Supplementary Information

Selective remote C–H sulfonylation of aminooquinolines with arylsulfonyl chlorides via copper catalysis

Hong-Wen Liang,§ Kun Jiang,§ Wei Ding, Yi Yuan, Li Shuai, Ying-Chun Chen, and Ye Wei*

College of Pharmacy, Third Military Medical University, Chongqing 400038, China

§ These authors contributed equally to this work.

Table of Contents

Materials and Methods .. 2
Preparation of Substrates ... 3
A General Procedure .. 4
Synthetic Transformations of 3aa ... 11
1H and 13C NMR Spectra .. 12
Materials and Methods

General. All reactions dealing with air- and moisture-sensitive compounds were carried out in dry reaction vessels under a nitrogen atmosphere. 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded on Agilent 600 MHz NMR spectrometer. 1H and 13C NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm) and CHCl$_3$ (77.0 ppm), respectively. ESI high-resolution mass spectra (HRMS) were recorded on a Waters SYNPAT G2. Melting points were determined using a capillary melting point apparatus and are uncorrected.

Materials. Unless otherwise noted, materials were purchased from commercial suppliers and were used as received. Anhydrous toluene was distilled over CaH$_2$ and stored under Ar.
Preparation of Substrates

All carboxamides were synthesized by the reactions between the corresponding acyl chlorides or acids and aminoquinolines according to the literature procedures.1-3 1H and 13C NMR spectra data for the carboxamides showed good agreement with the literature data.

A General Procedure

For reactions carried with arylsulfonyl chlorides: A 10 mL of Schlenk tube equipped with a stirrer bar was charged with carboxamide (0.2 mmol), arylsulfonyl (3 equiv), Na₂CO₃ (2 equiv) and CuCl (10 mol %) under Ar. Then, the Schlenk tube was quickly evacuated and refilled with Ar for three times, followed by addition of toluene (2 mL). The Schlenk tube was sealed with a Teflon screwcap and the reaction mixture was stirred at 110 °C for 24 h. Upon cooling to room temperature, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with ethyl acetate (20 mL). Subsequently, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired products.

N-(5-Tosylquinolin-8-yl)benzamide (3aa): Yellow solid (86% yield, eluent = petroleum ether/EtOAc (3:1)); Mp = 180–181 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.97 (s, 1H), 9.08 (dd, J = 8.7, 1.3 Hz, 1H), 9.04 (d, J = 8.4 Hz, 1H), 8.88 (dd, J = 4.1, 1.3 Hz, 1H), 8.55 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 7.2 Hz, 2H), 7.84 (d, J = 8.3 Hz, 2H), 7.63–7.54 (m, 4H), 7.27 (d, J = 8.6 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 165.7, 148.8, 141.9, 139.0, 138.9, 136.7, 133.6, 132.0, 129.9, 129.7, 128.9, 127.4, 127.3, 124.3, 114.2, 21.5; HRMS (ESI): Calcd for C₂₃H₁₈N₂O₃S [M + H]⁺ 403.1116, found 403.1114.

N-(5-(Phenylsulfonyl)quinolin-8-yl)benzamide (3ab): White solid (86% yield, eluent = petroleum ether/EtOAc (3:1)); Mp = 178–179 °C; ¹H NMR (600 MHz, CDCl₃): δ 10.97 (s, 1H), 9.06 (dd, J = 14.5, 5.0 Hz, 2H), 8.87 (dd, J = 4.1, 1.3 Hz, 1H), 8.58 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 7.4 Hz, 2H), 7.96 (d, J = 7.5 Hz, 2H), 7.62–7.51 (m, 5H), 7.48 (t, J = 7.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 165.7, 148.8, 141.9, 139.0, 138.4, 134.3, 133.4, 133.1, 132.4, 132.3, 129.3, 128.9, 128.9, 127.4, 127.2, 124.3, 123.4, 114.2; HRMS (ESI): Calcd for C₂₂H₁₆N₂O₃S [M + H]⁺ 389.0960, found 389.0959.

