Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

SUPPORTING INFORMATION

A Mild Hydration of Nitriles Catalysed by Copper(II) Acetate

Patricia Marcé,^a James Lynch,^a A. John Blacker^b and Jonathan M. J. Williams^a*

^aDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom ^bInstitute of Process Research & Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom

Table of Contents

General Remarks
Influence of the Lewis acid in the formation of amidoxime
Conversion of amidoxime in amide using hydroxylamine and ammonia
Effect of additives in the formation of amidoxime4
Optimization of the reaction conditions using <i>N</i> , <i>N</i> -diethylhydroxylamine as additive 5
NMR Experiment
Experiments using ¹⁸ O-labelled water6
Synthesis of N-hydroxy-4-methoxybenzimidamide7
General procedure for the synthesis of amides7
¹ H-NMR and ¹³ C-NMR spectroscopic data13

General Remarks

All chemicals and solvents used were reagent grade and used as supplied unless otherwise specified. Analytical thin layer chromatography (TLC) was performed on Merck[®] silica gel 60 F254 glass or aluminium plates. Organic Compounds were visualized by UV (254 nm) irradiation. Flash column chromatography was carried out using forced flow or by gravity of the indicated solvent on Fluka[®] silica gel 60 (230 - 400 mesh). ¹H and ¹³C NMR spectra were recorded on Bruker AV 500, Bruker AV 300 or Bruker AV 250 spectrometer in CDCl₃ or d⁶-DMSO as solvents. Chemical shifts (δ) were referenced internally to residual protic solvent signal for CDCl₃ (7.26 ppm) and d⁶-dmso (2.5 ppm). Multiplicities are presented as singlet (s), broad singlet (br s), doublet (d), triplet (t), triplet of triplets (tt), quadruplet (q) and, multiplet (m). Coupling constants, (J) were expressed in Hertz (Hz). HRMS-ESI were run on an Agilent[®] 1200 Series LC/MSD. Uncorrected melting points were determined using Stuart SMP10 melting point equipment using closed end glass capillary.

Influence of the Lewis acid in the formation of amidoxime

4-Methoxybenzonitrile (0.130 g, 1 mmol), hydroxylamine 50% in water solution (1 mL) and the appropriate catalyst were added to a carousel tube (see table S1). The reaction mixture was stirred at room temperature for 24 hours. The solvent was removed under vacuum and the crude reaction was analysed by ¹H-NMR.

Table S1

	Catalyst	Loading	Time	Conversion ^a	Ratio
Entry		(mol%)	h	(%)	2:3
1			24	100	50:50
2	$[IrCp*I_2]_2$	1	24	100	50:50
3	Cu(OAc) ₂	2	24	100	50:50
4	Zn(OAc)₂	5	24	100	50:50
5	FeCl ₂	5	24	100	50:50
6	$[RuCp*Cl_2]_2$	1	24	100	50:50

a) Conversions were determined by analysis of the ¹H-NMR spectra

Conversion of amidoxime in amide using hydroxylamine and ammonia

N-Hydroxy-4-methoxybenzimidamide (0.170 g, 1 mmol) and water (1 mL) were added in a carousel tube followed by the addition of the corresponding amount of additive. The reaction mixture was stirred at room temperature for 24 hours. The solvent was removed under vacuum and the crude reactions were analysed by ¹H NMR.

Table S2

Entry	Additive	Conversion (%) ^a	
1	NH ₂ OH (1 equiv.)	0	
2	NH ₂ OH (2 equiv.)	0	
3	NH ₂ OH (3 equiv.)	2	
4	NH ₂ OH (5 equiv.)	3	
5	NH ₂ OH (10 equiv.)	3	
6	NH ₂ OH (20 equiv.)	3	
7	NH₄OH (10 equiv.)	0	

a) Conversions were determined by analysis of the ¹H-NMR spectra

Effect of additives in the formation of amidoxime

4-Methoxybenzonitrile (0.130 g, 1 mmol) and hydroxylamine 50% in water solution (1 mL) were added to a carousel tube. 1 mL of HCl or NaOH 2 M solution was added into the reaction mixture (see table S3). The reaction mixture was stirred at room temperature for 24 hours. The solvent was removed under vacuum and the crude reaction was analysed by ¹H-NMR.

