## **Supporting Information**

## Activation of Si-H bonds in electron rich nickel PC<sub>carbene</sub>P pincer complexes

Etienne A. LaPierre, Warren E. Piers\*, Denis Spasyuk and David W. Bi

University of Calgary, Department of Chemistry, 2500 University Drive N.W., Calgary, Alberta, Canada, T2N 1N4.

### Contents

| Experimental Details                                                                                                                                                                                                                                                                                                                                                                                               | ;  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| General Considerations                                                                                                                                                                                                                                                                                                                                                                                             | ;  |
| General Procedure for the Synthesis of Complexes $3_{Ph}$ , $3_{Ph-d}$ , $3_{p-Me-Ph}$ , and $3_{p-OMe-Ph}$                                                                                                                                                                                                                                                                                                        | ;  |
| Procedure for the Synthesis of Complex 3 <sub>PhMe2</sub> 5                                                                                                                                                                                                                                                                                                                                                        | ,  |
| Synthesis of 4                                                                                                                                                                                                                                                                                                                                                                                                     | ,  |
| Synthesis of 5 <sub>Ph</sub> 6                                                                                                                                                                                                                                                                                                                                                                                     | ;  |
| Figure S1. ORTEP diagrams for complexes 3 <sub>si</sub>                                                                                                                                                                                                                                                                                                                                                            | ,  |
| Figure S2: ORTEP diagram for complex 4                                                                                                                                                                                                                                                                                                                                                                             | \$ |
| Table S1. Crystal Data Collection and Refinement Parameters for compounds 3 <sub>Si</sub>                                                                                                                                                                                                                                                                                                                          | ,  |
| Table S2. Crystal Data Collection and Refinement Parameters for Complexes 4 and $5_{Ph}$ 10                                                                                                                                                                                                                                                                                                                        | )  |
| Kinetic and Mechanistic Data11                                                                                                                                                                                                                                                                                                                                                                                     | L  |
| Procedure for the collection of kinetic data11                                                                                                                                                                                                                                                                                                                                                                     | L  |
| Sample Preparation:                                                                                                                                                                                                                                                                                                                                                                                                | L  |
| Experiment Details:                                                                                                                                                                                                                                                                                                                                                                                                | -  |
| Table S3: Experimental parameters and rate constants for all kinetic experiments                                                                                                                                                                                                                                                                                                                                   | 2  |
| Figure S4: First order kinetics plot showing disappearance of $3_{Ph}$ and $3_{Ph}$ - $d_1$                                                                                                                                                                                                                                                                                                                        | ;  |
| Figure S5 (top): <sup>1</sup> H NMR spectra of elimination of silane over time from 3 <sub>Ph</sub> -d <sub>1</sub> at 65°C in THF-d <sup>8</sup> (bottom) <sup>31</sup> P{ <sup>1</sup> H} NMR spectra of elimination of silane over time from 3 <sub>Ph</sub> -d <sub>1</sub> at 65°C in THF-d <sup>8</sup>                                                                                                      | ,  |
| Figure S6 (top): <sup>1</sup> H NMR spectra of elimination of silane over time from 3 <sub>Ph</sub> , with phenol- <i>d</i> <sub>6</sub> as the trapping agent at 65°C in THF- <i>d</i> <sup>8</sup> ; (bottom): <sup>31</sup> P{ <sup>1</sup> H} spectra of elimination of silane over time from 3 <sub>Ph</sub> , with phenol- <i>d</i> <sub>6</sub> as the trapping agent at 65°C in THF- <i>d</i> <sup>8</sup> | )  |
| Figure S7. Eyring analysis of silane elimination from 3 <sub>Ph</sub> 20                                                                                                                                                                                                                                                                                                                                           | )  |
| Figure S8: Thermal isomerization of 3 <sub>Ph</sub> to 5 <sub>Ph</sub> 21                                                                                                                                                                                                                                                                                                                                          | L  |
| Figure S9: Attempted thermal isomerization of 5 <sub>Ph</sub> to 3 <sub>Ph</sub> . Reaction performed on a 10 mg scale in J-<br>Young NMR Tube and followed by <sup>31</sup> P{ <sup>1</sup> H} NMR spectroscopy22                                                                                                                                                                                                 | 2  |
| Figure S10: Computed structures of 3Ph and 5Ph with selected distances                                                                                                                                                                                                                                                                                                                                             | 5  |

