Supporting Information

Discovery of neat silica gel as catalyst: an example of S→O acetyl migration reaction†

Yu Jin,‡a Jiachen Li,‡a Li Peng,‡a Chao Gao* a

a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China. Tel: +86-571-87952088; E-mail: chaogao@zju.edu.cn
†This work is supported by the National Natural Science Foundation of China (No. 21325417, No. 51173162).
Table of Content

S1. Experimental
 S1.1 Chemicals
 S1.2 Measurements

S2. General procedure for the synthesis of thiol compounds
 S2.1 General procedure to generate latent sulfur intermediates b from thiol-epoxy reactions between epoxy compounds a and thioacetic acid
 S2.2 General procedure to transform b into thiol compounds c from S → O acetyl migration reactions

S3. Characteristics of the silica gel fixed-bed catalyst
 S3.1 FT-IR spectra data of the silica gel
 S3.2 XPS spectra data of the silica gel
 S3.3 BET profile of the silica gel
 S3.4 SEM images of the silica gel

S4. Characteristics of the latent sulfur intermediates and its counterpart thiol compounds by NMR analyses

S5. 1H and 13C NMR figures of the latent sulfur intermediates and its counterpart thiol compounds

S6. Kinetics of the reaction from 7b to 7c catalyzed by silica gel fixed-bed

S7. The reusability of silica gel fixed-bed in catalyzing the S→O acetyl migration reaction from 7b to 7c

S8. Catalytic property comparison of silica gels with different specifications
S1. Experimental

S1.1 Chemicals:
Silica gel 70-230 mesh and 230-400 mesh were purchased from J&K Scientific Co., 200-300 mesh from Aladdin Industrial Co., 100-200 mesh, 200-300 mesh and 300-400 mesh from Sinopharm Chemical Reagent Co., Ltd, and 300-400 mesh from Qingdao Haiyang Chemical Co., Ltd. Propylene oxide (99%), 1,2-epoxybutane (99%), tertbutyl glycidyl ether (99%), butyl glycidyl ether (98%), glycidyl phenyl ether (99%), glycidyl benzyl ether (98%), epichlorohydrin (99%), epibromohydrin (97%), glycidol (96%), glycidyl methacrylate (97%), allyl glycidyl ether (99%) and thioacetic acid (97.5%) were purchased from J&K Scientific Co., propargylglycidyl ether (94%) was obtained from Da Tang Pharmacy Co. All the reagents above were used as received.

S1.2 Measurements:
Fourier transform infrared (FT-IR) spectra were recorded on a PE Paragon 1000 spectrometer (film or KBr disk). XPS was performed using a PHI 5000C ESCA system operated at 14.0KV. BET measurement was performed by nitrogen adsorption on a Quantachrome NOVA 2000 surface analyzer. SEM image was taken on a Hitachi S4800 field-emission SEM system. 'H and 13C nuclear magnetic resonance (NMR) spectroscopy were carried out on a Varian Mercury plus 400 NMR spectrometer with CDCl3 as the solvent at 20 °C.
S2. General procedure for the synthesis of thiol compounds

S2.1 General procedure for generating latent sulfur intermediates \(b \) from thiol-epoxy reactions between epoxy compounds \(a \) and thioacetic acid

The reaction of thioacetic acid with epichlorohydrin was chosen as a model reaction. In a specific experiment, epichlorohydrin (5.0g, 54.0mmol), deionized water (30mL), and thioacetic acid (4.73g, 62.2mmol) were added into a round-bottomed flask (50mL) equipped with a magnet. After vigorous stirring for 2d at room temperature in nitrogen atmosphere, the oily product was extracted by 250mL ethyl acetate, washed with saturated NaHCO\(_3\) aqueous solution and deionized water, then dried by anhydrous MgSO\(_4\) for half an hour. After filtration, all volatiles were removed by the reduced pressure distillation and vacuum drying, affording the latent sulfur intermediates in nearly quantitative yield.

S2.2 General procedure to transform \(b \) into thiol compounds \(c \) from \(S\rightarrow O \) acetyl migration reactions

The prepared product (1.7g) was dissolved in ethyl acetate, then the solution was added slowly into a silica gel chromatography column. After reacting at room temperature for 9-14h, the oily product was eluted out by ethyl acetate and hexane (1:6), and evaporated by a rotary evaporation to obtain a pure corresponding thiol compound.
S3. Characteristics of the silica gel fixed-bed catalyst

S3.1 FT-IR spectra data of the silica gel

![FT-IR Spectra of the silica gel](image1)

Figure S1. FT-IR Spectra of the silica gel

S3.2 XPS spectra data of the silica gel

![XPS Spectra of the silica gel](image2)

Figure S2. XPS Spectra of the silica gel
S3.3 BET profile of the silica gel

![BET profile graph]

Figure S3. BET profile of the silica gel (300-400 mesh) fixed-bed catalyst

S3.4 SEM images of the silica gel

![SEM images]

Figure S4. SEM images of Silica gel with 300-400 meshes (A, B) and its porous surface (C, D).
S4. 1H and 13C NMR data of the intermediates and the corresponding thiol compounds

1b.

