125	-0.479490	0.011916
	7	1	0	1.460627	-2.643377	-0.006202
	8	6	0	0.623245	0.656691	-0.000937
	9	6	0	1.891119	1.233401	0.006524
	10	6	0	1.589268	-1.564552	-0.002710
	11	6	0	-1.725513	-0.229028	-0.012892
	12	7	0	-0.850433	-1.186796	-0.011871
	13	6	0	0.459913	-0.743044	-0.005404
	14	6	0	2.848112	-0.990195	0.004743
	15	6	0	2.998957	0.400882	0.009405
	16	1	0	-4.537789	-1.412595	0.060385
-						

¹H NMR and ¹³C NMR Spectra

S34

100 90 f1 (ppm) o

S38

S44

<172.3
 <172.3
 <161.6
 <195.2
 <195.7
 <135.6
 <135.6
 <133.9
 <133.9
 <134.9
 <114.8
 <114.9
 <114.9

S51

S52