Table S3

Entry	Additive	Notos	Conversion (%)	Ratio
LIILIY		Notes		2:3
1	2 M HCl	Added at the beginning of the reaction	100	50:50
2	2 M HCl	Added after 24 hours	100	55:45
3	2 M NaOH	Added at the beginning of the reaction	100	60:40
4	2 M NaOH	Added after 24 hours	100	100:0

a) Conversions were determined by analysis of the ¹H-NMR spectra

Optimization of the reaction conditions using N,N-diethylhydroxylamine as additive

4-Methoxybenzonitrile (1 mmol) was added to a carousel tube followed by water (1 mL), the amounts of *N*,*N*-diethylhydroxylamine and Lewis acid, as well as the temperature and the reaction time were modified according to table S4. The solvent was removed under vacuum and the crude was analysed by ¹H-NMR.

Entry	NEt₂OH	Lewis acid	Tomp (0C)	Time (h)	Conversion (%) ^a
	(x equiv.)	(2 mol%)	Temp (°C)		
1	10		25	24	82
2	10		30	24	93
3	10		35	24	100
4	10		40	24	100
5	1		35	24	89
6	2		35	24	93
7	3		35	24	100
8	3		35	3	45
9	3		35	5	100
10	3	Cu(OAc) ₂	35	12	100
11	3	Zn(OAc) ₂	35	12	95
12	3	$[IrCp*I_2]_2$	35	12	100
13	3	Cu(OAc) ₂	35	5	100
14	3	$[IrCp*I_2]_2$	35	5	100
15	3	Cu(OAc) ₂	35	3	100
16	3	$[IrCp*I_2]_2$	35	3	100
17	3	Cu(OAc) ₂	35	2	92
18	3	$[IrCp*I_2]_2$	35	2	85

Table S4

a) Conversions were determined by analysis of the ¹H-NMR spectra

Effect of the solvent in the hydration of nitriles

4-Methoxybenzonitrile (1 mmol) was added to carousel tube followed by the addition of solvent (1 mL), *N*,*N*-diethylhydroxylamine (3 mmol) and copper acetate (2 mol%). The reaction mixture was heated at 35 °C for 3 hours. The solvent was removed under vacuum and the crude reaction was analysed by ¹H-NMR using d⁶-DMSO as deuterated solvent.

a) Conversions were determined by analysis of the ¹H-NMR spectra

NMR Experiment

4-Methoxybenzonitrile (65 mg, 0.5 mmol) *N*,*N*-diethylhydroxylamine (133 mg, 1.5 mmol) and D₂O (0.5 mL) were added to a NMR tube. The tube was sealed and heated to 70 °C in a Bruker Avance 500 (500 MHz). ¹³C NMR spectra were taken every 15 minutes for 12 hours.

Experiments using ¹⁸O-labelled water

4-Methoxybenzonitrile (13 mg, 0.1 mmol), *N*,*N*-diethylhydroxylamine (27 mg, 0.3 mmol), copper acetate (3.2 mg, 2 mol%) and ¹⁸O-labelled water (1 mL) were added in a carousel tube. The reaction mixture was then stirred at room temperature for 24 hours. The final mixture was diluted in methanol and analysed by HRMS-ESI. A peak with m/z = 154.0749 was not detected, indicating that incorporation of ¹⁸O into the amide product had not occurred. This evidence supports that water does not act as nucleophile.

Synthesis of N-hydroxy-4-methoxybenzimidamide (3)

4-Methoxybenzonitrile (1.300 g, 10 mmol) and hydroxylamine (0.600 g, 20 mmol) were dissolved in ethanol (50 mL) and heated at reflux for 3 hours. The reaction mixture was cooled to room temperature and the solvent was removed under vacuum. The resulting residue was dissolved in ethyl acetate (20 mL) and washed with brine (2 x 20 mL). The organic layers were combined, dried over magnesium sulfate and filtered giving N-hydroxy-4-methoxybenzimidamide (1.46 g, 90%) as a white solid. The product obtained was used without further purification. ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, 2H, *J* = 7.6 Hz, aromatic), 6.94 (d, 2H, *J* = 7.6 Hz, aromatic), 4.89 (br s, 2H, NH₂), 3.83 (s, 3H, CH₃); HRMS-ESI calcd for [C₈H₁₀N₂O₂]⁺: 167.0776 [M+H]⁺. Found 167.0798; m.p. 120 - 122 °C.

