Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Johnston, et al.

Supporting Information II

#### A One-Pot Amidation of Primary Nitroalkanes

Kenneth E. Schwieter and Jeffrey N. Johnston\*

Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235

#### SI-II-X

| Figure 1. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) of 3    | 2  |
|--------------------------------------------------------------------|----|
| Figure 2. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) of $6$  | 3  |
| Figure 3. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) of 9a.  | 4  |
| Figure 4. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) of 9b.  | 5  |
| Figure 5. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) of 9c.  | 6  |
| Figure 6. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) of 9d.  | 7  |
| Figure 7. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) of 9e.  | 8  |
| Figure 8. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) of 9f   | 9  |
| Figure 9. <sup>1</sup> H NMR (600 MHz, CDCl <sub>3</sub> ) of 9g   | 10 |
| Figure 10. <sup>13</sup> C NMR (150 MHz, CDCl <sub>3</sub> ) of 9g | 11 |
| Figure 11. <sup>1</sup> H NMR (600 MHz, CDCl <sub>3</sub> ) of 9h  | 12 |
| Figure 12. <sup>13</sup> C NMR (150 MHz, CDCl <sub>3</sub> ) of 9h | 13 |
| Figure 13. <sup>1</sup> H NMR (400 MHz, CDCl <sub>3</sub> ) of 9i  | 14 |
| Figure 14. <sup>1</sup> H NMR (600 MHz, $d_6$ -DMSO) of 9j         | 15 |
| Figure 15. <sup>13</sup> C NMR (150 MHz, $d_6$ -DMSO) of 9j        | 16 |
| Figure 16. <sup>1</sup> H NMR (600 MHz, CDCl <sub>3</sub> ) of 9k. | 17 |
| Figure 17. <sup>13</sup> C NMR (150 MHz, CDCl <sub>3</sub> ) of 9k | 18 |
| Figure 18. <sup>1</sup> H NMR (600 MHz, $d_6$ -DMSO) of 9l         | 19 |
| Figure 19. <sup>13</sup> C NMR (150 MHz, $d_6$ -DMSO) of 91        | 20 |

#### *Johnston, et al.* **Figure 1.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **3.**





#### *Johnston, et al.* **Figure 2.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **6.**





#### *Johnston, et al.* **Figure 3.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **9a.**





*Johnston, et al.* **Figure 4.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **9b**.





*Johnston, et al.* **Figure 5.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **9c**.





## *Johnston, et al.* **Figure 6.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **9d.**





## *Johnston, et al.* **Figure 7.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **9e.**



## *Johnston, et al.* **Figure 8.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **9f**.



## *Johnston, et al.* **Figure 9.** <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of **9g.**





## *Johnston, et al.* **Figure 10.** <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) of **9g.**





*Johnston, et al.* **Figure 11.** <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of **9h.** 





*Johnston, et al.* **Figure 12.** <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) of **9h**.





*Johnston, et al.* **Figure 13.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of **9i.** 





Johnston, et al. **Figure 14.** <sup>1</sup>H NMR (600 MHz,  $d_6$ -DMSO) of **9j.** 





Johnston, et al. **Figure 15**. <sup>13</sup>C NMR (150 MHz,  $d_6$ -DMSO) of **9**j.



*Johnston, et al.* **Figure 16**. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of **9k**.





### *Johnston, et al.* **Figure 17.** <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>) of **9k.**





Johnston, et al. Figure 18. <sup>1</sup>H NMR (600 MHz,  $d_6$ -DMSO) of 91.





# Johnston, et al. **Figure 19.** <sup>13</sup>C NMR (150 MHz, $d_6$ -DMSO) of **91.**