1H NMR (400 MHz, CDCl$_3$, 303 K): δ (ppm) 1.25-1.22 (d, 3H), 2.0-2.3 (m, H), 3.98-3.88 (m, H), 3.11-2.85 (m, 2H), 2.36 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 22.42, 67.29, 37.92, 196.56, 30.42.

1c.

1H NMR (400 MHz, 303 K): δ (ppm) 1.29-1.27 (d, 3H), 4.93-4.87 (m, H), 2.70-2.57 (m, 2H), 1.41-1.37 (t, H), 2.03 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 19.16, 72.18, 30.26, 171.03, 21.80.

2b.

1H NMR (400 MHz, 303 K): δ (ppm) 0.99-0.95 (t, 3H), 1.61-1.48 (m, 2H), 3.71-3.62 (m, H), 3.16-2.87 (m, 2H), 2.37 (s, 3H), 2.34 (s, H).

13C NMR (400 MHz, 303 K): δ (ppm) 9.86, 29.08, 72.22, 35.85, 196.46, 30.50

2c.

1H NMR (400 MHz, 303 K): δ (ppm) 0.89-0.93 (t, 3H), 1.37-1.42 (t, H), 1.62-1.77 (d, H), 2.09 (s, 3H), 2.64-2.74 (m, 2H), 4.80-4.86 (m, H).

13C NMR (400 MHz, 303 K): δ (ppm) 170.49, 76.00, 27.48, 25.32, 21.13, 9.59.
1H NMR (400 MHz, 303 K): δ (ppm) 1.19 (s, 9H), 3.33-3.29 (m, 2H), 3.43-3.40 (m, H), 3.14-3.09 (m, 2H), 2.36 (s, 3H), 3.03-2.94 (m, H).

13C NMR (400 MHz, 303 K): δ (ppm) 27.45, 30.47, 69.84, 73.33, 64.25, 196.08, 32.44.

3c.

1H NMR (400 MHz, 303 K): δ (ppm) 1.18 (s, 9H), 3.57-3.47 (m, 2H), 4.95-4.89 (m, H), 2.88-2.69 (m, 2H), 1.45-1.40 (t, H), 2.08 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 21.02, 25.00, 74.04, 73.24, 60.76, 170.36, 27.41.

4b.

1H NMR (400 MHz, 303 K): δ (ppm) 0.97-0.88 (t, 3H), 1.42-1.33 (m, 2H), 1.61-1.52 (m, 2H), 3.51-3.36 (m, 2H), 3.47 (s, 2H), 3.94-3.85 (d, H), 3.15-2.97 (m, 2H), 2.88-2.83 (s, 3H), 2.39-2.33 (s, H).

13C NMR (400 MHz, 303 K): δ (ppm) 13.65, 19.26, 31.60, 69.47, 73.06, 71.21, 32.36, 196.07, 30.52.

4c.

1H NMR (400 MHz, 303 K): δ (ppm) 0.97-0.88 (t, 3H), 1.40-1.30 (m, 2H), 1.59-1.50 (m, 2H), 3.52-3.39 (m, 2H), 3.67-3.55 (m, 2H), 5.02-4.95 (m, H), 2.87-2.69 (m, 2H), 1.47-1.40 (t, H), 2.14-2.07 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 13.75, 21.02, 31.55, 69.59, 71.39, 73.64, 24.88, 170.32, 19.23.

5b.

S-8
1H NMR (400 MHz, 303 K): δ (ppm) 7.28-7.24 (t, H), 6.96-6.93 (t, 2H), 6.89-6.87 (d, 2H), 4.00-3.90 (m, 2H), 4.14-4.07 (m, H), 3.24-3.08 (m, 2H), 2.34 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 121.31, 129.57, 114.61, 158.41, 70.37, 69.39, 32.50, 196.4, 30.57.

5c.

1H NMR (400 MHz, 303 K): δ (ppm) 6.98-6.95 (t, H), 7.30-7.25 (m, 2H), 6.92-6.90 (d, 2H), 4.22-4.10 (m, 2H), 5.20-5.15 (m, H), 2.97-2.81 (m, 2H), 1.50-1.46 (t, H), 2.10 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 121.33, 129.57, 114.63, 158.40, 66.61, 72.93, 24.81, 170.39, 21.04.