General procedure for the synthesis of amides

The appropriate nitrile (1 mmol) was added to carousel tube followed by the addition of water (1 mL), N,N-diethylhydroxylamine (3 mmol) and copper acetate (2 mol%). The reaction mixture was heated at 35 °C for 3 hours. The solvent was removed under vacuum and the crude reaction was purified over a short pad of silica (eluting with dichloromethane/methanol 95:5).

4-Methoxybenzamide (2)¹

NH₂

4-Methoxybenzonitrile (0.130 g, 1 mmol) was used as nitrile species. 4-Methoxybenzamide was recovered after purificacion by column chromatography as a white solid (0.147 g, 97%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 7.91 - 7.71 (m, 3H, aromatic and NH₂), 7.20 (br s, 1H, NH₂), 6.95 (d, *J* = 8.6 Hz, 2H, aromatic), 3.78 (s, 3H, OCH₃); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 167.7, 161.9, 129.7, 126.8, 113.7, 55.6; HRMS-ESI calcd for [C₈H₉NO₂]⁺: 152.0706 [M+H]⁺. Found 152.0731; FT-IR (neat) v in cm⁻¹: 3393, 1674; m.p. 207 - 208 °C.

Benzamide (4)²

NH₂

Benzonitrile (0.100 g, 1 mmol) was used as nitrile species. Benzamide was recovered after purification by column chromatography as a white solid (0.119 g, 98%).

¹H NMR (300 MHz, CDCl₃, 25 °C) δ 7.84 - 7.81 (m, 2H, aromatic), 7.56 - 7.42 (m, 3H, aromatic), 6.33 (br s, 2H, NH₂); ¹³C NMR (75.5 MHz, CDCl₃, 25 °C) δ 169.5, 133.2, 132.1, 128.6, 127.01; HRMS-ESI calcd for [C₇H₆NO]⁻: 120.0455 [M-H]⁻. Found 120.0458; FT-IR (neat) v in cm⁻¹: 2268, 1659; m.p. 129 - 130 °C.

4-Methylbenzamide (5)¹

NH:

4-Methylbenzonitrile (0.120 g, 1 mmol) was used as nitrile species. 4-Methylbenzamide was recovered after purification by column chromatography as a white solid (0.132 g, 98%).

¹H NMR (250 MHz, CDCl₃, 25 °C) δ 7.75 - 7.68 (d, *J* = 8.3 Hz, 2H, aromatic), 7.28 - 7.21 (d, *J* = 8.3 Hz, 2H, aromatic), 6.08 (br s, 2H, NH₂), 2.33 (s, 3H, CH₃); ¹³C NMR (75.5 MHz, CDCl3, 25 °C) δ 169.5, 142.6, 130.4, 129.3, 127.4, 21.5; HRMS-ESI calcd for [C₈H₉NONa]⁺: 158.0582 [M+Na]⁺. Found 158.0590; FT-IR (neat) v in cm⁻¹: 3303, 1650; m.p. 129 - 130 °C.

4-Fluorobenzamide (6)¹

4-Fluorobenzonitrile (0.120 g, 1 mmol) was used as nitrile species. 4-Fluorobenzamide was recovered after purification by column chromatography as a white solid (0.151 g, 92%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 7.99 (br s, 1H, NH₂), 7.92 (dd, *J* = 5.6 Hz, *J* = 3.3 Hz, 2H, aromatics), 7.40 (s, 1H, NH₂), 7.26 (t, *J* = 9.0 Hz, 2H, aromatic); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 167.1, 164.2 (d, *J* = 248.2 Hz), 131.0, 130.5 (d, *J* = 9.0 Hz), 115.5 (d, *J* = 21.1 Hz); HRMS-ESI calcd for [C₇H₅NOF]⁻: 138.0361 [M-H]⁻. Found 138.0389; FT-IR (neat) v in cm⁻¹: 3331, 1674; m.p. 153 - 155 °C**4**-(Trifluoromethyl)benzamide (7

