Electronic Supplementary Information

Formation of α-[KSiH$_3$] by hydrogenolysis of potassium triphenylsilyl

Valeri Leich, Thomas P. Spaniol and Jun Okuda*
Table of Contents:

General Experimental Remarks .. 3
Synthesis of tBuPh2SiSiMe3 ... 3
Synthesis of [K(Me6TREN)SiPh3] (1) .. 4
Synthesis of [K(Me6TREN)Si’BuPh2] (5) .. 4
Synthesis of [K(Me6TREN)SiMePh2] (6) .. 5
Synthesis of α-[KSiH3] (4) ... 5
Synthesis of α-[KSiD3] (4-D3) ... 6
in situ Hydrogenation of alkali metal silyls ... 6
in situ 1H and 29Si{1H} NMR spectra from the hydrogenation of [K(Me6TREN)SiPh3] (1) 7
in situ 1H and 29Si{1H} NMR spectra from the hydrogenation of [K(Me6TREN)Si’BuPh2] (5) 8
X-Ray Crystallography ... 10
Crystal structure determination of [K(Me6TREN)SiPh3] (1) .. 10
Powder X-ray diffraction .. 11
Powder X-ray diffractogram of α-[KSiH3] (4) .. 12
Powder X-ray diffractogram of α-[KSiD3] (4-D3) .. 12
1H, 13C{1H} and 29Si{1H} NMR spectra of tBuPh2SiSiMe3 .. 14
1H, 13C{1H} and 29Si{1H} NMR spectra of [K(Me6TREN)SiPh3] (1) .. 16
Variable temperature 1H NMR spectra of [K(Me6TREN)SiPh3] (1) ... 18
1H, 13C{1H} and 29Si{1H} NMR spectra of [K(Me6TREN)Si’BuPh2] (5) ... 19
1H NMR spectrum of [K(Me6TREN)SiMePh2] (6) .. 21
1H and 29Si{1H} NMR spectra α-[KSiH3] (4) ... 22
IR spectrum of α-[KSiH3] (4) ... 23
IR spectrum of α-[KSiD3] (4-D3) .. 23
GC/MS spectra of C6H6 and C6H5D from reaction solution ... 24
References .. 26
General Experimental Remarks

All operations were performed under an inert atmosphere of dry argon using standard Schlenk line or glove box techniques. THF-\(d_8\) was distilled under argon from sodium/benzophenone ketyl prior to use. THF and pentane were purified using a MB SPS-800 solvent purification system. \(^{t}\)BuPh\(_2\)SiCl, MeSiCl, Ph\(_3\)SiCl, MePh\(_2\)SiCl, K'OBU, hexamethylbenzene and tris(2-inoethyl)amine (TREN) were purchased from Sigma Aldrich and purified by vacuum sublimation or destillation. Lithium and potassium were purchased from Sigma Aldrich and used without further purification. Hydrogen (99.999) and deuterium (99.8) were purchased from Praxair-Westfalen AG. Elemental analyses were performed on an elementar vario EL machine. MS spectra were recorded on a Shimadzu GCMS-GP2010 Plus machine. IR spectra were recorded on a Nicolet, Avatar 360 FT-IR E.S.P. spectrometer. \(^1\)H, \(^{13}\)C\{\(^1\)H\} and \(^{29}\)Si\{\(^1\)H\} NMR spectra were recorded on a Bruker Avance II 400 or a Bruker Avance III HD 400 spectrometer at 25 °C in J. Young type NMR tubes. Chemical shifts for \(^1\)H, \(^{13}\)C\{\(^1\)H\}, and \(^{29}\)Si\{\(^1\)H\} NMR spectra were referenced internally using the residual solvent resonance and are reported relative to tetramethylsilane. The resonances in \(^1\)H and \(^{13}\)C NMR spectra were assigned on the basis of two-dimensional NMR experiments (COSY, HSQC, HMBC). Ph\(_3\)SiSiMe\(_3\), MePh\(_2\)SiSiPh\(_2\)Me\(_2\) and tris(2-N,N-dimethylaminoethyl)amine (Me\(_6\)TREN\(^3\)) were prepared according to published procedures.

