Tetrakis(4-aminophenyl)ethene as Efficient and Robust Hole Transport Material for Methyl Ammonium Lead Iodide Perovskite

Lydia Cabau, Ines Garcia-Benito, Agustin Molina-Ontoria, Nazario Martin, Nuria F. Montcada, Anton Vidal-Ferran, and Emilio Palomares

b IMDEA Nanociencia, Cantoblanco, E-28049 Madrid, Spain.
c Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, E-28040 Madrid.
Figure S1. Thermogravimetric Analysis of TAE-1 at scan rate of 10 °C/min

Figure S2. Differential Scanning Calorimetry of TAE-1 with scan rate of 20 °C/min
2. Mobility measurements

Figure S3: Hole only TAE-1 (up), Spiro-OMeTAD (down) devices J-V at space charge limited conditions. The red symbols correspond to the measurement under illumination and the blue symbols correspond to the measurement under dark.
3. Experimental Section

General. All solvents were dried according to standard procedures. Reagents were used as purchased. All air-sensitive reactions were carried out under argon atmosphere. Flash chromatography was performed using silica gel (Merck, Kieselgel 60, 230-240 mesh or Scharlau 60, 230-240 mesh). Analytical thin layer chromatography (TLC) was performed using aluminum coated Merck Kieselgel 60 F254 plates. NMR spectra were recorded on a Bruker Advance 300 (\(^1\)H: 400 MHz; \(^{13}\)C: 101 MHz) spectrometer at 298 K using partially deuterated solvents as internal standards. Coupling constants (J) are denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, d = doublet, t = triplet, m = multiplet. FT-IR spectra were recorded on a Bruker Tensor 27 (ATR device) spectrometer. UV-Vis spectra were recorded in a Varian Cary 50 spectrophotometer. Mass spectra Matrix assisted Laser desorption ionization (coupled to a Time-of-Flight analyzer) experiments (MALDI-TOF) were recorded on a MAT 95 thermo spectrometer and a Bruker REFLEX spectrometer respectively. Cyclic voltammetry (CV) experiments were performed on a Windows®-driven Autolab PGSTAT 30 electrochemical analyzer at room temperature with a three-electrode configuration in CH\(_2\)Cl\(_2\) solutions containing the substrate (typically about 1 mmol dm\(^{-3}\)) and the supporting electrolyte. A platinum (\(\varnothing\ 1\) mm) discs served as the working electrode, a platinum wire (\(\varnothing\ 1\) mm) and a commercial Ag/AgNO\(_3\) electrode being the counter and the reference electrodes, respectively. Both the counter and the reference electrodes were directly immersed in the electrolyte solution. Tetrabutylammonium perchlorate (n-Bu\(_4\)NClO\(_4\)) was employed as the supporting electrolyte in 0.1M. Solutions were stirred and deaerated by bubbling argon for a few minutes prior to each voltammetric measurement. The scan rate was 0.05 V s\(^{-1}\) unless otherwise specified. Thermogramiteric analysis (TGA) was performed using a TA Instruments TGAQ500 with a ramp of 10 °C/min under N\(_2\) form 100 to 1000 °C. DSC was run on a Discovery DSC from TA instruments. Three cycles were recorded under nitrogen, heating (until 400 °C) and cooling (50 °C) at 20 °C/min of scanning rate.

Device Fabrication: A dense blocking layer of TiO\(_2\) (0.65 ml of Ti (IV) isopropoxide, 0.38 ml of Acetylacetone in 5 ml of Ethanol) was spin coated at 3000rpm for 60s onto the FTO. The substrates were calcined at 500°C for 30min and immersed in a TiCl\(_4\) (40mM) solution at 70°C for 30 min. A solution of TiO\(_2\) paste (18 NR-T Dyesol) in ethanol (2:7 w/w) was spin coated at 5000rpm for 30 seconds. After that, substrates were heated at 325°C for 30 min, 375°C for 5 min, 450°C for 15 min and 500°C for 30 min. CH\(_3\)NH\(_3\)I (MAI) was synthesized as reported previously\(^1\). The MAI synthesized and PbCl\(_2\) were mixed in DMF in 3:1 molar ratio. Perovskite precursor was deposited onto the substrate by spin coating at 2000rpm for 45 sec at controlled humidity of 20%. Substrates were heated at 100°C for 1 hour. A solution of HTM (TAE-1, Spiro-OMeTAD) 0.056M, TBP 0.19M and LiTFSI 0.032M in Chlorobenzene was deposited by spin coating at 2000rpm for 60 seconds. Finally 80nm of Au was deposited by thermal
4. Synthetic details and characterization

[Scheme S1. Reagents and conditions: a) 4-idoanisole, Cu powder, K$_2$CO$_3$, 18-crown-6, nitrobenzene, 188 °C, 63 %; b) Zn dust, TiCl$_3$ 1M, THF/CH$_2$Cl$_2$, reflux, 72 %.