| Table S4. Coordinates for the calculated structure of 3 <sub>Ph</sub>            | 24 |
|----------------------------------------------------------------------------------|----|
| Table S5. Coordinates for the calculated structure of 5 <sub>Ph</sub>            |    |
| Figure S11: Protonolysis of 5 <sub>Ph</sub> with phenol- <i>d</i> <sup>6</sup> . | 29 |
| References                                                                       | 29 |

#### **Experimental Details**

General Considerations. Storage and manipulation of all compounds were performed under an argon atmosphere either in a IT glove box or using a double manifold high vacuum line using standard techniques. Passage of argon through an OxisorBW scrubber (Matheson Gas Products) removed any residual oxygen and moisture. Toluene, hexanes, pentane and tetrahydrofuran were dried and purified using a Grubbs/Dow solvent purification system and stored in 500 mL thickwalled glass vessels over sodium/benzophenone ketal, and distilled under reduced pressure.  $C_6D_6$ was dried over sodium/benzophenone ketal. Toluene-d8 was dried and stored over sodium. 2-MeTHF was distilled from sodium and stored over Na/K alloy. All dried solvents were degassed and vacuum distilled prior to use. <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy chemical shifts were referenced to residual proteo-solvent resonances and naturally abundant <sup>13</sup>C resonances for all deuterated solvents. Chemical shift assignments are based on  ${}^{1}$  H,  ${}^{13}$ C{ ${}^{1}$  H},  ${}^{31}$ P{ ${}^{1}$  H},  ${}^{1}$  H-  ${}^{13}$ C-HSQC and  ${}^{1}$ H-<sup>13</sup>C-HMBC NMR experiments performed on Bruker RDQ-400, Ascend-500 or Avance-600 MHz spectrometers  $2^{1}$ , tris(*p*-tolyl)silane, tris(*p*-fluorophenyl)silane, tris(*p*-anisole)silane<sup>2</sup> and triphenylsilane- $d^3$  were prepared by literature methods. All other reagents were purchased from Sigma-Aldrich and used as received. All Elemental analyses were obtained by the Instrumentation Facility of the Department of Chemistry, University of Calgary. Diffraction were collected with Cu K $\alpha$  radiation on a Bruker Smart diffractometer equipped with Apex II detector, fixed-CHI goniometer, and sealed-tube (Cu) source or with Mo Ka radiation on a Nonius Kappa CCD diffractometer. All calculations were carried out using Gaussian 09<sup>4</sup>

#### General Procedure for the Synthesis of Complexes 3<sub>Ph</sub>, 3<sub>Ph-d</sub>, 3<sub>p-Me-Ph</sub>, and 3<sub>p-OMe-Ph</sub>

A 25 mL round bottom flask was charged with 100 mg (0.18 mmol) of **2**, 1.1 equivalents of the appropriate silane, 40 mg (0.2 mmol) of potassium hexamethyldisilazane (KHMDS) and 2 mL THF, and left to stir under argon for 18h. Solvent was removed in vacuo, and the residue was dissolved in 5 mL toluene, and filtered through a  $0.1\mu$ m PTFE syringe filter. Toluene was removed in vacuo to yield a yellow-brown oil. The oil was triturated with pentane, to yield a yellow powder. X-ray quality crystals were grown by layering a saturated toluene solution with pentane and cooling to -30 °C for two days.