6b.

1H NMR (400 MHz, 303 K): δ (ppm) 2.34 (s, 3H), 3.15-2.97 (m, 2H), 3.96-3.89 (d, H), 3.56-3.42 (m, 2H), 4.54 (s, 2H), 7.38-7.26 (m, 5H), 2.78-2.73 (d, H).

13C NMR (400 MHz, 303 K): δ (ppm) 30.54, 196.08, 32.66, 69.78, 73.36, 72.63, 137.62, 127.87, 128.50, 127.80.

6c.

1H NMR (400 MHz, 303 K): δ (ppm) 1.41-1.35 (t, H), 2.88-2.70 (m, 2H), 4.63-4.49 (m, H), 3.72-3.59 (m, 2H), 5.05-4.97 (m, 2H), 7.38-7.26 (m, 5H), 2.09 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 32.66, 73.41, 69.82, 72.67, 137.62, 127.89, 128.48, 127.80, 196.08, 30.54.

7b.
1H NMR (400 MHz, 303 K): δ (ppm) 3.67-3.55 (m, 2H), 4.02-3.93 (m, H), 3.20-3.06 (m, 2H), 2.38 (s, 3H), 2.88-2.87 (d, H).

13C NMR (400 MHz, 303 K): δ (ppm) 32.99, 70.49, 48.00, 196.42, 30.49.

7c. Cl

1H NMR (400 MHz, 303 K): δ (ppm) 3.79-3.77 (d, 2H), 5.07-5.02(m, H), 2.87-2.82 (m, 2H), 1.49-1.45 (t, H), 2.12(s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 77.44, 73.32, 43.47, 169.98, 25.14.

8b.

1H NMR (400 MHz, 303 K): δ (ppm) 3.55-3.44 (m, 2H), 3.96(s, H), 3.20-3.16 (m, 2H), 2.38 (s, 3H), 3.13-3.08 (m, H).

13C NMR (400 MHz, 303 K): δ (ppm) 33.86, 70.17, 37.44, 196.31, 30.55.

8c.

1H NMR (400 MHz, 303 K): δ (ppm) 3.65-3.64 (d, 2H), 5.03-4.98 (m, H), 2.87-2.83 (m, 2H), 1.51-1.46 (t, H), 2.12 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 72.87, 31.95, 26.25, 170.02, 20.89.

9b.

1H NMR (400 MHz, 303 K): δ (ppm) 3.67-3.56 (m, 2H), 4.02-3.95 (m, H), 3.20-3.04 (m, 2H), 2.38 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 48.06, 70.55, 32.99, 196.31, 30.55.
1H NMR (400 MHz, 303 K): δ (ppm) 3.70-3.78 (d, 2H), 5.07-5.02 (m, H), 2.48-2.52 (m, 2H), 1.45-1.40 (t, H), 2.11 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 126.30, 135.80, 17.25, 165.77, 62.38, 71.32, 23.76, 169.12, 19.90.

1H NMR (400 MHz, 303 K): δ (ppm) 3.70-3.78 (d, 2H), 5.07-5.02 (m, H), 2.48-2.52 (m, 2H), 1.45-1.40 (t, H), 2.11 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 126.30, 135.80, 17.25, 165.77, 62.38, 71.32, 23.76, 169.12, 19.90.

1H NMR (400 MHz, 303 K): δ (ppm) 5.30-5.18 (m, 2H), 5.94-5.85 (m, H), 4.02-4.01 (d, 2H), 3.52-3.38 (m, 2H), 3.95-3.88 (m, H), 3.15-2.96 (m, 2H), 2.36 (s, 3H), 2.68-2.67 (d, H).

13C NMR (400 MHz, 303 K): δ (ppm) 117.28, 134.28, 72.24, 72.66, 69.54, 32.45, 196.08, 30.45.
11c.

1H NMR (400 MHz, 303 K): δ (ppm) 5.29-5.18 (m, 2H), 5.93-5.83 (m, H), 4.06-3.96 (m, 2H), 3.68-3.58 (m, 2H), 5.02-4.96 (m, H), 2.86-2.68 (m, 2H), 1.48-1.43 (t, H), 2.09 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 117.29, 134.24, 68.81, 72.19, 73.49, 24.78, 170.27, 21.01.

12b.

1H NMR (400 MHz, 303 K): δ (ppm) 2.50-2.48 (m, H), 4.20-4.19 (d, 2H), 3.53-3.59 (m, 2H), 3.97.3.89 (m, H), 3.15-2.98 (m, 2H), 2.37 (s, 3H), 2.94-2.88 (m, H).

