SUPPORTING INFORMATION

Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode

Florina Teodora,a Laure Rolland,b Viswanatha Ramarao,a Amar Abderrahmani,b Daniel Mandlerc Rabah Boukherrouba and Sabine Szuneritsa

Figure S1: (A) UV/Vis spectrum of free human insulin (100 µg/mL) in water; (B) calibration curve; (C) human insulin loading capacity of rGO as a function of pH (by mixing rGO (1 mg/mL) with human insulin (100 µg/mL)).

The human insulin loading capacity was calculated from such measurements according to:

\[
\text{loading capacity} = \left(\frac{c_0 - c_{\text{sup}}}{c_{\text{rGO}}} \right) \times 100 \%
\]

with \(c_0\) being the human insulin concentration added to rGO (100 µg mL\(^{-1}\)), \(c_{\text{sup}}\) the concentration of insulin in the supernatant after reaction with rGO (determined by UV/Vis) and \(c_{\text{rGO}}\) the concentration of rGO (1 mg mL\(^{-1}\)).
Figure S2: Change in loading capacitance by keeping the concentration of rGO constant (1 mg mL\(^{-1}\)) and changing the concentration of human insulin added (10-1000 µg/mL); average of four experiments, with error bars representing the standard deviation.

Figure S3: Influence of the number of drop-casting steps on the percentage of released human insulin into PBS buffer upon biasing the electrode at -0.8V for 30 min; average of four experiments, with error bars representing the standard deviation.