NH₂

4-(Trifluoromethyl)benzonitrile (0.185 g, 1 mmol) was used as nitrile species. 4-(Trifluoromethyl)benzamide was recovered after purification by column chromatography as a white solid (0.176 g, 93%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 8.20 (br s, 1H, NH₂), 8.05 (d, *J* = 7.9 Hz, 2H, aromatic), 7.82 (d, *J* = 8.3 Hz, 2H, aromatic), 7.63 (br s, 1H, NH₂); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 167.0, 138.4, 131.7

(q, J = 31.7 Hz), 124.6, 127.1 (q, J = 3.74 Hz), 125.6 (q, J = 237.4 Hz); HRMS-ESI calcd for [C₈H₆F₃NONa]⁺: 212.0299 [M+Na]⁺. Found 212.0537; FT-IR (neat) v in cm⁻¹: 3373, 1654; m.p. 183 - 185 °C.

4-Chlorobenzamide (8)¹

4-Chlorobenzonitrile (0.137 g, 1 mmol) was used as nitrile species. 4-Chlorobenzamide was recovered after purification by column chromatography as a white solid (0.149 g, 96%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 8.07 (br s, 1H, NH₂), 7.88 (d, *J* = 8.6 Hz, 2H, aromatic), 7.45 - 7.54 (m, 3H, aromatic and NH₂); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 131.3, 138.2, 159.6, 168.3; HRMS-ESI calcd for [C₇H₅CINO]⁻: 154.0065 [M-H]⁻. Found 154.0092; FT-IR (neat) v in cm⁻¹: 3370, 1653; m.p. 178 - 181 °C.

4-Nitrobenzamide (9)³

4-Nitrobenzonitrile (0.150 g, 1 mmol) was used as nitrile species. 4-Nitrobenzonitrile was recovered after purification by column chromatography as a white solid (0.134 g, 81%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 8.32 (d, *J* = 8.3 Hz, 3H, aromatic and NH₂), 8.11 (d, *J* = 9.0 Hz, 2H, aromatic), 7.72 (br s, 1H, NH₂); ¹³C NMR (75 MHz, d⁶-DMSO, 25 °C) δ 166.5, 149.4, 140.3, 129.3, 123.8; HRMS-ESI calcd for [C₇H₆N₂O₃]⁻: 165.0306 [M-H]⁻. Found 165.0336; FT-IR (neat) v in cm⁻¹: 3367, 1656; m.p. 197 - 199 °C.

3-Methylbenzamide (10)³

3-Methylbenzonitrile (0.120 g, 1 mmol) was used as nitrile species. 3-Methylbenzamide was recovered after purification by column chromatography as a white solid (0.126 g, 93%).

¹H NMR (300 MHz, CDCl₃, 25 °C) δ 7.65 (s, 1H, aromatic), 7.62 - 7.55 (m, 1H, aromatic), 7.35 - 7.29 (m, 2H, aromatic), 6.33 (br s, 2H, NH₂), 2.39 (s, 3H, CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25 °C) δ 169.9, 138.5, 133.6, 132.7, 128.5, 128.1, 124.3, 21.3; HRMS-ESI calcd for $[C_8H_9NONa]^+$: 158.0582 [M+Na]⁺. Found 158.0590; FT-IR (neat) v in cm⁻¹: 3375, 1649; m.p. 92 - 93 °C.

3-Chlorobenzamide (11)⁴

3-Chlorobenzonitrile (0.140 g, 1 mmol) was used as nitrile species. 3-Chlorobenzamide was recovered after purification by column chromatography as a white solid (0.15 g, 94%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 8.09 (br s, 1H, NH₂), 7.90 (s, 1H, aromatic), 7.81 (d, *J* = 7.9 Hz, 1H, aromatic), 7.52 (m, 3H, aromatic and NH₂); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 166.7, 136.6, 133.4, 131.4, 130.6, 127.6, 126.5; HRMS-ESI calcd for [C₇H₅CINO]⁻: 154.0065 [M-H]⁻. Found 154.0073; FT-IR (neat) v in cm⁻¹: 3359, 1659; m.p. 134 - 136 °C.

2-Methylbenzamide (12)⁴

2-Methylbenzonitrile (0.120 g, 1 mmol) was used as nitrile species. 2-Methylbenzamide was recovered after purification by column chromatography as a white solid (0.128 g, 95%).

