Supporting Information

Cu(II)-Catalyzed Esterification Reaction via Aerobic Oxidative Cleavage of C(CO)–C(alkyl) Bonds

Ran Ma, Liang-Nian He*, An-Hua Liu, Qing-Wen Song

State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071 (P. R. China).

Email: heln@nankai.edu.cn
Fax: (+86)-22-2350-3878; phone: (+86)-22-2350-3878

Table of Contents

1. General methods and materials S2
 Part I. General Information
 Part II. General procedures for Cu-catalyzed oxidative esterification of ketones
2. Condition Screening and Mechanism Study S3-S7
3. Characterization data for products S8-S12
4. NMR and GC-MS Spectra Copies S13-S34
5. References S35
1. General methods and materials

Part I. General Information

All commercially available compounds were purchased from Sigma-Aldrich, Alfa-Aesar, Acros, Aladdin Reagent Inc., Tianjin Guangfu Fine Chemical Research Institute. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification except for methanol and ethanol, which were distilled by the documented method prior to use. 1H NMR spectra were recorded on a Bruker 400 spectrometer in CDCl$_3$ and CDCl$_3$ (7.26 ppm) was used as internal reference, 13C NMR spectra were recorded at 100.6 MHz in CDCl$_3$ and CDCl$_3$ (77.0 ppm) was used as internal reference. GC-MS were recorded on a Thermo Finnigan Polaris Q equipment in EI mode. GC analyses were performed on Shimadzu GC-2014, equipped with a capillary column (RTX-50, 30 mm × 0.25 mm) using a flame ionization detector.

Caution: Experiments using compressed oxygen are potentially dangerous and must only be carried out by using the appropriate equipment and under rigorous safety precautions.

Part II. General procedures for Cu-catalyzed oxidative esterification of ketones

A mixture of substrate (1 mmol), CuCl$_2$·2H$_2$O (34 mg, 20 mol%), LiBr (13 mg, 0.15 equiv) and 14 equiv EtOH were placed in a 25-mL stainless steel autoclave equipped with an inner glass tube in room temperature. O$_2$ (1 MPa) was subsequently introduced into the autoclave and the system was heated at the predetermined reaction temperature for 15 min to reach the equilibration. The mixture was stirred continuously for the desired reaction time. After cooling, products were then diluted by ethyl acetate and analyzed by gas chromatograph (Shimadzu GC-2014) equipped with a capillary column (RTX-50, 30 mm × 25 mm) using a flame ionization detector by comparison with the retention times of authentic samples. The residue was purified by column chromatography on silica gel (200–300 mesh, eluting with petroleum ether/ethyl acetate 30:1) to afford the desired product. The isolated products were further identified with NMR spectra and GC-MS, which are consistent with those reported in the literature.
2. Condition Screening and Mechanism Study

Table S1 The Evaluation of Metal Salts

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst (mol%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuCl₂·2H₂O</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>CuBr₂</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>CuCl₂</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>CuCl</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>CuBr</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Cu(acac)₂</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>Cu(OTf)₂</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>FeBr₃</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Fe(NO₃)₃</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Fe(acac)₃</td>
<td>4</td>
</tr>
</tbody>
</table>

*a Reaction conditions: 1a (1 mmol, 150 mg), LiBr (0.3 equiv, 26 mg), EtOH (14 equiv, 645 mg), catalyst (20 mol%), O₂; 1 MPa, 130 °C, 3 h. *Yields are determined by GC with 4-Acetylbiphenyl as internal standard.

To identify other products, we increased the reaction scale to 10 mmol. The generation of CO₂ was detected by limer–water test (Figure S1). In addition, CCU (Carbon capture and utilization) strategy with piperidine as the absorbent has also been used to confirm CO₂ (Figure S2).
Figure S2 The formation of the carbamate between piperidine and CO$_2$. (a): piperidine. (b) carbamate. (c): 13C NMR of carbamate
Scheme S1 β-oxopropylcarbamate synthesis upon CO$_2$ absorption by pyperidine with 2-methylbut-3-yn-2-ol catalyzed by Ag$_2$O/PPh$_3$
Scheme S2 Decomposition of HCOOH under the standard conditions

Scheme S3 Radical Trapping Experiments

2,2-diethoxy-1-phenylethanone (6f) was detected by 1H NMR when the conversion 6c or 6d to benzoate (2k) (Figure S3 and Figure S4). 1H NMR (CDCl$_3$, 400MHz): δ = 1.23 (t, 6H), 3.62-3.66 (m, 2H), 3.71-3.79 (m, 2H), 5.26 (s, 1H), 7.42-7.46 (m, 2H), 7.52-7.57 (m, 1H), 8.14 (d, 2H, J=8.4Hz). Synlett, 2014, 25, 1591-159

Figure S3 1H NMR spectra of the reaction mixture of compound 6c.
Figure S4 \({}^1\)H NMR spectra of the reaction mixture of compound 6d.