Synthesis of \(^{t}\)BuPh\(_2\)SiSiMe\(_3\)

\(^{t}\)BuPh\(_2\)SiCl (10.0 g, 0.04 mol) in THF (20 mL) was added at 0 °C to a stirred suspension of lithium (1.68 g, 0.24 mol) in THF (30 mL). The solution turned green and was stirred for 4 h at 0 °C. The solution was filtered and added to Me\(_2\)SiCl (4 g, 0.04 mol) in THF (20 mL) slowly. The reaction solution was quenched with sulphuric acid (10%), the organic phases were extracted with Et\(_2\)O (3×100 mL) and dried over MgSO\(_4\). Et\(_2\)O was removed under reduced pressure, the product distilled under vacuum (160 °C, 5×\(10^{-2}\) mbar and isolated as a colorless oil (10.2 g, 0.033 mol, 82%).

\(^1\)H NMR (THF-D\(_8\), 400.1 MHz): \(\delta\)\(^1\)H 0.17 (m, 9H, SiMe\(_3\)), 1.14 (m, 9H, \(^{t}\)Bu), 7.29-7.35 (m, 6H, para/meta-Ph), 7.54-7.59 (m, 4H, ortho-Ph) ppm.

\(^{13}\)C\{\(^1\)H\} NMR (THF-D\(_8\), 100.6 MHz): \(\delta\)\(^{13}\)C 0.12 (SiMe\(_3\)), 20.35 (C(CH\(_3\))\(_3\)), 29.49 (C(CH\(_3\))\(_3\)), 128.48 (para-Ph), 129.51 (meta-Ph), 136.96 (ipso-Ph), 137.20 (ortho-Ph) ppm.
29Si$1H$ NMR (THF-D$_8$, 79.5 MHz): δ_{Si} −19.43 (tBuPh$_2$SiSiMe$_3$), −10.51 (tBuPh$_2$SiSiMe$_3$) ppm.

Anal. calc. for C$_{19}$H$_{28}$Si$_2$ (312.60 g∙mol$^{-1}$): C, 73.00; H, 9.03. Found: C, 72.83; H, 8.86%.

MS (70 eV): $m/z = 312$ (M$,^+$, 7%), 255 (100), 197 (29), 135 (45), 105 (10), 73 (13), 57 (3).

Synthesis of [K(Me$_6$TREN)SiPh$_3$] (1)

A solution of KO'Bu (112 mg, 1.00 mmol) in THF (2 mL) was added to Ph$_3$SiSiMe$_3$ (333 mg, 1.00 mmol) in THF (2 mL) and stirred for 15 min at 25 °C. Me$_6$TREN (230 mg, 1.00 mmol) was added slowly and the reaction solution stirred for 16 h. The solvent was removed under reduced pressure and the product was washed with pentane (3×5 mL). After drying in vacuo, [K(Me$_6$TREN)SiPh$_3$] (1) (387 mg, 0.73 mmol, 73%) was isolated as orange/brown powder. Single crystals of 1 suitable for X-ray diffraction were grown from THF at −30 °C over a period of 16 h.

1H NMR (THF-D$_8$, 400.1 MHz): δ_H 2.14 (s, 18H, NCH$_3$), 2.28 (d, 3$J_{H,H} = 6.6$ Hz, 3H, CH$_2$), 2.30 (d, 3$J_{H,H} = 5.8$ Hz, 3H, CH$_2$), 2.52 (d, 3$J_{H,H} = 5.8$ Hz, 3H, CH$_2$), 2.54 (d, 3$J_{H,H} = 6.6$ Hz, 3H, CH$_2$), 6.77-6.85 (m, 3H, para-Ph), 6.88-6.96 (m, 6H, meta-Ph), 7.29-7.37 (m, 6H, ortho-Ph) ppm.