¹H NMR (300 MHz, CDCl₃, 25 °C) δ 7.35 (d, J = 8.1 Hz, 1H, aromatic), 7.29 - 7.24 (m, 1H, aromatic), 7.15 (m, 2H, aromatic), 2.43 (s, 3H, CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25 °C) δ 172.3, 136.3, 135.2, 131.2, 130.3, 126.9, 125.7, 19.9; HRMS-ESI calcd for [C₈H₉NONa]⁺: 158.0582 [M+Na]⁺. Found 158.0592; FT-IR (neat) v in cm⁻¹: 3370, 1651; m.p. 139 - 140 °C.

2-Chlorobenzamide (13)⁴

2-Chlorobenzonitrile (0.137 g, 1 mmol) was used as nitrile species. 2-Chlorobenzamide was recovered after purification by column chromatography as a white solid (0.143 g, 92%).

¹H NMR (300 MHz, CDCl₃, 25 °C) δ 7.76 (dd, J = 8.1 Hz, J = 1.2 Hz, 1H, aromatic), 7.40 - 7.25 (m, 3H, aromatic), 6.32 (br s, 2H, NH₂); ¹³C NMR (75.5 MHz, CDCl₃, 25 °C) δ 168.2, 133.8, 131.8, 130.8, 130.7, 130.4 127.2; HRMS-ESI calcd for [C₇H₆CINONa]⁺: 178.0036 [M+Na]⁺. Found 178.0080; FT-IR (neat) v in cm⁻¹: 3363, 1651; m.p. 139 - 140 °C.

2-Hydroxybenzamide (14)³

OH NH₂

2-Hydroxybenzonitrile (0.120 g, 1 mmol) was used as nitrile species. 2-Hydroxybenzamide was recovered after purification by column chromatography as a white solid (0.137 g, 85%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 13.01 (s, 1H, OH), 8.40 (br s, 1H, NH₂), 7.80 (br s, 1H, NH₂), 7.85 (d, *J* = 8.2 Hz, 1H, aromatic), 7.42 (t, *J* = 8.2 Hz, 1H, aromatic), 6.88 - 6.81 (m, 2H, aromatic); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 172.5, 161.5, 134.4, 128.4, 118.7, 117.8, 114.7; HRMS-ESI calcd for [C₇H₇NO₂]⁻: 136.0404 [M-H]⁻. Found 136.0342; FT-IR (neat) v in cm⁻¹: 3420, 1685; m.p. 140 - 142 °C.

2,4-Dichlorobenzamide (15)³

NH₂

2,4-Dichlorobenzonitrile (0.170 g, 1 mmol) was used as nitrile species. 2,4-Dichlorobenzamide was recovered after purification by column chromatography as a white solid (0.095 g, 50%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 7.91 (br s, 1H, NH₂), 7.66 - 7.61 (m, 2H, NH₂ and aromatic), 7.47 (d, *J* = 1.2 Hz, 2H, aromatic); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 167.6, 136.3, 134.6, 131.2, 130.4, 129.5, 127.6; HRMS-ESI calcd for [C₇H₄Cl₂NO]⁻: 187.9675 [M-H]⁻. Found 187.9708; FT-IR (neat) v in cm⁻ ¹: 3376, 1651; m.p. 193 - 195 °C.

Pentafluorobenzamide (16)⁵

Pentafluorobenzonitrile (0.200 g, 1 mmol) was used as nitrile species. Pentafluorobenzamide was recovered after purification by column chromatography as a white solid (0.201 g, 92%)

¹H NMR (500 MHz, d⁶-DMSO, 25 °C) δ 8.21 (br s, 1H, NH₂), 8.16 (br s, 1H, NH₂); ¹⁹F NMR (470 MHz, d⁶-DMSO, 25 °C) δ -139.86 -139.94 (m, 2F), -150.18 (t, *J* = 21 Hz, 1F), -160.12 -160.20 (m, 2F); HRMS-ESI calcd for [C₇H₁F₅NO]⁻: 209.9984 [M-H]⁻. Found 209.9978; FT-IR (neat) v in cm⁻¹: 3391, 1672; m.p. 147 - 149 °C.

Butyramide (17)¹

 NH_2

Butyronitrile (70 mg, 1 mmol) was used as nitrile species. Butyramide was recovered after purification by column chromatography as a white solid (70 mg, 79%).