Scheme S4 Control experiments of intermediate 6e

Scheme S5. Reactions of intermediate 6g.
3. Characterization data for products

ethyl 4-methoxybenzoate (2a)

\[
\text{O} \quad \text{O} \\
\text{H} \quad \text{O}
\]

1H NMR (400 MHz, CDCl$_3$, ppm) δ = 8.00 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). 13C NMR (100.6 MHz, CDCl$_3$, ppm) δ = 166.52, 163.36, 131.65, 123.07, 113.65, 60.75, 55.52, 14.50.

ethyl benzo[d][1,3]dioxole-5-carboxylate (2b)

\[
\text{O} \quad \text{O} \\
\text{H} \quad \text{O}
\]

1H NMR (400 MHz, CDCl$_3$, ppm) δ = 7.65 (d, J = 8.1 Hz, 1H), 7.47 (s, 1H), 6.83 (d, J = 8.1 Hz, 1H), 6.03 (s, 2H), 4.34 (q, J = 7.0 Hz, 2H), 1.37 (t, J = 7.0 Hz, 3H). 13C NMR (100.6 MHz, CDCl$_3$, ppm) δ = 166.07, 151.56, 147.75, 125.31, 124.57, 109.56, 107.99, 101.85, 60.98, 14.44.

ethyl [1,1'-biphenyl]-4-carboxylate (2c)

\[
\text{Ph} \quad \text{O} \\
\text{H} \quad \text{O}
\]

1H NMR (400 MHz, CDCl$_3$, ppm) δ = 8.22 – 8.04 (m, 2H), 7.76 – 7.55 (m, 4H), 7.47 (t, J = 7.2 Hz, 2H), 7.43 – 7.37 (m, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). 13C NMR (100.6 MHz,
ethyl 4-ethoxybenzoate (2d)\(^2\)

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta = 7.97 (d, J = 8.1 \text{ Hz}, 2\text{H}), 6.87 (d, J = 7.2 \text{ Hz}, 2\text{H}), 4.32 (q, J = 6.9 \text{ Hz}, 2\text{H}), 4.15 – 3.94 (m, 2\text{H}), 1.52 – 1.26 (m, 6\text{H}). \) \(^{13}\)C NMR (100.6 MHz, CDCl\(_3\), ppm) \(\delta = 166.48, 162.71, 131.57, 122.73, 114.00, 63.69, 60.65, 14.74, 14.44.\)

ethyl 4-chlorobenzoate (2e)\(^1\)

\[
\begin{align*}
\text{Cl} & \quad \text{O} \\
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta = 7.99 (d, J = 8.3 \text{ Hz}, 2\text{H}), 7.42 (d, J = 8.3 \text{ Hz}, 2\text{H}), 4.39 (q, J = 7.1 \text{ Hz}, 2\text{H}), 1.41 (t, J = 7.1 \text{ Hz}, 3\text{H}). \) \(^{13}\)C NMR (100.6 MHz, CDCl\(_3\), ppm) \(\delta = 165.74, 139.23, 130.94, 128.94, 128.65, 61.21, 14.29.\)

ethyl 4-bromobenzoate (2f)\(^3\)

\[
\begin{align*}
\text{Br} & \quad \text{O} \\
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta = 7.90 (d, J = 8.5 \text{ Hz}, 2\text{H}), 7.57 (d, J = 8.5 \text{ Hz}, 2\text{H}), 4.37 (d, J = 7.1 \text{ Hz}, 2\text{H}), 1.39 (t, J = 7.1 \text{ Hz}, 3\text{H}). \) \(^{13}\)C NMR (100.6 MHz, CDCl\(_3\), ppm) \(\delta = 165.88, 131.65, 131.09, 129.38, 127.91, 61.25, 14.30.\)

ethyl 4-nitrobenzoate (2g)\(^1\)

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{O} \\
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\), ppm) \(\delta = 8.33 – 8.16 (m, 4\text{H}), 4.43 (q, J = 7.1 \text{ Hz}, 2\text{H}), 1.42 (t, J = 7.1 \text{ Hz}, 3\text{H}). \) \(^{13}\)C NMR (100.6 MHz, CDCl\(_3\), ppm) \(\delta = 164.82, 150.59, 135.97, 130.79, 123.62, 62.09, 14.35.\)

eethyl benzo[b]thiophene-2-carboxylate (2h-a)
1H NMR (400 MHz, CDCl₃, ppm) δ = 8.06 (s, 1H), 7.86 (dd, J = 6.6, 5.7 Hz, 2H), 7.42 (dt, J = 15.0, 7.2 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). 13C NMR (100.6 MHz, CDCl₃, ppm) δ = 162.93, 142.27, 138.82, 133.96, 130.47, 126.95, 125.60, 124.96, 122.84, 61.68, 14.43.