4,4′-Bis(N,N-(4,4′-dimethoxydiphenylamino))benzophenone.

A mixture of 4,4′-Diaminobenzophenone (580 mg, 2.73 mmol), 4-Iodoaniline (10.25 g, 43.79 mmol), Cu powder (1 g, 15.73 mmol), K$_2$CO$_3$ (4.53 g, 32.77 mmol), 18-Crown-6 (57 mg, 0.21 mmol) in nitrobenzene (5 mL) were heated at 188 °C for 72 hours. The reaction mixture was extracted with CHCl$_3$ (3 x 100 ml) and washed with saturated solution of NH$_4$Cl. The combined organic extracts were dried over Na$_2$SO$_4$. After removal the solvents under reduced pressure the crude product was purified by flash column chromatography (silica gel, CH$_2$Cl$_2$) to afford as a yellow solid (1.09 g, 1.71 mmol), yield 63%.

1H NMR (400 MHz, d$_6$-Acetone, 298 K) δ 7.60 (d, J = 8.9 Hz, 4H), 7.18 (d, J = 9.0 Hz, 8H), 6.97 (d, J = 9.0 Hz, 8H), 6.78 (d, J = 8.9 Hz, 4H), 3.81 (s, 12H); 13C NMR (101 MHz, CDCl$_3$, 298 K) δ 193.9, 156.9, 152.1, 139.7, 131.7, 129.2, 127.8, 117.2, 115.0, 55.6; FTIR (neat) ν 3071, 2972, 2893, 1519, 1479, 1274, 1170, 826 cm$^{-1}$; HRMS calcd for C$_{64}$H$_{46}$N$_4$O$_8$ [M$^+$], 636.3285; found 636.3292.

Tetra{4-[N,N-(4,4′-dimethoxydiphenylamino)]-phenylethene (TAE-1)

Compound 2 (830 mg, 1.30 mmol) in dry THF (10 ml) was added to a slurry of Zn dust (426 mg, 6.51 mmol) and TiCl$_3$ (1M in THF:CH$_2$Cl$_2$ (1:2), 3.25 mL, 3.25 mmol) and heated at reflux for 4 hours under inert atmosphere. The reaction mixture was filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (silica gel, CH$_2$Cl$_2$) to afford TAE-1 as a yellow solid, yield 72%. The resulting solid was washed several times with acetone. 1H NMR (400 MHz, CDCl$_3$, 298 K) δ 7.01 (d, J = 8.7 Hz, 16H), 6.87 (d, J = 6.7 Hz, 8H), 6.79 (d, J = 8.7 Hz, 16H), 6.69 (d, J = 8.5 Hz, 8H), 3.77 (s, 24H); 13C NMR (101 MHz, CDCl$_3$, 298 K) δ 155.6, 146.6, 141.2, 137.1, 132.3, 126.3, 120.0, 114.7, 55.61; FTIR (neat) ν 3036, 2932, 2833, 1500, 1238, 1034, 826 cm$^{-1}$; HRMS calcd for C$_{82}$H$_{72}$N$_4$O$_8$ [M$^+$], 1240.5345; found 1240.5334.
5. 1H NMR and 13C NMR for all the compounds

Figure S4: 1H NMR (400 MHz, d$_6$-Acetone, 298 K) of compound 2.
Figure S5: 13C NMR (100 MHz, CDCl$_3$, 298 K) of compound 2.

Figure S6: 1H NMR (400 MHz, CDCl$_3$, 298 K) of compound TAE-1
Figure S7: 13C NMR (100 MHz, CDCl$_3$, 298 K) of compound **TAE-1**.

6. Device optimization

Table S1: J-V parameters (averages)

<table>
<thead>
<tr>
<th>HTM</th>
<th>J_{sc} (mA/cm2)</th>
<th>V_{oc} (mV)</th>
<th>FF (%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAE-1</td>
<td>17.16 (17.22)</td>
<td>814 (885)</td>
<td>62.9 (72.2)</td>
<td>8.93 (11.02)</td>
</tr>
<tr>
<td>Spiro-OMeTAD</td>
<td>21.00 (21.40)</td>
<td>864 (885)</td>
<td>64.3 (71.4)</td>
<td>11.71 (13.53)</td>
</tr>
</tbody>
</table>

Averages values. (the number of devices was 5 for both HTM). The best PCEs are provided in parentheses.

7. References