13C$1H$ NMR (THF-D$_8$, 100.6 MHz): δ_C 46.20 (CH$_3$), 54.28 (CH$_2$), 59.08 (CH$_2$), 123.76 (para-Ph), 126.66 (meta-Ph), 136.91 (ortho-Ph), 158.63 (ipso-Ph) ppm.

29Si$1H$ NMR (THF-D$_8$, 79.5 MHz): δ_{Si} −7.38 (KSi) ppm.

Anal. calc. for C$_{30}$H$_{45}$N$_4$KSi (528.90 g∙mol$^{-1}$): C, 68.13; H, 8.58; N, 10.59. Found: C, 67.81; H, 8.55; N, 10.76%.

Synthesis of [K(Me$_6$TREN)Si'tBuPh$_2$] (5)

A solution of KO'Bu (224 mg, 2.00 mmol) in THF (4 mL) was added to tBuPh$_2$SiSiMe$_3$ (626 mg, 2.00 mmol) in THF (4 mL) and stirred for 15 min at 25 °C. Me$_6$TREN (460 mg, 2.00 mmol) was added slowly and the reaction solution stirred for 72 h. The solvent was removed under reduced pressure and the product was washed with pentane (3×5 mL). After drying in vacuo, [K(Me$_6$TREN)Si'tBuPh$_2$] (5) (708 mg, 1.40 mmol, 70%) was isolated as orange powder.
1H NMR (THF-D$_8$, 400.1 MHz): δ$_H$ 0.94 (s, 9H, CH$_3$), 2.14 (s, 18H, NCH$_3$), 2.29 (d, 3J$_{H,H}$ = 6.5 Hz, 3H, CH$_2$), 2.31 (d, 3J$_{H,H}$ = 5.7 Hz, 3H, CH$_2$), 2.53 (d, 3J$_{H,H}$ = 5.7 Hz, 3H, CH$_2$), 2.56 (d, 3J$_{H,H}$ = 6.5 Hz, 3H, CH$_2$), 6.71-6.84 (m, 2H, para-Ph), 6.85-6.97 (m, 4H, meta-Ph), 7.39-7.54 (m, 4H, ortho-Ph) ppm.

13C{$_1^H$} NMR (THF-D$_8$, 100.6 MHz): δ$_C$ 20.62 (C(CH$_3$)$_3$), 32.14 (C(CH$_3$)$_3$), 46.23 (NCH$_3$), 54.38 (CH$_2$), 59.16 (CH$_2$), 123.27 (para-Ph), 126.29 (meta-Ph), 137.50 (ortho-Ph), 160.47 (ipso-Ph) ppm.

29Si{$_1^H$} NMR (THF-D$_8$, 79.5 MHz): δ$_Si$ 8.68 (KSi) ppm.

Anal. Calc. for C$_{28}$H$_{49}$N$_4$KSi (508.91 g·mol$^{-1}$): C, 66.08; H, 9.71; N, 11.01. Found: C, 65.49; H, 9.99; N, 11.34%.

Synthesis of [K(Me$_6$TREN)SiMePh$_2$] (6)

A solution of MePh$_2$SiSiPh$_2$Me (99 mg, 0.25 mmol) in THF-D$_8$ (1 mL) was added to potassium (30 mg, 0.77 mmol) and Me$_6$TREN (0.50 mmol) in THF-D$_8$ (1 mL) at 25 °C. The solution turned red and a 1H NMR spectrum was measured immediately. Isolation of the desired product failed due to fast decomposition.