N-(5-(Naphthalen-2-ylsulfonyl)quinolin-8-yl)benzamide (3ac): White solid (68% yield, eluent
= petroleum ether/EtOAc (7:1); Mp = 168–169 °C; 1H NMR (600 MHz, CDCl$_3$): δ 10.97 (s, 1H), 9.14 (d, J = 8.7, 1.2 Hz, 1H), 9.07 (d, J = 8.4 Hz, 1H), 8.84 (dd, J = 4.1, 1.2 Hz, 1H), 8.65 (d, J = 8.4 Hz, 1H), 8.62 (s, 1H), 8.06 (d, J = 7.4 Hz, 2H), 7.98 (d, J = 7.7 Hz, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.85–7.78 (m, 2H), 7.63–7.53 (m, 6H); 13C NMR (150 MHz, CDCl$_3$): δ 165.7, 148.7, 140.1, 138.8, 138.4, 134.9, 133.4, 132.4, 132.1, 129.6, 129.3, 129.2, 128.9, 128.8, 128.4, 127.9, 127.7, 127.4, 124.3, 123.4, 122.3, 114.2; HRMS (ESI): Calcd for C$_{26}$H$_{18}$N$_2$O$_3$S [M + Na]$^+$ 461.0936, found 461.0942.

N-((5-((4-Methoxyphenyl)sulfonyl)quinolin-8-yl)benzamide (3ad): white solid (69% yield, eluent = petroleum ether/EtOAc (6:1)); Mp = 210–211 °C; 1H NMR (600 MHz, CDCl$_3$): δ 10.97 (s, 1H), 9.11–9.07 (m, 1H), 9.02 (d, J = 8.4 Hz, 1H), 8.89–8.83 (m, 1H), 8.52 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 9.0 Hz, 2H), 7.66–7.51 (m, 4H), 6.94 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 165.7, 163.2, 148.7, 139.7, 138.5, 133.5, 133.3, 132.4, 131.7, 129.7, 129.5, 128.9, 127.4, 124.1, 123.3, 114.5, 114.2, 55.6; HRMS (ESI): Calcd for C$_{23}$H$_{18}$N$_2$O$_4$S [M + H]$^+$ 419.1066, found 419.1069.

N-((5-((4-Chlorophenyl)sulfonyl)quinolin-8-yl)benzamide (3ae): White solid (89% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 205–206 °C; 1H NMR (600 MHz, CDCl$_3$): δ 10.98 (s, 1H), 9.05 (dd, J = 13.7, 8.6 Hz, 2H), 8.90 (d, J = 3.5 Hz, 1H), 8.57 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 7.5 Hz, 2H), 7.89 (d, J = 8.4 Hz, 2H), 7.64–7.55 (m, 4H), 7.45 (d, J = 8.5 Hz, 2H); 13C NMR (150 MHz, CDCl$_3$): δ 165.7, 148.9, 140.4, 140.3, 139.8, 138.5, 134.2, 133.2, 129.6 (two signals are overlapped), 129.0, 128.7, 128.3, 127.4, 124.2, 123.6, 114.2; HRMS (ESI): Calcd for C$_{22}$H$_{18}$ClN$_2$O$_3$S [M + H]$^+$ 423.0570, found 423.0569.

N-((5-((4-Bromophenyl)sulfonyl)quinolin-8-yl)benzamide (3af): White solid (75% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 214–215 °C; 1H NMR (600 MHz, CDCl$_3$): δ 10.98 (s, 1H),
9.05 (d, J = 8.4 Hz, 1H), 9.02 (dd, J = 8.7, 1.2 Hz, 1H), 8.89 (dd, J = 4.1, 1.3 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 7.4 Hz, 2H), 7.81 (d, J = 8.7 Hz, 2H), 7.63–7.53 (m, 6H); \(^{13} \text{C NMR} \) (150 MHz, CDCl\(_3\)) \(\delta \) 165.7, 148.9, 141.0, 140.3, 138.4, 134.2, 133.2, 132.6, 132.5, 132.9, 129.0, 128.7, 128.3, 128.3, 127.4, 124.2, 123.5, 114.2; HRMS (ESI): Calcd for C\(_{22}\)H\(_{18}\)BrN\(_2\)O\(_3\)S [M + H]\(^+\) 467.0065, found 467.0065.