3<sub>Ph</sub>

Yield: 106 mg (80%)

<sup>1</sup>H NMR data: <sup>1</sup>H NMR (600 MHz, Benzene- $d_6$ )  $\delta$  7.67 (dd, J = 8.2, 1.7 Hz, 2H), 7.49 (dt, J = 6.8, 1.5 Hz, 6H), 7.14 – 7.07 (m, 5H), 7.08 – 7.05 (m, 5H), 7.05 – 7.03 (m, 1H), 7.00 – 6.94 (m, 2H), 6.94 – 6.89 (m, 2H), 2.11 – 2.02 (m, 2H), 2.00 – 1.91 (m, 2H), 1.14 (dd, J = 7.3, 5.1 Hz, 6H), 1.08 – 1.02 (m, 6H), 1.02 – 0.97 (m, 6H), 0.70 (dd, J = 7.2 Hz, 6H), -13.56 (t, J = 61.6 Hz, 1H).

<sup>13</sup>C NMR data: <sup>13</sup>C NMR (151 MHz, Benzene- $d_6$ ) δ 161.03 , 140.38 (t), 140.23 , 137.95 , 132.39 (t, J = 6.7 Hz), 131.70 , 128.80 , 128.58 , 128.35 , 128.14 , 127.98 , 127.24 , 123.09 (t, J = 2.8 Hz), 26.29 (t, J = 11.4 Hz), 25.68 (t, J = 14.3 Hz), 21.17 – 21.09 (m), 20.07 (t, J = 2.9 Hz), 19.95 , 18.74

<sup>31</sup>P NMR (243 MHz, Benzene-*d*<sub>6</sub>) δ 56.28.

<sup>29</sup>Si NMR (from <sup>1</sup>H-<sup>29</sup>Si HMBC)  $\delta$  -4.20

IR: 1781 cm<sup>-1</sup> (Ni-H) 1260 (Ni-D)

Elemental Analysis: Calcd. (%): C 71.97% H 7.30%, Found C 72.29% H 7.58% N 0.02%

#### 3<sub>p-Me-Ph</sub>

Yield: 68 mg (48%)

<sup>1</sup>H NMR (600 MHz, Benzene- $d_6$ )  $\delta$  7.76 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 7.5 Hz, 8H), 7.02 (t, J = 7.5 Hz, 2H), 6.95 (dd, J = 14.3, 7.3 Hz, 8H), 2.09 (s, 9H), 1.94 (ddd, J = 10.5, 7.5, 3.8 Hz, 4H), 1.17 (q, J = 7.3 Hz, 6H), 1.07 (dq, J = 22.6, 7.6, 7.1 Hz, 12H), 0.72 (q, J = 7.1 Hz, 6H), -13.54 (t, J = 61.7 Hz, 1H).

<sup>13</sup>C NMR (151 MHz, Benzene-*d*<sub>6</sub>) δ 160.94 (t, J = 16.5 Hz), 140.17 (t, J = 16.8 Hz), 137.60 (d, J = 8.3 Hz), 136.49, 132.02 (t, J = 6.7 Hz), 131.26, 127.93, 127.72, 127.56, 122.58 (t, J = 2.7 Hz), 99.96, 59.86, 25.76 (t, J = 11.3 Hz), 25.20 (t, J = 14.2 Hz), 20.98, 20.88, 19.70 (d, J = 2.9 Hz), 19.58, 18.27.

<sup>31</sup>P NMR (203 MHz, Benzene- $d_6$ )  $\delta$  56.65

Elemental Analysis: Calc. (%):C, 72.73; H, 7.70 Found: C 72.57% H 7.32%

#### 3<sub>p-OMe-Ph</sub>

Yield 69 mg (46%)

<sup>1</sup>H NMR (400 MHz, Benzene- $d_6$ )  $\delta$  7.76 (d, J = 8.2 Hz, 2H), 7.44 – 7.36 (m, 6H), 7.22 – 7.11 (m, 2H), 7.02 (q, J = 5.7, 3.6 Hz, 2H), 6.95 (s, 2H), 6.78 – 6.70 (m, 6H), 3.31 (s, 9H), 2.14 – 2.04 (m, 2H), 2.02 – 1.92 (m, 2H), 1.22 – 1.12 (m, 6H), 1.16 – 1.00 (m, 12H), 0.77 – 0.68 (m, 6H). -13.47 (t, 1H J =60 Hz).