1H NMR (THF-D$_8$, 400.1 MHz): δ$_H$ 0.35 (s, 3H, CH$_3$), 2.18 (s, 18H, NCH$_3$), 2.30 (d, 3J$_{H,H}$ = 6.6 Hz, 3H, CH$_2$), 2.32 (d, 3J$_{H,H}$ = 5.9 Hz, 3H, CH$_2$), 2.53 (d, 3J$_{H,H}$ = 5.9 Hz, 3H, CH$_2$), 2.55 (d, 3J$_{H,H}$ = 6.5 Hz, 3H, CH$_2$), 6.70-6.81 (m, 2H, para-Ph), 6.87-6.97 (m, 4H, meta-Ph), 7.35-7.42 (m, 4H, ortho-Ph) ppm.

Synthesis of α-[KSiH$_3$] (4)

A degassed solution of [K(Me$_6$TREN)SiPh$_3$] (1) (264 mg, 0.50 mmol) in THF (3 mL) was charged with H$_2$ (1 bar) in a glass autoclave and stirred for 7 d at 25 °C. The reaction mixture was layered with pentane (10 mL), the supernatant was decanted off and the product was washed with pentane (3×5 mL). The residual solvent was removed under reduced pressure and after drying in vacuo, α-[KSiH$_3$] (4) (32 mg, 0.46 mmol, 92 %) was isolated as grey powder.

1H NMR (THF-D$_8$, 400.1 MHz): δ$_H$ 1.22 (s, 3H, SiH, 1J$_{SiH}$ = 76.29 Hz) ppm.

29Si{$_1^H$} NMR (THF-D$_8$, 79.5 MHz): δ$_Si$ –170.00 (KSiH$_3$) ppm.

IR Absorptions: ν_{max}/cm$^{-1}$: 1888sh (SiH), 1842sh (SiH), 1814s (SiH), 977s (SiH), 914s (SiH).
The IR stretching frequencies are consistent with both the reported and calculated frequencies in the literature.4

Synthesis of α-[KSiD₃] (4-D₃)

A degassed solution of [K(Me₆TREN)SiPh₃] (1) (264 mg, 0.50 mmol) in THF (3 mL) was charged with D₂ (1 bar) in a glass autoclave and stirred for 7 d at 25 °C. The reaction mixture was layered with pentane (10 mL), the supernatant was decanted off and the product was washed with pentane (3×5 mL). The residual solvent was removed under reduced pressure and after drying *in vacuo*, α-[KSiD₃] (4-D₃) (36 mg, 0.49 mmol, 98 %) was isolated as grey powder.

IR Absorptions: \(\nu_{\text{max/cm}^{-1}} \): 1376sh (SiD), 1345sh (SiD), 1314s (SiD), 703s (SiD), 671s (SiD)

The IR stretching frequencies are consistent with both the reported and calculated frequencies in the literature.4

in situ Hydrogenation of alkali metal silyls

The alkali metal silyl (56 \(\mu \)mol) and hexamethylbenzene (9 mg, 56 \(\mu \)mol) were dissolved in THF-D₈ (0.7 mL) in a J. Young’s NMR tube. The solution was degassed, charged with H₂ (1 bar) and monitored by \(^1\)H and \(^{29}\)Si\{\(^1\)H\} NMR spectroscopy for the period of time indicated.
in situ 1H and 29Si-1H NMR spectra of the hydrogenation of [K(Me₆TREN)SiPh₃] (1)

Figure S1. *in situ* 1H NMR spectra in THF-D₈ of the hydrogenation (1 bar of H₂) of [K(Me₆TREN)SiPh₃] at 25 °C after a) 12 h, b) 48 h, c) 72 h and d) 7 d.
Figure S2. *in situ* 29Si-1H NMR spectrum in THF-D$_8$ from the hydrogenation (1 bar of H$_2$) of [K(Me$_6$TREN)SiPh$_3$] at 25 °C after 7 d.

in situ 1H and 29Si-1H NMR spectra of the hydrogenation of [K(Me$_6$TREN)Si'tBuPh$_2$] (5)