Ethyl 4-((8-benamidoquinolin-5-yl)sulfonyl)benzoate (3ag): White solid (83\% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 204–205 °C; \(^{1} \text{H NMR} \) (600 MHz, CDCl\(_3\)) \(\delta \) 10.98 (s, 1H), 9.07 (d, J = 8.4 Hz, 1H), 9.04–8.99 (m, 1H), 8.89–8.86 (m, 1H), 8.61 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 8.6 Hz, 2H), 8.06 (d, J = 7.3 Hz, 2H), 7.91 (d, J = 8.6 Hz, 2H), 7.62–7.55 (m, 4H), 4.36 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H); \(^{13} \text{C NMR} \) (150 MHz, CDCl\(_3\)) \(\delta \) 165.7, 164.8, 148.9, 145.7, 140.5, 138.4, 134.6, 134.2, 133.2, 132.8, 132.5, 130.4, 129.0, 128.7, 127.4, 127.1, 124.3, 123.5, 114.2, 61.7, 14.2; HRMS (ESI): Calcd for C\(_{22}\)H\(_{20}\)BrN\(_2\)O\(_3\)S [M + Na]\(^+\) 483.0991, found 483.0995

N-(5-((4-(Trifluoromethyl)phenyl)sulfonyl)quinolin-8-yl)benzamide (3ah): White solid (82\% yield, eluent = petroleum ether/EtOAc (4:1)); Mp = 202–204 °C; \(^{1} \text{H NMR} \) (600 MHz, CDCl\(_3\)) \(\delta \) 11.00 (s, 1H), 9.09 (d, J = 8.3 Hz, 1H), 9.04 (dd, J = 8.7, 0.5 Hz, 1H), 8.91 (d, J = 4.1 Hz, 1H), 8.62 (d, J = 8.4 Hz, 1H), 8.08 (dd, J = 7.2, 6.2 Hz, 4H), 7.74 (d, J = 8.4 Hz, 2H), 7.65–7.55 (m, 4H); \(^{13} \text{C NMR} \) (150 MHz, CDCl\(_3\)) \(\delta \) 165.7, 148.9, 145.7, 140.6, 138.4, 134.9(q, \(^{2} J_{\text{CF}} = 32.9 \) Hz), 134.2, 133.1, 133.0, 132.5, 129.0, 127.7, 127.6, 127.4, 126.4 (q, \(^{3} J_{\text{CF}} = 3.6 \) Hz), 124.3, 123.9(q, \(^{1} J_{\text{CF}} = 271.5 \) Hz), 123.7, 114.3; HRMS (ESI): Calcd for C\(_{22}\)H\(_{15}\)F\(_3\)N\(_2\)O\(_3\)S [M + H]\(^+\) 457.0834, found 457.0832.

N-(5-((4-Cyanophenyl)sulfonyl)quinolin-8-yl)benzamide (3ai): White solid (27\% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 209–210 °C; \(^{1} \text{H NMR} \) (600 MHz, CDCl\(_3\)) \(\delta \) 11.01 (s, 1H), 9.09 (d, J = 8.4 Hz, 1H), 9.03–8.99 (m, 1H), 8.93–8.90 (m, 1H), 8.61 (d, J = 8.4 Hz, 1H), 8.07 (t, J
= 7.8 Hz, 4H), 7.77 (d, J = 8.3 Hz, 2H), 7.66–7.55 (m, 4H); 13C NMR (150 MHz, CDCl$_3$); δ 165.7, 149.0, 146.2, 140.9, 138.4, 134.1, 133.3, 133.0, 132.9, 132.6, 129.0, 127.7, 127.4, 127.1, 124.3, 123.7, 117.0, 116.9, 114.3; HRMS (ESI): Calcd for C$_{23}$H$_{18}$N$_3$O$_3$S [M + Na]$^+$ 436.0732, found 436.0736

N-(5-(m-Tolylsulfonyl)quinolin-8-yl)benzamide (3aj): White solid (95% yield, eluent = petroleum ether/EtOAc (7:1)); Mp = 198–199 °C; 1H NMR (600 MHz, CDCl$_3$); δ 10.98 (s, 1H), 9.10–9.02 (m, 2H), 8.94–8.83 (m, 1H), 8.57 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 7.5 Hz, 2H), 7.77 (d, J = 7.7 Hz, 1H), 7.73 (s, 1H), 7.52–7.51 (m, 4H), 7.39–7.31 (m, 2H), 2.37 (s, 3H); 13C NMR (150 MHz, CDCl$_3$); δ 165.7, 148.7, 141.8, 140.0, 139.6, 138.5, 134.3, 134.0, 133.5, 132.4, 132.2, 129.1, 129.0, 128.9, 127.5, 127.4, 124.3, 124.2, 123.3, 114.2, 21.3; HRMS (ESI): Calcd for C$_{23}$H$_{18}$N$_3$O$_3$S [M + H]$^+$ 403.1116, found 403.1116.

