SUPPORTING INFORMATION

Enantio-differentiation of Molecules with Diverse Functionalities by a Single Probe

A. Lakshmipriyaa,c, S. R. Chaudharib and N. Suryaprakasha,c*

aNMR Research Centre, cSolid State and Structural Chemistry Unit, Bangalore-560012, India,
bPresent Address: Centre de RMN a TresHauts Champs, University of Lyon, UMR5280 CNRS / ENS Lyon / UCB Lyon 1, 69100 Villeurbanne, France
Index

S1: Experimental section
S2: 1H-NMR spectrum of (R/S) - 2-chloropropanoic acid
S3: 1H-NMR spectrum of (R/S) – mandelic acid
S4: 1H -NMR spectrum of (R/S) – 4-(trifluoromethyl)mandelic acid
S5: 1H -NMR spectrum of (R/S) – N-methyl-1-(1-naphthyl)ethyamine
S6: 1H -NMR spectrum of (R/S) - 4-phenyl-2-oxazolidinone
S7: 1H -NMR spectrum of (R/S) – 4-phenyl-1,3-oxazolidine-2-thione
S8: 1H-NMR spectrum of (R/S) - 1-(4-Methylphenyl) ethylamine
S9: 1H-NMR spectrum of (R/S) -2-methylpiperidine
S10: 1H -NMR spectrum of (R/S) – N,N dimethyl 1-phenyl ethyamine at 298K
S11: 1H -NMR spectrum of (R/S) – N,N dimethyl 1-phenyl ethyamine at 232K
S12: 1H -NMR spectrum of (R/S) - 2-amino-1-butanol
S13: 1H -NMR spectrum of (R/S) – 1-chloro 2-propanol
S14: 1H -NMR spectrum of (R/S) – mandelonitrile
S15: 1H -NMR spectrum of (R/S) – 1-Phenylethane-1, 2-diol+DMAP
S16: 1H -NMR spectrum of (R/S) – epichlorohydrin 233K
S17: 31P-NMR spectrum of (R/S) -1,1′-binaphthyl-2,2′-diyl hydrogenphosphate + DMAP
S18: 1H -NMR spectrum of (R/S) – propylene carbonate
S19: 1H -NMR spectrum of (R/S) – methyl phenyl sulfoxide
S20: 1H -NMR spectrum of (R/S) – bromosuccinic acid
S21: 1H -NMR spectrum of (R/S) – 2-methyl piperazine
S22: 1H -NMR spectrum of (R/S) –methyl-DL- mandelate
S23: 1H -NMR spectrum of isopropyl alcohol
S24: 1H -NMR spectrum of 2-fluoro benzyl amine
S25: 1H -NMR spectrum of 2-fluoro benzyl amine 233K
S26: 1H -NMR spectrum of isopropyl amine
S27: 1H -NMR spectrum of Isopropyl amine at 233K
S28: 1H -NMR spectrum of isobutyric acid
S29: 1H -NMR spectrum of isobutyric acid at 233K
S30: 1H -NMR spectrum of 2-amino-2-methyl-1-propanol
S31: 19F -NMR spectrum of (R/S) – 4-(trifluoromethyl)mandelic acid
S32: 13C -NMR spectrum of (R/S) – mandelonitrile
S33: Table of 1H-NMR spectra pertaining to a specific proton of different chiral analytes showing the discrimination, along with the chemical structure
S34: 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in CDCl$_3$
S35: 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in C$_6$D$_6$
S36: 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in toluene-d_8(C$_7$D$_8$)
S37: 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in methylenechloride-d_2(CD$_2$Cl$_2$)
S38: 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in acetonitrile-d_3(C$_2$D$_3$N)
S39: 400MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in 10% DMSO in CDCl$_3$
S40: 400MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in 20% DMSO in CDCl$_3$
S41: Chemical shift difference for the selected proton of (R/S)-2-methylpiperidine with (S)-CBHA-DPA (1:2) in different solvents
S42: Comparing the present CA with other CAs in the literature
S43: The experimentally determined and laboratory prepared scalemic ratios of (R/S) – mandelic acid and ($1S,2S$) -N,N'-Dihydroxy-N,N'-bis (diphenylacetyl)-1,2-cyclohexanediamine. Alpha proton was chossen to measure ee.
S44: 1H-NMR spectra of selected regions of different scalemic ratios of R–mandelic acid and S-mandelic acid in CDCl$_3$
S45: 1H-NMR spectrum of (S)-CBHA-DPA in CDCl$_3$
S46: Pure shift NMR experimental details
Experimental section

The commercially available (1S,2S) -N,N'-Dihydroxy-N,N'-bis (diphenylacetyl)-1,2- cyclohexanediamine ((S)-CBHA-DPA), the molecules 1-24, and chloroform-d were purchased and used as received. The 1H and 13C NMR spectra were recorded on 400MHz spectrometer and referenced with respect to TMS. The pure shift NMR spectra were recorded on 500 MHz spectrometer.
400MHz 1H-NMR spectrum of (R/S)-2-chloropropanoic acid and (S)-CBHA-DPA in CDCl$_3$
400MHz 1H-NMR spectrum of (R/S) - Mandelic acid and (S)-CBHA-DPA in CDCl$_3$.