13C NMR (400 MHz, 303 K): δ (ppm) 117.42, 134.32, 69.56, 72.68, 72.26, 32.43, 196.17, 30.50.

12c.

1H NMR (400 MHz, 303 K): δ (ppm) 2.50-2.49 (t, H), 4.20-4.18 (t, 2H), 3.80-3.69 (m, 2H), 5.03-4.98 (m, H), 2.86-2.70 (m, 2H), 1.51-1.47 (t, H), 2.10 (s, 3H).

13C NMR (400 MHz, 303 K): δ (ppm) 73.28, 75.09, 58.47, 68.46, 79.21, 24.61, 170.31, 21.01.
S5. 1H and 13C NMR figures of the latent sulfur intermediates and its counterpart thiol compounds

Figure S5. 1H NMR and 13C NMR spectra of 1b.
Figure S6. 1H NMR and 13C NMR spectra of 1c.
Figure S7. 1H NMR and 13C NMR spectra of 2b.
Figure S8. 1H NMR and 13C NMR spectra of 2c.
Figure S9. 1H NMR and 13C NMR spectra of 3b.
Figure S10. 1H NMR and 13C NMR spectra of 3c.
Figure S11. 1H NMR and 13C NMR spectra of 4b.
Figure S12. 1H NMR and 13C NMR spectra of 4c.
Figure S13. 1H NMR and 13C NMR spectra of 5b.
Figure S14. 1H NMR and 13C NMR spectra of 5c.
Figure S15. 1H NMR and 13C NMR spectra of 6b.
Figure S16. 1H NMR and 13C NMR spectra of 6c.
Figure S17. 1H NMR and 13C NMR spectra of 7b.
Figure S18. 1H NMR and 13C NMR spectra of 7c.
Figure S19. 1H NMR and 13C NMR spectra of 8b.
Figure S20. 1H NMR and 13C NMR spectra of 8c.
Figure S21. 1H NMR and 13C NMR spectra of 9b.
Figure S22. 1H NMR and 13C NMR spectra of 9c.
Figure S23. 1H NMR and 13C NMR spectra of 10b.
Figure S24. 1H NMR and 13C NMR spectra of 10c.
Figure S25. 1H NMR and 13C NMR spectra of 11b.
Figure S26. 1H NMR and 13C NMR spectra of 11c.
Figure S27. 1H NMR and 13C NMR spectra of 12b.
Figure S28. 1H NMR and 13C NMR spectra of 12c.
Figure S29. 1H NMR (A) spectra in CDCl$_3$, its kinetics (B) and conversion (C) from 7b to 7c.
S7. The reusability of silica gel fixed-bed in catalyzing the S→O acetyl migration reaction from 7b to 7c

Figure S30. Comparison of the silica gel (300-400 mesh) before (1) and after (2) being reused for 100 times by (A) XPS spectra, (B) IR spectra.
Table S1. The reusability of silica gel (300-400 mesh) in catalyzing the acetyl migration reaction from 7b to 7c \([A]\).

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Conv ([B]), /%</th>
<th>Yield ([C]), /%</th>
<th>Time/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>97</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>98</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>99</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>96</td>
<td>13</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>98</td>
<td>13</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>99</td>
<td>13</td>
</tr>
<tr>
<td>70</td>
<td>100</td>
<td>94</td>
<td>13</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
<td>96</td>
<td>13</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>98</td>
<td>13</td>
</tr>
</tbody>
</table>

\([A]\) Unless otherwise noted, all reactions were performed in room temperature with ethyl acetate as the solvent. \([B]\) Conversion was calculated by \(^1\text{H}\) NMR spectroscopy. \([C]\) The purity was determined by NMR.
S8. Catalytic property comparison of silica gels with different specifications

Table S2. The catalytic property comparison of different silica gel catalyzing the acetyl migration reaction from 7b to 7c.[A]

<table>
<thead>
<tr>
<th>No.</th>
<th>Source</th>
<th>Mesh</th>
<th>Time /h</th>
<th>Conv [B], %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J&K Scientific Co.</td>
<td>70-230</td>
<td>13</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>J&K Scientific Co.</td>
<td>230-400</td>
<td>13</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>Aladdin Industrial Co.</td>
<td>200-300</td>
<td>13</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Qingdao Haiyang Chemical Co., Ltd.</td>
<td>300-400</td>
<td>13</td>
<td>100</td>
</tr>
</tbody>
</table>

[A] Unless otherwise noted, all reactions were performed in room temperature with ethyl acetate as the solvent. [B] Conversion was calculated by 1H NMR spectroscopy.