N-(5-(o-Tolylsulfonyl)quinolin-8-yl)benzamide (3ak): White solid (65% yield, eluent = petroleum ether/EtOAc (7:1)); Mp = 187–188 °C; 1H NMR (600 MHz, CDCl$_3$); δ 10.99 (s, 1H), 9.06 (d, J = 8.4 Hz, 1H), 8.87 (dd, J = 6.4, 5.2 Hz, 2H), 8.53 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 7.9 Hz, 1H), 8.07 (d, J = 7.3 Hz, 2H), 7.63–7.41 (m, 6H), 7.21 (d, J = 7.4 Hz, 1H), 2.43 (s, 3H); 13C NMR (150 MHz, CDCl$_3$); δ 165.7, 148.7, 139.9, 139.6, 138.4, 138.1, 134.3, 133.5, 133.5, 132.9, 132.6, 132.4, 128.9, 128.9, 128.5, 127.4, 126.5, 124.2, 123.2, 113.8, 20.1; HRMS (ESI): Calcd for C$_{23}$H$_{18}$N$_3$O$_3$S [M + Na]$^+$ 425.0936, found 425.0942.

N-(5-(Thiophen-2-ylsulfonyl)quinolin-8-yl)benzamide (3al): White solid (86% yield, eluent = petroleum ether/EtOAc (7:1)); Mp = 184–185 °C; 1H NMR (600 MHz, CDCl$_3$); δ 10.99 (s, 1H), 9.24 (d, J = 8.7 Hz, 1H), 9.02 (d, J = 8.4 Hz, 1H), 8.90 (d, J = 3.4 Hz, 1H), 8.54 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 7.4 Hz, 2H), 7.73 (d, J = 3.6 Hz, 1H), 7.65–7.53 (m, 5H), 7.04 (t, J = 4.4 Hz, 1H); 13C NMR (150 MHz, CDCl$_3$); δ 165.7, 148.8, 143.7, 140.2, 138.4, 134.2, 133.5, 133.5, 133.0, 132.5, 131.9, 129.7,
128.9, 127.7, 127.4, 124.2, 123.4, 114.3; **HRMS (ESI):** Calcd for C$_{20}$H$_{14}$N$_2$O$_2$S$_2$ [M + Na]$^+$ 417.0344, found 410.350.

![Image of 4-Methoxy-N-(5-tosylquinolin-8-yl)benzamide](image)

4-Methoxy-N-(5-tosylquinolin-8-yl)benzamide (3ba): White solid (84% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 183–184 °C; 1H NMR (600 MHz, CDCl$_3$): δ 10.90 (s, 1H), 9.06 (d, J = 8.7 Hz, 1H), 9.01 (d, J = 8.4 Hz, 1H), 8.88–8.83 (m, 1H), 8.54 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.7 Hz, 2H), 7.83 (d, J = 8.1 Hz, 2H), 7.57 (dd, J = 8.7, 4.1 Hz, 1H), 7.26 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H), 3.89 (s, 3H), 2.36 (s, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 165.1, 163.0, 148.6, 144.1, 140.1, 139.0, 138.4, 133.5, 132.1, 129.9, 129.3, 128.9, 127.2, 126.5, 124.2, 123.3, 114.1, 114.0, 55.5, 21.5; **HRMS (ESI):** Calcd for C$_{23}$H$_{20}$N$_2$O$_2$S [M + Na]$^+$ 455.1041, found 455.1039.