![NMR spectrum diagram]

S3
400MHz 1H-NMR spectrum of (R/S) - 4-(Trifluoromethyl) mandelic acid and (S)-CBHA-DPA in CDCl$_3$
400MHz 1H-NMR spectrum of (R/S)-N-Methyl-1-(1-naphthyl)ethylamine and (S)-CBHA-DPA in CDCl$_3$.
400MHz 1H-NMR spectrum of (R/S)-4-phenyloxazolidin-2-one and (S)-CBHA-DPA in CDCl$_3$
400MHz 1H-NMR spectrum of (R/S)-4-phenyloxazolidine-2-thione and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H-NMR spectrum of (R/S)-1-(p-tolyl)ethanamine and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA in CDCl$_3$
^{1}H-NMR spectrum of (R/S)-N,N dimethyl 1-phenyl ethylamine and (S)-CBHA-DPA in CDCl$_3$ at 298K
400 MHz 1H-NMR spectrum of (R/S) – N,N dimethyl 1-phenyl ethylamine and (S)-CBHA-DPA in CDCl$_3$ at 233K
400 MHz 1H -NMR spectrum of (R/S)-2-Amino-1-butanol and (S)-CBHA-DPA in CDCl$_3$.

S12
400 MHz 1H-NMR spectrum of (R/S)-1-chloro 2-propanol and (S)-CBHA-DPA in CDCl$_3$ at 233K
400 MHz 1H -NMR spectrum of (R/S)–Mandelonitrile and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H-NMR spectra of (R/S)-1-Phenylethane-1, 2-diol, DMAP and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H -NMR spectrum of (R/S) –Epichlorohydrin and (S)-CBHA-DPA in CDCl$_3$ 233K
400 MHz 1H -NMR spectra of (R/S)-1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate, DMAP and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H -NMR spectrum of (R/S) – Propylene carbonate and (S)-CBHA-DPA in CDCl$_3$
400MHz 1H-NMR spectrum of (R/S) - Methyl phenyl sulfoxide and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H-NMR spectrum of (R/S) - 2-bromosuccinic acid and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H-NMR spectrum of (R/S) - 2-methyl piperazine and (S)-CBHA-DPA in CDCl$_3$
^{1}H-NMR spectrum of (R/S) – Methyl DL-mandelate and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H-NMR spectrum of (R/S) – Isopropyl alcohol and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H -NMR spectrum of (R/S) – 2-fluoro benzyl amine and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H-NMR spectrum of (R/S) – 2-fluoro benzyl amine and (S)-CBHA-DPA in CDCl$_3$ at 233K.
$400 \text{ MHz } ^1\text{H}{\text{-}}\text{NMR spectrum of (R/S) – Isopropyl amine and (S)-CBHA-DPA in CDCl}_3$
400 MHz 1H-NMR spectrum of (R/S) – Isopropyl amine and (S)-CBHA-DPA in CDCl$_3$ at 233K

\[
\text{NH}_2
\]
400 MHz 1H-NMR spectrum of (R/S) - Isobutyric acid and (S)-CBHA-DPA in CDCl$_3$
400 MHz 1H -NMR spectrum of (R/S) – Isobutyric acid and (S)-CBHA-DPA in CDCl$_3$ at 233K
400 MHz 1H-NMR spectrum of (R/S) – 2-Amino-2-methyl-1-propanol and (S)-CBHA-DPA in CDCl$_3$
19F-NMR spectrum of (R/S) – 4-(Trifluoromethyl)mandelic acid and (S)-CBHA-DPA in CDCl$_3$
13C–NMR spectrum of (R/S)–Mandelonitrile and (S)-CBHA-DPA in CDCl$_3$

Table: 1H-NMR spectrum pertaining to a specific proton of different chiral analytes showing discrimination and their chemical structure
<table>
<thead>
<tr>
<th>Entry</th>
<th>Guest</th>
<th>Spectrum</th>
<th>Entry</th>
<th>Guest</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
400MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in CDCl$_3$
500MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in C$_6$D$_6$
500MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in toluene-d_8(C$_7$D$_8$)
500MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in methylenechloride-d_2(CD$_2$Cl$_2$)
500MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in acetonitrile-\textsubscript{d$_3$} (C_2D_3N)
400MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in 10% DMSO in CDCl$_3$
400MHz 1H-NMR spectrum of (R/S)-2-methylpiperidine and (S)-CBHA-DPA (1:2) in 20% DMSO in CDCl$_3$
Chemical shift difference for the selected proton of (R/S)-2-methylpiperidine with (S)-CBHA-DPA (1:2) in different solvents