¹H NMR (250 MHz, CDCl₃, 25 °C) δ 5.35 (br s, 2H, NH₂), 2.14 (t, *J* = 7.5 Hz, 2H, CH₂C(O)), 1.60 (sextet, *J* = 7.5 Hz, 2H, CH₃CH₂CH₂), 0.90 (t, *J* = 7.5 Hz, 3H, CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25 °C) δ 175.5, 37.3, 19.0, 13.7; HRMS-ESI calcd for [C₄H₁₀NO]⁺: 88.0757 [M+H]⁺. Found 88.0752; FT-IR (neat) v in cm⁻¹: 3360, 1632; m.p. 115 - 117 °C.

Propionamide (18)⁶

Propionitrile (55 mg, 1 mmol) was used as nitrile species. Propionamide was recovered after purification by column chromatography as a white solid (58 mg, 80%).

¹H NMR (300 MHz, CDCl₃, 25 °C) δ 6.31 (br s, 1H, NH₂), 5.92 (br s, 1H, NH₂), 2.20 (q, *J* = 7.3 Hz, 2H, CH₂), 1.09 (t, *J* = 7.3 Hz, 3H, CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25 °C) δ 177.3, 28.9, 9.5; HRMS-ESI calcd for [C₃H₆NO]⁻: 72.0455 [M-H]⁻. Found 72.0523; FT-IR (neat) v in cm⁻¹: 1626; m.p. 133 - 134 °C.

Cyclohexane amide (19)²

Cyclohexanecarbonitrile (0.110 g, 1 mmol) was used as nitrile species. Cyclohexane amide was recovered after purification by column chromatography as a white solid (0.113 g, 89%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 7.13 (br s, 1H, NH₂), 6.62 (br s, 1H, NH₂), 2.06 - 1.96 (m, 1H, CH), 1.67 - 1.57 (m, 5H, CH₂), 1.35 - 1.03 (m, 5H, CH₂); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 177.7, 44.0, 28.5 (2C), 25.9, 25.7 (2C); HRMS-ESI calcd for [C₇H₁₃NONa]⁺: 150.0895 [M+Na]⁺. Found 150.0968; FT-IR (neat) v in cm⁻¹: 3340, 1661; m.p. 186 - 188 °C.

Benzenepropanamide (20)²

 NH_2

Benzenepropanonitrile (0.130 g, 1 mmol) was used as nitrile species. Benzenepropanamide was recovered after purification by column chromatography as a white solid (0.127 g, 85%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 7.34 - 7.18 (m, 5H, aromatic), 5.98 (br s, 1H, NH₂), 5.60 (br s, 1H, NH₂), 2.95 (t, *J* = 6.2 Hz, 2H, CH₂), 2.51 (t, *J* = 6.2 Hz, 2H, CH₂); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 174.9, 140,7, 128.5, 128.4, 126.3, 37.5, 31.4; HRMS-ESI calcd for [C₉H₁₁NONa]⁺: 172.0738 [M+Na]⁺. Found 172.0827; FT-IR (neat) v in cm⁻¹: 3389, 1649; m.p. 96 - 98 °C.

Cinnamamide (21)¹

Cinnamonitrile (0.131 g, 1 mmol) was used as nitrile species. Cinnamamide was recovered after purification by column chromatography as an off-white solid (0.127 g, 85%).

¹H NMR (300 MHz, CDCl₃, 25 °C) δ 7.66 (d, J = 15.9 Hz, 1H, CH=CH), 7.58 - 7.48 (m, 2H, aromatic), 7.41 - 7.33 (m, 3H, aromatic), 6.51 (d, J = 15.4 Hz, 1H, CH=CH), 5.86 (br s, 2H, NH₂); ¹³C NMR (75.5 MHz, CDCl₃, 25 °C) δ 168.3, 142.7, 134.4, 130.1, 128.9, 128.0, 122.7; HRMS-ESI calcd for [C₉H₁₀NO]⁺: 148.0762 [M+H]⁺. Found 148.0797; FT-IR (neat) v in cm⁻¹: 3382, 1661; m.p. 149 - 151 °C.

Furan-2-carboxylic acid amide (22)³

2-Furonitrile (0.090 g, 1 mmol) was used as nitrile species. 2-Furanamide was recovered after purification by column chromatography as a brown solid (0.1 g, 92%).

