Electronic Supporting Information

Protonation of Silylenol Ether via Excited State Proton Transfer Catalysis

Anjan Das, Tanmay Banerjee, Kenneth Hanson*

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, United States

Contents

1. Materials and Methods	Page S2-S3
2. Figure S1. Photo of the reaction set-up	Page S2
3. Figure S2. Absorption spectra of phenol, substrate and Br-NpOH	Page S3
4. Figure S3. Light Intensity Dependence	Page S4
5. Figure S4. Emission spectra of SENS with and without NpOH	Page S4
6. Table S1. Reaction conditions fro ensitized ESPT catalysis	Page S5
7. Figure S5. ¹ H-NMR spectra of 1-phenyl-2-(trimethylsiloxy)cyclohexene	Page S5
5. Figure S6. Example of reaction yield measurements	Page S6
6. Figure S7. Calculation of sunlight catalyzed reaction yield	Page S6
7. Figure S8. Product generation with respect to light modulation	Page S7
8. ¹ H NMR spectra of substrates and products	Page S8
9. References	Page S14

Materials

2-Phenylcyclohexanone, 2-(3-Methoxyphenyl)cyclohexanone, 2-Bromocyclohexanone, 2-Methylcyclohexanone, 2-Benzylcyclohexanone, 2-Methyl-1-Indanone, lithium diisopropylamide (LDA), Trimethylsilylchloride, Triethylsilylchloride, Trisopropylsilylchloride, Triphenylsilylchloride, 2-napthol, 7-bromo-2-napthol, 2,6-Di-*tert*-butyl-4-methylphenol, *N*-Hydroxysuccinimide, Bis[2-(4,6-difluorophenyl)pyridinato- C^2 ,*N*](picolinato)iridium(III) and triphenylmethane were used as received from Sigma-Aldrich. 4-nitro-2-napthol^[1] and the substrates were prepared according to a published literature procedure.^[2-4]

Instrumentation

Absorption spectroscopy. The UV-visible spectra were recorded using an Agilent 8453 UV-Visible photo diode array spectrophotometer with a standard 1 cm x 1 cm cuvette.

Light Source. A ThorLabs M365L2- UV (366 nm, fwhm = 7.5 nm) mounted LED was used as the light source for UV ereactions and was controlled by ThorLabs LEDD1B T-Cube series LED driver. For the sensitized reactions a 445 nm laser from Aixiz (PGL-V-H-447) was used. The light intensity was measured using an Ophir power meter (Vega 7Z01560) and sensor (3A-FS 7Z02628).

¹*H NMR*. Proton nuclear magnetic resonance spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts for protons are reported in parts per million (ppm) relative to residual toluene peaks (7.09 (m), 7.00 (s), 6.98 (m), 2.09 (m) ppm).

Reaction set-up

All solutions for the photocatalytic reaction were prepared in 0.6 mL toluene- d_8 with NMR tubes (Norell[®] Select SeriesTM 5 mm glass NMR tubes medium wall, NORS5500MW7) as the reaction vessels. The samples were directly irradiated with the LED as shown in Figure S1.

Calculation of reaction yields

Reaction yields were calculated using ¹H-NMR with triphenylmethane as the internal reference. Triphenylmethane and the substrate have been used in equimolar amounts. An example spectrum can be seen in Figure S6. The product yield (96 % in Figure S6) can be calculated by integration of the product 2-phenylcyclohexanone proton signal at 3.16 ppm (marked in blue) with the triphenylmethane proton signal at 5.4 ppm (marked in red) integrated to 1.

Figure S2. Absorption spectra of phenol, substrate and Br-NpOH in CH_2Cl_2 as well as the LED emission spectrum. Inset: a zoomed in spectrum emphasizing the spectral overlap between absorption spectrum of Br-NpOH and the LED emission spectrum.

Figure S3. Light intensity dependence on the generation of 2-phenylcyclohexanone. (2.5 M substrate, 5 M PhOH and 0.025 M Br-NpOH in toluene- d_8)

Figure S4. Emission spectra of bis(4,6-difluorophenyl-pyridine)(picolinate)iridium(III) without and with 25 equivalents of 2-napthol.

Entry	SENS (M)	Dye (M)	Sacrificial acid (M)	Yield (%) ^b
1	1 (0.05)	2-NpOH (1)	-	35
2	1 (0.05)	2-NpOH (1)	NHS (5)	72
3	1 (0.1)	2-NpOH (1)	NHS (5)	73
4	1 (0.025)	2-NpOH (1)	NHS (5)	74
5	1 (0.025)	2-NpOH (0.5)	NHS (5)	38
6	1 (0.025)	2-NpOH (1)	Phenol (5)	0
7	1 (0.025)	2-NpOH (1)	BHT (5)	35
8	1 (0.025)	-	NHS (5)	0

Table S1. Reaction conditions for the sensitized protonation of 1-phenyl-2-(trimethylsiloxy)cyclohexene in toluene- d_8 .^a

^aAll the reactions were carried out with 2 (M) of the substrate and the reaction mixtures were N_2 deaerated for 30 min before excitation with 445 nm light. ^b Calculated by using ¹HNMR using internal reference after 20 h.

Figure S5. ¹H-NMR spectra of 1-phenyl-2-(trimethylsiloxy)cyclohexene.

Figure S6. Example of reaction yield measurements using ¹H-NMR spectra with triphenylmethane as the internal reference.

Figure S7. ¹H-NMR spectra of the reaction mixture after 3 days in a window with exposure to ambient sunlight (Tallahassee, Florida; June 3-5).

Figure S8. ¹H-NMR spectrum showing the characteristic 2-phenylcyclohexanone multiplet (**H** in the inset molecule) during the light modulation experiment over the first 10 hour period (light on for 1 hour then off for 1 hour). The solid red lines correspond to product after 1 hour of irradiation time. The blue dashed line corresponds to the product after being in the dark for 1 hour.

¹H-NMR Spectra of Substrates and Products:

References

- 1. H. H.Hodgson and E. Ward, J. Am. Chem. Soc. 1947, 327-331.
- 2. C. H. Cheon, T. Imahorib and H. Yamamoto, Chem. Commun., 2010, 46, 6980-6982.
- 3. C. H. Cheon, O. Kanno and F. D. Toste, J. Am. Chem. Soc., 2011, 133, 12875-12879.
- 4. C.H. Cheon and H. Yamamoto, J. Am. Chem. Soc., 2008,130, 9246-9247.