Table S1. 1H and 29Si-1H NMR chemical shifts in THF-D$_8$ at 25 °C of the silyl complexes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Complex</th>
<th>δ [ppm]</th>
<th>1J$_{\text{Si-H}}$ [Hz]</th>
<th>δ [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ortho-Ph</td>
<td>meta-Ph</td>
<td>para-Ph</td>
</tr>
<tr>
<td>1</td>
<td>[K(Me$_6$TREN)Si'tBuPh$_2$]</td>
<td>7.37</td>
<td>6.92</td>
<td>6.78</td>
</tr>
<tr>
<td>2</td>
<td>[K(Me$_6$TREN)SiH'BuPh]</td>
<td>7.36</td>
<td>6.87</td>
<td>6.73</td>
</tr>
<tr>
<td>3</td>
<td>[K(Me$_6$TREN)SiH$_2$'Bu]</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Figure S3. *in situ* 1H NMR spectra in THF-D$_8$ of the hydrogenation (1 bar of H$_2$) of [K(Me$_6$TREN)Si'BuPh$_2$] at 25 °C after a) 4 h, b) 28 h and c) 48 h.
Figure S4. *in situ* 29Si-1H NMR spectra in THF-D$_8$ of the hydrogenation (1 bar of H$_2$) of [K(Me$_6$TREN)SitBuPh$_2$] at 25 °C after a) 28 h and b) 48 h.

X-Ray Crystallography

Crystal structure determination of [K(Me$_6$TREN)SiPh$_3$] (1)

X-ray diffraction data of 1 were collected at −173 °C on a Bruker D8 goniometer with an APEX CCD area-detector in ω-scan mode. Mo-K$_{\alpha}$ radiation (multilayer optics, $\lambda = 0.71073$ Å) from an Incoatec microsource was used. The SMART program package was used for the data collection and unit cell determination; processing of the raw frame data was performed using SAINT; absorption corrections were applied with SADABS.5 The structure of C$_{30}$H$_{45}$KN$_4$Si was solved in the orthorhombic space group *Pnma* (no. 62) with $a = 18.0781(12)$ Å, $b = 16.5653(11)$ Å, $c = 10.2552(7)$ Å, $V = 3071.1(4)$ Å3, $Z = 8/2$, $M = 528.89$ g·mol$^{-1}$, $\mu = 0.236$ mm$^{-1}$ by direct methods using SIR-925 using all 4800 independent reflections (of which 3888 were observed with $I > 2\sigma(I)$, $R_{int} = 0.0304$). The refinement was carried out against F^2 with SHELXL-20136 as implemented in the WinGX program system.8 The solution shows crystallographic mirror symmetry of the molecule with the atoms K1, Si1, S10.
N3, C5, C9, C12, N3 located on special positions (x, ¼, z) within a mirror plane. This crystallographically imposed symmetry leads to disorder of the Me₆TREN ligand that could be resolved well with split positions for the atoms N1, N2, C1, C2, C3, C4, C6, C7 and C8 of equal multiplicity. All hydrogen atoms were included in idealized positions and treated as riding during the refinement leading to \(R_1 = 0.0520, \) \(wR_2 = 0.1618 \) (\(I > 2s(I) \)) and \(R_1 = 0.0673, \) \(wR_2 = 0.1695 \) (all data). The program DIAMOND was used for the graphical representation. CCDC reference number 1411710, these data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure S5. DIAMOND representation of the molecular structure of 1 showing the disorder of the Me₆TACD ligand (hydrogen atoms are omitted for clarity).

Powder X-ray diffraction

Powder X-ray diffraction patterns of 4 and 4-D₃ were collected at room temperature on a Stoe&Cie STADI P diffractometer by means of an image plate employing Cu anode (40 kV, 30 mA) or Cuα (\(\lambda = 1.54059 \) Å, equipped with a Johanson Ge monochromator radiation. Due to the air and moisture sensitivity of the compounds, they were sealed in 0.3 mm capillaries (Lindemann glass) in an argon glovebox. All diffractograms were examined using the MAUD software system.
Figure S6. Measured powder X-ray diffraction patterns of α-[KSiH$_3$] (red), Rietveld refinement (black) and difference spectrum (below). Structure parameters: $Fm\bar{3}m$, $Z = 4$, $a = 7.368(1)$ Å, $R_B = 2.7\%$.