![Image of N-(5-Tosylquinolin-8-yl)-4-(trifluoromethyl)benzamide](image)

N-(5-Tosylquinolin-8-yl)-4-(trifluoromethyl)benzamide (3ca): White solid (78% yield, eluent = petroleum ether/EtOAc (3:1)); Mp = 201–202 °C; 1H NMR (600 MHz, CDCl$_3$): δ 10.99 (s, 1H), 9.10 (d, J = 8.7 Hz, 1H), 9.02 (d, J = 8.3 Hz, 1H), 8.88 (d, J = 4.1 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.17 (d, J = 8.1 Hz, 2H), 7.84 (dd, J = 8.0, 4.6 Hz, 4H), 7.60 (dd, J = 8.7, 4.1 Hz, 1H), 7.30–7.26 (m, 2H), 2.37 (s, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 164.3, 148.8, 144.2, 139.3, 138.8, 138.4, 137.6, 134.1 (q, 2J$_{CF}$ = 32.6 Hz), 133.6, 131.9, 130.0, 129.9, 127.9, 127.3, 126.0 (q, 3J$_{CF}$ = 3.6 Hz), 124.4 (q, 1J$_{CF}$ = 271.2 Hz), 124.2, 123.4, 114.5, 21.5; **HRMS (ESI):** Calcd for C$_{24}$H$_{17}$F$_3$N$_2$O$_3$S [M + H]$^+$ 471.0990, found 471.0989.

![Image of Bromo-N-(5-tosylquinolin-8-yl)benzamide](image)

4-Bromo-N-(5-tosylquinolin-8-yl)benzamide (3da): White solid (75% yield, eluent = petroleum ether/EtOAc (4:1)); Mp = 170–172 °C; 1H NMR (600 MHz, CDCl$_3$): δ 10.93 (s, 1H), 9.10–9.07 (m, 1H), 9.00 (d, J = 8.4 Hz, 1H), 8.87 (d, J = 3.0 Hz, 1H), 8.55 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 7.39 (dd, J = 8.7, 4.2 Hz, 1H), 7.28 (s, 1H), 2.36 (s, 3H); 13C NMR (150 MHz, CDCl$_3$): δ 164.7, 148.8, 144.2, 139.6, 138.8, 138.4, 133.6, 133.1, 132.2, 131.9, 129.9, 129.6, 129.0, 127.3, 124.2, 123.4, 114.7, 114.3, 21.5; **HRMS (ESI):** Calcd for C$_{23}$H$_{17}$BrN$_2$O$_3$S [M + H]$^+$ 481.0222, found 481.0219.
N-(5-Tosylquinolin-8-yl)thiophene-3-carboxamide (3ea): White solid (78% yield, eluent = petroleum ether/EtOAc (3:1)); Mp = 172–173 °C; \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 10.79 (s, 1H), 9.07 (d, \(J = 8.7\) Hz, 1H), 8.93 (d, \(J = 8.4\) Hz, 1H), 8.87 (d, \(J = 3.9\) Hz, 1H), 8.52 (d, \(J = 8.4\) Hz, 1H), 7.83 (d, \(J = 8.1\) Hz, 3H), 7.63 (d, \(J = 4.9\) Hz, 1H), 7.57 (dd, \(J = 8.7, 4.2\) Hz, 1H), 7.27 (d, \(J = 8.1\) Hz, 2H), 7.19 (t, \(J = 4.3\) Hz, 1H), 2.36 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta\) 160.1, 148.7, 144.1, 139.6, 139.1, 138.9, 138.2, 133.5, 131.9, 129.9, 129.3, 129.1, 128.0, 127.3, 124.2, 123.3, 114.1, 21.5; HRMS (ESI): Calcd for C\(_{23}\)H\(_{16}\)N\(_2\)O\(_2\)S\(_2\) [M + H]\(^+\): 409.0681, found 409.0677.

N-(5-Tosylquinolin-8-yl)acetamide (3fa): Following the general procedure but the reaction was run using CuCl (20 mol %); White solid (78% yield, eluent = petroleum ether/EtOAc (3:1)); \(\delta\) 8.80 (d, \(J = 8.4\) Hz, 1H), 7.54 (dd, \(J = 8.7, 4.2\) Hz, 1H), 7.25 (d, \(J = 8.4\) Hz, 2H), 2.37 (s, 3H), 2.35 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta\) 169.1, 148.5, 144.1, 139.7, 138.9, 137.9, 133.4, 131.9, 129.8, 129.1, 127.2, 124.1, 123.2, 114.0, 25.2, 21.5; HRMS (ESI): Calcd for C\(_{18}\)H\(_{16}\)N\(_2\)O\(_2\) [M + H]\(^+\): 341.0960, found 341.0963.

