Switchable Supramolecular Catalysis using DNA-Templated Scaffolds

Miguel Angel Aleman Garcia, Yuwei Hu, Itamar Willner*

Email: willnea@vms.huji.ac.il

Table of Contents
I. Instrumentation.. S2
II. Materials and general procedures ... S2
III. Sequences of the oligonucleotides.. S2
IV. Synthesis of (3).. S3
V. Synthesis of adamantane acetate succinamide ester.. S3
VI. Synthesis of (1), (2), (6), and (7) .. S4
VII. β-Cyclodextrin-oligonucleotide catalyzed hydrolysis of m-tert-butylphenyl acetate (3)................................. S5
VIII. Kinetics of the hydrolysis of (3).. S6
IX. References... S6
Instrumentation

Absorbance measurements of ABTS$^-$ were performed using a Shimadzu UV-2401PC UV/Vis spectrophotometer. Mass spectra were obtained using a 6520 Accurate-Mass Q-TOF LC/MS-Agilent Technologies instrument. The NMR spectra were recorded using an Advance DRX 400 Bruker instrument and the spectra were referenced to residual solvent signals and were recorded at 298 K. 1H NMR data are reported as follows: chemical shift in ppm on the δ scale, multiplicity, and integration (s, singlet; d, doublet; m, multiplet). 13C NMR data are reported as follows: chemical shift in ppm on the δ scale.

Materials and general procedures

Unless otherwise noted, all materials and compounds were prepared using commercially available reagents and used without further purification. Water was purified with a Milli-Q purification system. Dibenzocyclooctyne-sulfo-N-hydroxysuccinimidyld ester, 6-mono deoxy-6-monoamino-β-cyclodextrin hydrochloride, 1-adamantaneacetic acid, N-hydroxysulfosuccinimide sodium salt, 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide, sodium carbonate, 2-[morpholino]ethanesulfonic acid (MES), ABTS$^{2-}$, sodium chloride, magnesium chloride, hydrogen peroxide, 3-tert-butilphenol, acetyl chloride, luminol, and potassium chloride, were purchased from Sigma–Aldrich. DNA oligonucleotides were purchased from Integrated DNA Technologies Inc., (Coralville, IA). Hemin was purchased from Porphyrin Products (Logan, UT).
Sequences of the oligonucleotides.

(1) 5′-/5AzideN/GGC TAG CGT TAC TCG G-3′
(2) 5′-CGT ATT ATC CGA GTA ACG CTG GCC/3AmMC6T/-3′
(4) 5′-AGTGGAAAGGCTAGCTACTCAGGATAAATACG-3′
(5) 5′-CGTATTATCCGAGTAACGCTAGCCTTTCCACT -3′
(6) 5′-/5AzideN/ACG TAA TTG GGT -3′
(7) 5′-GGG CGG GAT GGG TAT TAC GT/3AmMC6T/-3′

m-tert-Butylphenyl acetate (3) was prepared following published procedures

1H NMR: (CDCl₃, 400 MHz): 7.27 (m, 1Hₐ), 7.27 (m, 1Hₚ), 7.10 (s, 1Hₖ), 6.94 (d, J = 7.2 Hz, 1Hₜ), 2.32 (s, 3H₂), 1.34 (s, 9H₂). ES-MS (m/z): 215.10 [C₁₂H₁₆O₂ + Na⁺] (cal. 215.10).

Synthesis of N-hydroxysuccinimide adamantane acetate.

1-Adamantane acetic acid (200 mg, 1 mmol, MW 194.27 g mol⁻¹) was dissolved in dry DCM, and cooled down to 0 °C. SOCl₂ (184 mg, 1.5 equiv. MW 118.97 g mol⁻¹) was added dropwise. After 10 minutes triethyl amine was added to the reaction mixture and the resulting solution was let to react for 3 hours at room temperature. After this period of time NHS (178 mg, 1.5 equiv.
MW 115.09 gmol\(^{-1}\)) was added to the reaction flask and let to react for 12 hours. Then the solvent was removed under reduced pressure and the product was washed with aqueous HCl (0.1 M), the organic phase was extracted in DCM and subjected to column chromatography (r.f. = 0.15 hexane:ethyl acetate, 9:1). 74% yield.

\(^{1}\)H NMR (CDCl\(_3\), 400 MHz): 2.85 (m, 4H\(\text{a}\)), 2.36 (s, 2H\(\text{b}\)), 2.03 (s, 3 H\(\text{c}\)), 1.71 (m, 12 H\(\text{d}\)), ES-MS (m/z): 314.14 [C\(_{16}\)H\(_{21}\)NO\(_4\)+ Na\(^+\)] (cal. 314.14).