<sup>13</sup>C NMR (101 MHz, Benzene- $d_6$ )  $\delta$  161.04 (t, J = 16.5 Hz), 160.25, 140.22 (t, J = 16.8 Hz), 138.98, 131.98 (t, J = 6.6 Hz), 131.26 (d, J = 11.4 Hz), 128.38, 122.57 (d, J = 2.8 Hz), 112.70, 60.61, 54.13, 25.83 (t, J = 11.6 Hz), 25.32 (t, J = 14.2 Hz), 22.33, 20.89 (d, J = 2.6 Hz), 19.74 (t, J = 2.6 Hz), 19.62, 18.43.

<sup>31</sup>P NMR (162 MHz, Benzene- $d_6$ )  $\delta$  56.19.

#### Procedure for the Synthesis of Complex 3<sub>PhMe2</sub>

A 25 mL round bottom flask was charged with 100 mg (0.18 mmol) of **2**, 1.1 equivalents of the appropriate silane, 40 mg (.20 mmol) of potassium hexamethyldisilazane (KHMDS), and 2 mL THF, and left to stir under argon for 18h. Solvent was removed in vacuo, and the residue was dissolved in 5 mL pentane, and filtered through a  $0.1\mu$ m PTFE syringe filter. Pentane was removed in vacuo to yield a yellow-brown oil. The oil was dissolved in a minimal amount of pentane and left to recrystallize at -30 °C for two days.

#### $\mathbf{3}_{PhMe2}$

Yield: 91 mg (82%)

<sup>1</sup>H NMR (500 MHz, Benzene- $d_6$ )  $\delta$  7.92 (d, J = 8.0 Hz, 2H Ar**H**), 7.47 – 7.41 (m, 2H, Ar**H**), 7.27 – 7.20 (m, 2H, Ar**H**), 7.16 (m, 3H Ar**H**), 7.11 (d, J = 7.2 Hz, 1H, Ar**H**), 6.94 (t, J = 7.3 Hz, 2H, Ar**H**), 2.24 – 2.13 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 2.09 – 1.99 (m, 2H CH(CH<sub>3</sub>)<sub>2</sub>), 1.30 – 1.21 (m, 12H CH(CH<sub>3</sub>)<sub>2</sub>), 1.07 (vq, J = 7.4 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.70 (vq, J = 7.2 Hz, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.34 (s, 6H, Si(CH<sub>3</sub>)<sub>2</sub>).

<sup>13</sup>C NMR (126 MHz, Benzene-*d*<sub>6</sub>) δ 162.25 (vt, J = 16.9 Hz PAr), 143.48, 139.98 (vt, J = 16.6 Hz), 134.55, 131.55, 130.03 (vt, J = 6.9 Hz), 129.23, 128.35, 128.14, 127.97, 127.51, 122.68 (vt, J = 2.9 Hz), 58.94 (ArCAr), 26.20 (t, J = 11.4 Hz), 25.63 (vt, J = 13.8 Hz), 22.70 (vt, J = 3.7 Hz), 19.93 (vt, J = 2.7 Hz), 19.64, 18.68, 1.34 (SiCH<sub>3</sub>).

<sup>31</sup>P NMR (203 MHz, Benzene- $d_6$ )  $\delta$  56.55

<sup>29</sup>Si NMR (From <sup>1</sup>H-<sup>29</sup>Si HMBC)  $\delta$  -5.58

Elemental Analysis: Calcd. (%): C 66.79% H 8.15% Found: C 66.96% H 8.47% N .06%

#### Synthesis of 4

A 10 mL round bottom flask was charged with 100 mg (0.18 mmol) of **2**, 50 mg (0.43 mmol) of NaOPh, and 5mL THF. The resulting suspension was stirred for 18 h, then the solvent was removed *in vacuo*. The residue was dissolved in toluene and filtered through 0.1 $\mu$ m PTFE syringe filter. The filtrate was concentrated *in vacuo* and triturated in pentane to yield an orange powder. The powder was dissolved in minimal hexanes and X-ray quality crystals were grown at -30 °C over two days. Yield: 24 mg (23%)