¹H NMR (300 MHz, CDCl3, 25 °C) δ 7.41 (dd, J = 1.5 Hz, J = 0.7 Hz, 1H, CH), 7.09 (dd, J = 2.6 Hz, 0.7 Hz, 1H, CH), 6.44 (dd, J = 3.7 Hz, J = 1.5 Hz, 1H, CH), 6.17 (br s, 2H, NH2); ¹³C NMR (75.5 MHz, CDCl₃, 25 °C) δ 160.3, 147.4, 144.4, 115.2, 112.3; HRMS-ESI calcd for [C₅H₆NO₂]⁺: 112.0393 [M+H]⁺. Found 112.0411; FT-IR (neat) v in cm⁻¹: 3352, 1625; m.p. 141 - 142 °C.

Thiophene-2-carboxylic acid amide (23)¹

NH₂

2-Thiophenecarbonitrile (0.110 g, 1 mmol) was used as nitrile species. 2-Thiophenecarboxamide was recovered after purification by column chromatography as a white solid (0.10 g, 79%).

¹H NMR (300 MHz, d⁶-DMSO, 25 °C) δ 7.98 (br s, 1H, NH₂), 7.76 - 7.69 (m, 2H, CH), 7.40 (br. s, 1H, NH₂), 7.11 (t, *J* = 4.2 Hz, 1H, CH); ¹³C NMR (75.5 MHz, d⁶-DMSO, 25 °C) δ 163.2, 140.4, 131.2, 128.8, 128.1; HRMS-ESI calcd for [C₅H₄NOSNa]⁺: 149.9990 [M+Na]⁺. Found 149.9969; FT-IR (neat) v in cm⁻¹: 3366, 1654; m.p. 177 - 179 °C.

2-Phenyl-malonamic acid ethyl ester (24)⁷

Cyano-phenylacetic acid ethyl ester (0.190 g, 1 mmol) was used the nitrile species. 2-Phenyl-malonamic acid ethyl ester was recovered after purification by column chromatography as a white solid (0.166 g, 80%).

¹H NMR (300 MHz, CDCl₃, 25 °C) δ 7.40 - 7.20 (m, 5H, aromatic), 6.81 (br s, 1H, NH₂), 5.71 (br s, 1H, NH₂), 4.44 (s, 1H, CH), 4.21 - 4.06 (m, 2H, CH₂), 1.21 (t, *J* = 6 Hz, 3H, CH₃); ¹³C NMR (75.5 MHz, CDCl₃, 25 °C) δ 170.6, 169.6, 133.9, 129.1, 128.3, 128.2, 62.0, 58.4, 13.9; HRMS-ESI calcd for [C₁₁H₁₃NO₃Na]⁺: 230.0793 [M+Na]⁺. Found 230.0859; FT-IR (neat) v in cm⁻¹: 3394, 1655; m.p. 133 - 134 °C.

¹ R. Ohmura, M. Takahata and H. Togo, *Tetrahedron Lett.*, 2010, **51**, 4378

² S. K. Sharma, S. D. Bishopp, C. L. Allen, R. Lawerence, M. J. Bamford, A. A. Lapkin, P. Plucinski, R. J. Watson and J. M. J Williams, *Tetrahedron Lett.*, 2011, **52**, 4252

³ Z. Li, L. Wang and X. Zhou, Adv. Synth. Catal., 2012, **354**, 584

⁴ C. C. Hughes and D. Trauner, Angew. Chem. Int. Ed., 2002, **41**, 4556

⁵ E. Tomás-Mendivil, F. J. Suárez, J. Díez and V. Cadierno, *Chem. Commun.*, 2014, **50**, 9661

⁶ K. Y. Koltunor, J. Sommer and S. Walspurger, *Eur. J. Org. Chem.*, 2009, **19**, 4039

⁷ M. C. Kozlowski, E. S. Divirgilio, K. Malolananasimham and A. Carol, *Tetrahedron: Asymmetry*, 2005, **16**, 3599

¹H-NMR and ¹³C-NMR spectroscopic data

240 230 220 210 200 190 190 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1(pm)

NH₂

S18 |

S23 |

S33 |

S35 |