Figure S7. Measured powder X-ray diffraction patterns of α-[KSiD$_3$] (red), Rietveld refinement (black) and difference spectrum (below). Structure parameters: $Fm\bar{3}m$, $Z = 4$, $a = 7.367(1)$ Å, $R_B = 6.7\%$.

Powder X-ray diffractogram of α-[KSiH$_3$] (4)

Powder X-ray diffractogram of α-[KSiD$_3$] (4-D$_3$)
1H, 13C(1H) and 29Si(1H) NMR spectra of tBuPh$_2$SiSiMe$_3$

![NMR spectrum](image)

Figure S8. 1H NMR spectrum of tBuPh$_2$SiSiMe$_3$ in THF-D$_8$ at 25 °C.
Figure S9. 13C{1H} NMR spectrum of tBuPh$_2$SiSiMe$_3$ in THF-D$_8$ at 25 °C.

Figure S10. 29Si{1H} NMR spectrum of tBuPh$_2$SiSiMe$_3$ in THF-D$_8$ at 25 °C.
1H, 13C{1H} and 29Si{1H} NMR spectra of [K(Me$_6$TREN)SiPh$_3$] (1)

![Chemical Structure](image)

Figure S11. 1H NMR spectrum of [K(Me$_6$TREN)SiPh$_3$] in THF-D$_8$ at 25 °C.

![Chemical Structure](image)

Figure S12. 13C{1H} NMR spectrum of [K(Me$_6$TREN)SiPh$_3$] in THF-D$_8$ at 25 °C.
Figure S13. 29Si-1H NMR spectrum of [K(Me$_6$TREN)SiPh$_3$] in THF-D$_8$ at 25 °C.
Variable temperature 1H NMR spectra of [K(Me₆TREN)SiPh₃] (1)

Figure S5. Variable temperature 1H NMR spectra of [K(Me₆TREN)SiPh₃] (25 °C - -95 °C).
1H, 13C{¹H} and 29Si{¹H} NMR spectra of [K(Me₆TREN)Si'tBuPh₂] (5)

Figure S15. 1H NMR spectrum of [K(Me₆TREN)tBuPh₂] in THF-D₈ at 25 °C.

Figure S16. 13C{¹H} NMR spectrum of [K(Me₆TREN)tBuPh₂] in THF-D₈ at 25 °C.
Figure S17. $^{29}\text{Si}\{^1\text{H}\}$ NMR spectrum of [K(Me$_6$TREN)tBuPh$_2$] in THF-D$_8$ at 25 °C.
1H NMR spectrum of [K(Me₆TREN)SiMePh₂] (6)

Figure S18. 1H NMR spectrum of [K(Me₆TREN)MePh₂] in THF-D₈ at 25 °C.
1H and 29Si{1H} NMR spectra α-[KSiH$_3$] (4)

Figure S19. 1H NMR spectrum of α-[KSiH$_3$] in THF-D$_8$ at 25 °C. Traces of MesTREN and benzene as impurity (*).

Figure S20. 29Si{1H} NMR spectrum of α-[KSiH$_3$] in THF-D$_8$ at 25 °C.
IR spectrum of α-[KSiH$_3$] (4)

Figure S21. IR spectrum of α-[KSiH$_3$].

IR spectrum of α-[KSiD$_3$] (4-D$_3$)

Figure S22. IR spectrum of α-[KSiD$_3$].
GC/MS spectra of \(\text{C}_6\text{H}_6 \) and \(\text{C}_6\text{H}_5\text{D} \) from reaction solution

Figure S23. GC/MS spectrum of \(\text{C}_6\text{H}_6 \) from hydrogenation reaction.
Figure S24. GC/MS spectrum of C₆H₅D from hydrogenation reaction.
References