<sup>1</sup>H NMR (500 MHz, Benzene- $d_6$ )  $\delta$  7.58 (d, J = 7.8 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.16 – 7.13 (m, 4H), 7.06 – 6.98 (m, 4H), 6.89 (t, J = 7.3 Hz, 2H), 6.74 (t, J = 7.1 Hz, 1H), 4.93 (s, 1H), 2.26 – 2.15 (m, 2H), 2.12 – 2.00 (m, 2H), 1.33 – 1.19 (m, 18H), 0.96 (q, J = 6.8 Hz, 6H).

<sup>13</sup>C NMR (126 MHz, Benzene-*d*<sub>6</sub>) δ 169.94, 159.18 (t, J = 17.7 Hz), 132.71 (t, J = 18.1 Hz), 130.60, 129.11, 128.10, 126.03, 123.87 (t, J = 2.9 Hz), 119.79, 111.69, 36.26 (t, J = 9.6 Hz), 23.90 (t, J = 9.1 Hz), 23.15 (t, J = 10.5 Hz), 17.95 (t, J = 2.6 Hz), 17.28 (t), 16.55.

<sup>31</sup>P NMR (203 MHz, Benzene- $d_6$ )  $\delta$  38.43.

Elemental Analysis: Calcd. (%): C, 67.54; H, 7.68 Found: C 67.86% H 7.93%

#### Synthesis of 5<sub>Ph</sub>

200 mg of 10:90 Na/K alloy was suspended in 4 mL of THF. To this suspension, 200 mg (0.68 mmol) of ClSiPh<sub>3</sub> was added. The solution was stirred vigorously for 18h to yield a yellow-orange solution of KSiPh<sub>3</sub>. The solution was filtered through a 0.1µm PTFE syringe filter. The filtrate was diluted to 15 mL THF and cooled to -30 °C. 200 mg (0.36 mmol) of **2** was added to the solution, and left to stir for 24h at -30 °C. The solution was warmed, and the solvent was removed *in vacuo*. The residue was dissolved in toluene and filtered through 0.1µm PTFE syringe filter. The filtrate was concentrated *in vacuo*, and the residue was triturated with pentane to yield an analytically pure red-brown powder. X-ray quality crystals were grown by slow evaporation of a pentane wash at ambient temperatures. Yield: 161 mg (60%)

<sup>1</sup>H NMR (600 MHz, Benzene- $d_6$ )  $\delta$  8.07 – 7.96 (m, 6H), 7.65 – 7.50 (m, 2H), 7.39 (d, J = 7.8 Hz, 2H), 7.19 – 7.07 (m, 10H), 6.86 (t, J = 7.4 Hz, 3H), 5.79 (s, 1H), 2.05 – 1.90 (m, 4H), 1.09 (m, 12H), 0.88 – 0.79 (m, 12H).

<sup>13</sup>C NMR (151 MHz, Benzene-*d*<sub>6</sub>) δ 159.10 (t, J = 16.2 Hz), 147.99, 137.63, 137.42 – 136.62 (m), 136.25, 132.75, 129.96, 128.35, 127.63 (t, J = 6.7 Hz), 127.36, 127.19, 123.37 (d, J = 3.1 Hz), 61.39, 61.35, 61.31, 26.73, 26.65, 26.57, 25.62, 25.55, 25.48, 21.66, 21.25, 19.32, 19.07.

<sup>31</sup>P NMR (243 MHz, Benzene- $d_6$ )  $\delta$  52.77

<sup>29</sup>Si NMR (119 MHz, Benzene- $d_6$ )  $\delta$  -0.21 (t, J = 44.8 Hz)