ethyl benzofuran-2-carboxylate (2h-b)

1H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.53 (s, 1H), 7.44 (t, J = 7.1 Hz, 3H), 7.30 (t, J = 7.4 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl₃) δ 159.64, 155.71, 145.72, 127.58, 126.98, 123.77, 122.80, 113.81, 112.38, 61.54, 14.35.

ethyl 4-methylbenzoate (2i)

![Structure of ethyl 4-methylbenzoate](image)

1H NMR (400 MHz, CDCl₃, ppm) δ = 7.93 (d, J = 7.9 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 2.40 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). 13C NMR (100.6 MHz, CDCl₃, ppm) δ = 166.82, 143.51, 129.66, 129.12, 127.87, 60.85, 21.73, 14.45.

ethyl 3-methylbenzoate (2j)

![Structure of ethyl 3-methylbenzoate](image)

1H NMR (400 MHz, CDCl₃, ppm) δ = 7.87 (d, J = 9.1 Hz, 2H), 7.35 (dt, J = 14.8, 7.5 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 2.42 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). 13C NMR (100.6 MHz, CDCl₃, ppm) δ = 166.89, 138.15, 133.65, 130.47, 128.29, 126.74, 60.96, 21.34, 14.42.

methyl 4-methoxybenzoate (5a)

![Structure of methyl 4-methoxybenzoate](image)

1H NMR (400 MHz, CDCl₃, ppm) δ = 8.17 – 7.78 (m, 2H), 6.90 (d, J = 8.6 Hz, 3H), 3.87 (s, 3H), 3.84 (s, 3H). 13C NMR (100.6 MHz, CDCl₃, ppm) δ = 166.96, 163.41, 131.68, 122.68, 113.69, 55.50, 51.95.

d-methyl 4-methoxybenzoate (5b)

![Structure of d-methyl 4-methoxybenzoate](image)

1H NMR (400 MHz, CDCl₃, ppm) δ = 8.07 – 7.91 (m, 2H), 7.01 – 6.82 (m, 2H), 3.85 (d, J = 5.0 Hz, 3H). 13C NMR (100.6 MHz, CDCl₃, ppm) δ = 167.00, 163.42, 131.69, 122.70, 113.69, 55.51.

heptyl 4-methoxybenzoate (5c)

![Structure of heptyl 4-methoxybenzoate](image)
\(^1 \text{H NMR (400 MHz, CDCl}_3, \text{ ppm) } \delta = 8.01 (d, J = 8.7 \text{ Hz, 2H}), 6.91 (d, J = 8.5 \text{ Hz, 2H}), 4.32 - 4.25 (m, 2H), 3.85 (s, 3H), 1.81 - 1.70 (m, 2H), 1.42 - 1.22 (m, 8H), 0.87 (d, J = 6.5 \text{ Hz, 3H}). \)

\(^{13} \text{C NMR (100.6 MHz, CDCl}_3, \text{ ppm) } \delta = 166.59, 163.34, 131.65, 123.08, 113.65, 64.97, 55.53, 31.88, 29.11, 28.90, 26.15, 22.74, 14.22. \)

phenethyl 4-methoxybenzoate (5d)

\(^1 \text{H NMR (400 MHz, CDCl}_3, \text{ ppm) } \delta = 8.02 (d, J = 8.6 \text{ Hz, 2H}), 7.41 - 7.21 (m, 5H), 6.95 (d, J = 8.5 \text{ Hz, 2H}), 4.55 (t, J = 6.9 \text{ Hz, 2H}), 3.88 (s, 3H), 3.11 (t, J = 6.9 \text{ Hz, 2H}). \)

\(^{13} \text{C NMR (100.6 MHz, CDCl}_3, \text{ ppm) } \delta = 166.30, 163.37, 138.09, 131.62, 129.01, 128.56, 126.58, 122.75, 113.63, 65.23, 55.44, 35.34. \)

benzyl 4-methoxybenzoate (5e)

\(^1 \text{H NMR (400 MHz, CDCl}_3, \text{ ppm) } \delta = 8.03 (d, J = 8.9 \text{ Hz, 2H}), 7.62 - 7.28 (m, 5H), 6.90 (d, J = 8.8 \text{ Hz, 2H}), 5.33 (s, 2H), 3.83 (s, 3H). \)