[Chemical structure diagram]

<table>
<thead>
<tr>
<th>S.No</th>
<th>Solvent</th>
<th>$\Delta \delta^{RS}$ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CDCl$_3$</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>C$_6$D$_6$</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>TOLUENE-d$_8$</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>CD$_2$Cl$_2$</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>CD$_3$CN</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>10% DMSO in CDCl$_3$</td>
<td>0.01</td>
</tr>
<tr>
<td>7</td>
<td>20% DMSO in CDCl$_3$</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Comparing the present CA with other CAs in the literature

<table>
<thead>
<tr>
<th>Structure</th>
<th>Present Method</th>
<th>Literature Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>![CN]</td>
<td>0.3</td>
<td>Present method</td>
</tr>
<tr>
<td>![NH₂]</td>
<td>0.07</td>
<td>Present method</td>
</tr>
<tr>
<td>![COOH]</td>
<td>0.01</td>
<td>Present method</td>
</tr>
<tr>
<td>![Ph]</td>
<td>0.02</td>
<td>L. S. Moon, R. S. Jolly, Y. Kasetti and P. V Bharatam, Chem. Commun. (Camb), 2009, 1067</td>
</tr>
<tr>
<td>![Cl]</td>
<td>0.05</td>
<td>Present method</td>
</tr>
<tr>
<td>![Cl]</td>
<td>0.024</td>
<td>L. S. Moon, R. S. Jolly, Y. Kasetti and P. V Bharatam, Chem. Commun. (Camb), 2009, 1067</td>
</tr>
<tr>
<td>![O]</td>
<td>0.01</td>
<td>Present method</td>
</tr>
<tr>
<td>![Cl]</td>
<td>0.15</td>
<td>Present method</td>
</tr>
</tbody>
</table>
| Structure | 1) 0.03 | 2) 0.02 | 1) Present method
|-----------|---------|---------|--|
| Structure | 1) 0.06 | 2) 0.05 | 1) Present method
| Structure | 1) a 0.04, b 0.09 | 2) a 0.01, b 0.05 | 1) Present method
| Structure | 19F | a 1) 0.03, 2) 0.033, 3) 0.03 | 1) Present method
The experimentally determined and laboratory prepared scalemicratios of \((R/S)\) – Mandelic acid and \((S)\)-CBHA-DPA. Alpha proton was chosen to measure \(ee\).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Integration (I_R:I_S)</th>
<th>Gravimetrically prepared excess of (R) enantiomer</th>
<th>(ee% = \frac{I_R-I_S}{I_R+I_S} \times 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000:0.043</td>
<td>92</td>
<td>91.7</td>
</tr>
<tr>
<td>2</td>
<td>1.000:0.056</td>
<td>90</td>
<td>89.9</td>
</tr>
<tr>
<td>3</td>
<td>1.000:9.048</td>
<td>80</td>
<td>80.0</td>
</tr>
<tr>
<td>4</td>
<td>1.000:0.731</td>
<td>15</td>
<td>15.3</td>
</tr>
<tr>
<td>5</td>
<td>1.000:2.383</td>
<td>-40</td>
<td>-40.2</td>
</tr>
<tr>
<td>6</td>
<td>1.000:1.853</td>
<td>-30</td>
<td>-29.9</td>
</tr>
<tr>
<td>7</td>
<td>1.000:15.533</td>
<td>-90</td>
<td>-89.8</td>
</tr>
<tr>
<td>8</td>
<td>1.000:0.251</td>
<td>60</td>
<td>59.8</td>
</tr>
</tbody>
</table>
400 MHz 1H-NMR spectra of selected regions of different scalemic ratios of R-mandelic acid and S-mandelic acid in CDCl$_3$.
500MHz 1H-NMR spectrum of (S)-CBHA-DPA in CDCl$_3$
Pure shift NMR experimental details:

Pure shift NMR experiment: The pure shift spectroscopy suppresses the effects of homonuclear coupling, allowing 1H spectra to be produced that contain chemical shifts only, with no multiplet structure, a major improvement in the resolution. The pure shift experiment was performed on 500 MHz Bruker spectrometer by using “push1dzs” pulse program which is available in the public domain of the Manchester NMR methodology group website (http://nmr.chemistry.manchester.ac.uk). This pulse program produces a pseudo 2D experiment where the delay between excitation and detection is incremented stepwise. The refocusing step was carried out using rsnob shaped pulse combined with slice selection gradient strength of 0.7 to 0.9 G cm$^{-1}$. Each of the 32 increments in t_1 was acquired with 8 scans with a recycle delay of 2 s between two successive fids. The total time domain points in t_2 dimension are 2K. Data was processed with the AU program named pshift present at the same website (http://nmr.chemistry.manchester.ac.uk). The AU program converts the raw data to pure shift FID. The spectra were recorded in CDCl3 at 298K.