\(^{13}\)C NMR (CDCl\(_3\), 125 MHZ): (a) 169.2, (b) 166.3, (c) 45.3, (d) 42.0, (e) 36.5, (f) 33.2, (g) 28.5, (h) 25.7.

Syntheses of β-CD-modified and adamantane-modified oligonucleotides

Dibenzocyclooctyne-sulfo-N-hydroxysuccinimidyld ester (1 mg, 1.88 µmol, MW 532.50 gmol\(^{-1}\)) was mixed with 1.2 equiv. of 6-monodeoxy-6-monoamino-β-cyclodextrin hydrochloride (2.64 mg, 2.25 µmol, MW 1170.46 gmol\(^{-1}\)) in PBS buffer (10 mM, pH 7.5) for one hour. Following the reaction time, the mixture was added to the azide-modified oligonucleotides (1) or (6). The resulting solution was allowed to react for 2 hours at room temperature. The product was cleaned using a MicroSpin G-25 columns and further purified using reverse-phase HPLC. (1) ES-MS (m/z): found 6680.01, (cal. 6680.9) (6) ES-MS (m/z): found 5444.2, (cal. 5467.3)

150 µL of a stock solution of amino-modified oligonucleotide (2) or (7) (200 µM in H\(_2\)O) was mixed with 100 µL of phosphate buffer (100 mM pH 7.2) and 20 µL of dimethylformamide. To
the resulting solution, 40 µL of a stock solution of N-hydroxysuccinimide adamantane acetate. in
dimethylformamide was added in fractions of 10 µL over a period of 4 hours with continuous
vigorous shaking. The mixture was let to react overnight and product was cleaned using a
MicroSpin G-25 columns and further purified using reverse-phase HPLC. (2) ES-MS (m/z):
found 7956.3, (cal. 7948.9) (7) ES-MS (m/z): found 6904.1, (cal. 6905.2)

β-Cyclodextrin-oligonucleotide catalyzed hydrolysis of m-tert-butylphenyl acetate (3).

Switchable catalysis of (3) was studied in a solution consisting of (1) (10 µM), (2) (10 µM), and
(3) (100 µM) in HCO$_3^-$/CO$_3^{2-}$ (10 µM pH 9.2) and MgCl$_2$ (5 mM) at 30 °C. Fuel (4) and anti-
fuel (5) oligonucleotides were added at 10 mM. The reaction was followed by measuring the
absorbance of the product m-tert-butylphenol (λ= 275 nm).

The switchable catalysis of 3 (100 µM) by the K$^+$-stabilized system was studied in a solution
consisting of 6 (10 µM), 7 (10 µM), in HCO$_3^-$/CO$_3^{2-}$ (10 mM pH 9.2) and MgCl$_2$ (5 mM) at 30
°C. Alternated additions of K$^+$ (20 mM) and 18-crown-6-ether (25 mM) were used to switch the
system “OFF” and “ON” respectively.

The switchable HRP-mimicking activities of the hemin–G-quadruplex system were analyzed
using hemin and ABTS$^{2-}$ with final concentrations of 100 nM and 2 mM, respectively. The
reaction was initialized by addition of hydrogen peroxide (200 mM). The “OFF”/“ON”
switching was generated by the addition of K$^+$ (20 mM) or 18-crown-6 (25 mM), respectively.

The rate of the peroxidase-mimicking reaction was monitored at λ= 415 nm.

The chemiluminescence assays were performed in a solution that included 6 (10 µM) and 7 (10
µM), 100 nM of hemin, 0.5 mM of luminol, and 20 mM of H$_2$O$_2$ in HCO$_3^-$/CO$_3^{2-}$ (10 mM pH
9.2) and MgCl$_2$ (5 mM). The light emission intensity was measured immediately after the
addition of H$_2$O$_2$. The “OFF”/“ON” switching was generated by the addition of K$^+$ (20 mM) or 18-crown-6 (25 mM), respectively.

Figure S1. Time dependent change in absorption upon hydrolysis of m-tert-butylphenyl acetate (3). Black line: using β-cyclodextrin functionalized oligonucleotide (1) (10 µM). Red line: Background hydrolysis of m-tert-butylphenyl acetate (3) 100 µM, HCO$_3^-$/CO$_3^{2-}$,10 mM, pH=9.2).

References