N-(5-Tosylquinolin-8-yl)cyclohexancarboxamide (3ga): White solid (70% yield, eluent = petroleum ether/EtOAc (3:1)); \(\delta\) 8.88 (d, \(J = 8.4\) Hz, 1H), 8.47 (d, \(J = 8.4\) Hz, 1H), 7.81 (d, \(J = 8.3\) Hz, 2H), 7.54 (dd, \(J = 8.7, 4.2\) Hz, 1H), 7.24 (d, \(J = 8.2\) Hz, 2H), 2.51–2.45 (m, 1H), 2.35 (s, 3H), 2.06 (d, \(J = 11.8\) Hz, 2H), 1.89–1.85 (m, 2H), 1.66–1.57 (m, 3H), 1.40–1.29 (m, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta\) 175.2, 148.5, 144.0, 140.0, 139.0, 138.1, 133.4, 132.0, 129.8, 128.8, 127.2, 124.2, 123.1, 114.0, 46.8, 29.6, 25.6, 25.7, 21.5; HRMS (ESI): Calcd for C\(_{23}\)H\(_{24}\)N\(_2\)O\(_2\)S [M + Na]\(^+\): 431.1405, found 431.1406.

1,1-Dimethyl-3-(5-tosylquinolin-8-yl)urea (3ha): White solid (55% yield, eluent = petroleum ether/EtOAc (3:1)); \(\delta\) 8.80 (d, \(J = 8.4\) Hz, 1H), 7.83 (d, \(J = 8.1\) Hz, 2H), 7.19 (t, \(J = 4.3\) Hz, 1H), 2.36 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta\) 160.1, 148.7, 144.1, 139.6, 139.1, 138.9, 138.2, 133.5, 131.9, 129.9, 129.3, 129.1, 128.0, 127.3, 124.2, 123.3, 114.1, 21.5; HRMS (ESI): Calcd for C\(_{23}\)H\(_{24}\)N\(_2\)O\(_2\)S [M + H]\(^+\): 409.0681, found 409.0677.
8.7, 1.2 Hz, 1H), 8.76 (dd, \(J = 4.1, 1.1 \) Hz, 1H), 8.66 (d, \(J = 8.5 \) Hz, 1H), 8.48 (d, \(J = 8.5 \) Hz, 1H), 7.80 (d, \(J = 8.3 \) Hz, 2H), 7.51 (dd, \(J = 8.7, 4.2 \) Hz, 1H), 7.24 (d, \(J = 8.3 \) Hz, 2H), 3.16 (s, 6H), 2.35 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta \) 154.7, 148.1, 143.8, 141.6, 139.3, 138.0, 133.4, 132.4, 129.8, 127.1, 126.6, 124.2, 123.0, 112.1, 36.5, 21.5; HRMS (ESI): Calcd for C\(_{19}\)H\(_{18}\)N\(_3\)O\(_3\)S [M + H]\(^+\) 370.1225, found 370.1227.

![Image](image_url)

\(N\)-(5-Methoxy-7-tosylquinolin-8-yl)benzamide (3ia): \) White solid (70% yield, eluent = petroleum ether/EtOAc (1:1)); Mp = 203–204 °C; \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta \) 8.94 (dd, \(J = 4.0, 1.5 \) Hz, 1H), 8.77 (s, 1H), 8.60 (dd, \(J = 8.5, 1.5 \) Hz, 1H), 7.92 (d, \(J = 7.5 \) Hz, 2H), 7.60 (dd, \(J = 15.7, 7.7 \) Hz, 4H), 7.54–7.45 (m, 3H), 7.06 (d, \(J = 8.3 \) Hz, 2H), 4.13 (s, 3H), 2.31 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)): \(\delta \) 165.6, 154.4, 151.7, 144.6, 144.3, 136.8, 136.0, 133.7, 132.1, 131.0, 129.7, 128.6, 128.5, 127.7, 127.5, 124.0, 122.8, 101.7, 56.4, 21.6; HRMS (ESI): Calcd for C\(_{24}\)H\(_{20}\)N\(_2\)O\(_4\)S [M + H]\(^+\) 433.1222, found 433.1217.
Synthetic Transformations of 3aa

![Structure](image)