\(^{13} \text{C NMR (100.6 MHz, CDCl}_3, \text{ ppm) } \delta = 166.22, 163.45, 136.32, 131.78, 128.61, 128.19, 128.15, 122.53, 113.65, 66.43, 55.46. \)

3-methoxybenzyl benzoate (5f)

\(^1 \text{H NMR (400 MHz, CDCl}_3, \text{ ppm) } \delta = 8.12 (d, J = 7.4 \text{ Hz, 2H}), 7.59 (t, J = 7.4 \text{ Hz, 1H}), 7.47 (t, J = 7.7 \text{ Hz, 2H}), 7.34 (t, J = 7.9 \text{ Hz, 1H}), 7.10 - 7.01 (m, 2H), 6.92 (dd, J = 8.2, 2.2 \text{ Hz, 1H}), 5.38 (s, 2H), 3.85 (s, 3H). \)

\(^{13} \text{C NMR (100.6 MHz, CDCl}_3, \text{ ppm) } \delta = 166.49, 159.83, 137.65, 133.15, 130.15, 129.79, 129.75, 128.47, 120.40, 113.74, 113.70, 66.62, 55.33. \)

4-nitrobenzyl benzoate (5g)

\(\text{NO}_2 \)
1H NMR (400 MHz, CDCl$_3$, ppm) $\delta = 8.25$ (d, $J = 8.7$ Hz, 2H), 8.13 – 8.03 (m, 2H), 7.60 (t, $J = 7.3$ Hz, 3H), 7.48 (t, $J = 7.7$ Hz, 2H), 5.46 (s, 2H). 13C NMR (100.6 MHz, CDCl$_3$, ppm) $\delta = 166.25, 147.87, 143.49, 133.62, 129.88, 129.59, 128.71, 128.47, 124.03, 65.32.$

$(1R,2S,5R)$-2-isopropyl-5-methylcyclohexyl 4-methoxybenzoate (5h)9

![Chemical structure of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-methoxybenzoate (5h)]

1H NMR (400 MHz, CDCl$_3$, ppm) $\delta = 8.00$ (d, $J = 7.3$ Hz, 2H), 6.92 (d, $J = 7.4$ Hz, 2H), 4.90 (td, $J = 10.9, 3.4$ Hz, 1H), 3.85 (s, 3H), 2.12 (d, $J = 12.1$ Hz, 1H), 2.00 – 1.93 (m, 1H), 1.72 (d, $J = 11.0$ Hz, 2H), 1.53 (t, $J = 10.7$ Hz, 2H), 1.15 – 1.03 (m, 2H), 0.95 – 0.89 (m, 7H), 0.79 (d, $J = 7.0$ Hz, 3H). 13C NMR (100.6 MHz, CDCl$_3$, ppm) $\delta = 163.31, 131.67, 123.44, 113.65, 74.56, 55.54, 47.44, 41.19, 34.48, 31.57, 26.64, 23.81, 22.19, 20.90, 16.70.$

Benzyl benzoylformate (7)6

![Chemical structure of benzyl benzoylformate (7)]

1H NMR (400 MHz, CDCl$_3$, ppm) $\delta = 8.12 – 7.88$ (m, 2H), 7.76 – 7.35 (m, 8H), 5.45 (s, 2H). 13C NMR (100.6 MHz, CDCl$_3$, ppm) $\delta = 186.10, 163.69, 135.01, 134.57, 132.44, 130.06, 128.95, 128.86, 128.79, 128.66, 67.81.$
4. NMR and GC-MS Spectra Copies

\[1^H \text{NMR (400 MHz, CDCl}_3) \]
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR(100.6 MHz, CDCl$_3$)

1H NMR(400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

![NMR spectrum of compound 2h](image)

1H NMR (400 MHz, CDCl$_3$)

![NMR spectrum of compound 2i](image)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)

1H NMR (400 MHz, CDC$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR(100.6 MHz, CDCl$_3$)

1H NMR(400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)

S29
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
13C NMR (100.6 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
ethyl benzo[d][1,3]dioxole-5-carboxylate (2b)

ethyl [1,1'-biphenyl]-4-carboxylate (2c)

ethyl 4-ethoxybenzoate (2d)

ethyl 4-chlorobenzoate (2e)
ethyl 4-bromobenzoate (2f)

ethyl 4-nitrobenzoate (2g)

ethyl 4-methylbenzoate (2i)

ethyl 3-methylbenzoate (2j)

methyl 4-methoxybenzoate (5a)

heptyl 4-methoxybenzoate (5c)
phenethyl 4-methoxybenzoate (5d)

benzyl 4-methoxybenzoate (5e)

4-nitrobenzyl benzoate (5g)
5. Reference