5-Tosylquinolin-8-amine (4): To a solution of 3aa (0.2 mmol) in 2 mL of EtOH, 1mL of hydrochloric acid (1 M) was added. The mixture was refluxed for 8 h and then add 10mL of aq. NaHCO₃ and 10mL of ethyl acetate, organic layer were concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the product 4. White solid (92% yield, eluent = petroleum ether/EtOAc (10:1)); Mp = 169–170 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.91 (d, J = 8.7 Hz, 1H), 8.71 (d, J = 2.8 Hz, 1H), 8.31 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 8.2 Hz, 2H), 7.45 (dd, J = 8.7, 4.1 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 8.3 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 149.6, 147.2, 143.4, 140.0, 136.9, 133.2, 132.9, 129.7, 126.8, 125.4, 123.1, 121.5, 106.8, 21.5; HRMS (ESI): Calcd for C₁₆H₁₄N₂O₂S [M + H]⁺ 299.0854, found 299.0859.

3-Methylene-2-(5-tosylquinolin-8-yl)isoindolin-1-one (5): A 10 mL of Schlenk tube equipped with a stirrer bar was charged with 3aa (0.2 mmol) and Pd(TFA)₂ (5 mol%) under Ar. Then, the Schlenk tube was quickly evacuated and refilled with Ar for three times, followed by addition of toluene (2 mL) and acetic anhydride (0.4 mmol). The Schlenk tube was sealed with a Teflon screwcap and the reaction mixture was stirred at 130 °C for 12 h. Upon cooling to room temperature, the reaction mixture was diluted with 10 mL of ethyl acetate, filtered through a pad of silica gel, followed by washing the pad of the silica gel with ethyl acetate (20 mL). Subsequently, the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the product. White solid (83% yield, eluent = petroleum ether/EtOAc (5:1)); Mp = 198–199 °C; ¹H NMR (600 MHz, CDCl₃): 9.11 (dd, J = 8.8, 1.5 Hz, 1H), 8.89 (dd, d, = 4.1, 1.5 Hz, 1H), 8.61 (d, J = 7.8 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.92–7.86 (m, 3H), 7.80 (d, J = 7.7 Hz, 1H), 7.68 (dd, d, = 11.1, 4.0 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.52 (dd, d, = 8.8, 4.1 Hz, 1H), 7.34 (d, J = 8.2 Hz, 2H), 5.21 (d, J = 2.4 Hz, 1H), 4.37 (d, J = 2.4 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 167.2, 151.5, 144.9, 144.8, 143.5, 138.7, 137.9, 137.8, 136.7, 133.0, 132.5, 130.1, 129.8, 129.4, 129.0, 127.7, 125.6, 123.8, 123.2, 120.3, 90.6, 21.6; HRMS (ESI): Calcd for C₂₅H₁₈N₂O₃S [M + H]⁺ 427.1116, found 427.1115.
1H and 13C NMR Spectra

1H NMR Spectrum of 3aa

13C NMR Spectrum of 3aa
1H NMR Spectrum of 3ab

13C NMR Spectrum of 3ab
1H NMR Spectrum of 3ac

13C NMR Spectrum of 3ac
1H NMR Spectrum of 3ad

13C NMR Spectrum of 3ad
1H NMR Spectrum of 3ae

13C NMR Spectrum of 3ae
1H NMR Spectrum of 3af

13C NMR Spectrum of 3af
1H NMR Spectrum of 3ag

13C NMR Spectrum of 3ag
1H NMR Spectrum of 3ah

13C NMR Spectrum of 3ah
1H NMR Spectrum of 3ai

13C NMR Spectrum of 3ai
1H NMR Spectrum of 3aj

13C NMR Spectrum of 3aj
1H NMR Spectrum of 3ak

13C NMR Spectrum of 3ak
1H NMR Spectrum of 3al

13C NMR Spectrum of 3al
1H NMR Spectrum of 3ba

13C NMR Spectrum of 3ba
1H NMR Spectrum of 3ca

13C NMR Spectrum of 3ca
1H NMR Spectrum of 3da

13C NMR Spectrum of 3da
1H NMR Spectrum of 3ea

13C NMR Spectrum of 3ea
1H NMR Spectrum of 3fa

13C NMR Spectrum of 3fa
1H NMR Spectrum of 3ga

13C NMR Spectrum of 3ga
1H NMR Spectrum of 3ha

13C NMR Spectrum of 3ha
1H NMR Spectrum of 3ia

13C NMR Spectrum of 3ia
1H NMR Spectrum of 4

13C NMR Spectrum of 4
1H NMR Spectrum of 5

13C NMR Spectrum of 5