Elemental analysis: Calc: C 71.97%, H 7.30% Found: C 71.65%, H 7.21%



Figure S1. ORTEP diagrams for complexes 3<sub>Si</sub>, 3<sub>p-Me-Ph</sub> (left), 3<sub>p-OMe-Ph</sub> (middle), 3<sub>PhMe2</sub> (right). Thermal ellipsoids are shown at the 50% probability level. Calculated hydrogen atoms are omitted for clarity. Selected Bond Distances and Angles for  $3_{p-Me-Ph}$ : Ni1-C1= 2.0559(15), Ni1-P1 = 2.1187(5), Ni1-P2 = 2.1375(5), Ni1-H1M = 1.43(3); C14-C1-Ni1 = 106.71(10), C2-C1-Ni1 = 112.05(10), Si1-C1-Ni1 = 103.97(7), C1-Ni1-P1 = 89.72(5), C1-Ni1-P2 = 90.88(5), P1-Ni1-P2 = 157.02(2), C1-Ni1-H1M = 174.5(10), P1-Ni1-H1M = 85.7(10), P2-Ni1-H1M = 92.2(10), C3-P1-Ni1 = 103.35(6), C8-P1-Ni1 = 123.06(6), C11-P1-Ni1 = 118.12(6), C15-P2-Ni1 = 99.52(6), C23-P2-Ni1 = 115.00(6), C20-P2-Ni1 = 124.24(6). Selected Bond Distances and Angles for  $3_{p-OMe-Ph}$ : Ni1-C1 = 2.0483(14), Ni1-P1 = 2.1220(5), Ni1-P2 = 2.1244(4), Ni1-H1M = 1.40(2); C1-Ni1-P1 = 89.91(4), C1-Ni1-P2 = 91.02(4), P1-Ni1-P2 = 154.01(2), C1-Ni1-H1M = 176.4(10), P1-Ni1-H1M = 87.1(10), P2-Ni1-H1M = 90.8(10), C15-P1-Ni1 = 103.12(5), C23B-P1-Ni1 = 105.1(2), C20-P1-Ni1 = 124.63(6), C23A-P1-Ni1 = 121.17(17), C3-P2-Ni1 = 100.50(5), C11-P2-Ni1 = 113.44(5), C8-P2-Ni1 = 124.66(7), C2-C1-Ni1 = 108.27(9), C14-C1-Ni1 = 112.28(9), Si1-C1-Ni1 = 102.67(7). Selected Bond Distances and Angles for  $3_{PhMe2}$ : Ni1-C1= 2.0373(16), Ni1-P2 = 2.1012(5), Ni1-P1 = 2.1244(5), Ni1-H1M = 1.44(3); C2-C1-Ni1 = 108.13(10), C14-C1-Ni1 = 113.55(11), Si1-C1-Ni1 = 97.25(7), C1-Ni1-P2 = 88.51(5), C1-Ni1-P1 = 90.21(5), P2-Ni1-P1 = 154.42(2), C1-Ni1-H1M = 179.0(10), P2-Ni1-H1M = 90.8(10), P1-Ni1-H1M = 90.7(10), C3-P1-Ni1 = 99.35(6), C11-P1-Ni1 = 116.26(6), C8-P1-Ni1 = 122.00(6), C15-P2-Ni1 = 104.42(6), C20-P2-Ni1 = 123.54(7), C23-P2-Ni1 = 110.69(6).



**Figure S2: ORTEP diagram for complex 4**. Thermal ellipsoids are shown at the 50% probability level. Calculated hydrogen atoms are omitted for clarity. Selected Bond Distances and Angles: Ni1-C1= 1.983(3), Ni1-O1 = 1.913(2), Ni1-P1 = 2.1691(8), Ni1-P2 = 2.2124(8); C14-C1-Ni1 = 109.21(18), C2-C1-Ni1 = 116.40(19), Ni1-C1-H1 = 104.9, O1-Ni1-C1 = 179.35(11), O1-Ni1-P1 = 94.12(7), C1-Ni1-P1 = 86.03(8), O1-Ni1-P2 = 95.92(7), C1-Ni1-P2 = 84.14(8), P1-Ni1-P2 = 158.43(4), C26-O1-Ni1 = 122.13(19), C3-P1-Ni1 = 104.44(10), C11-P1-Ni1 = 123.25(10), C8-P1-Ni1 = 109.82(10), C15-P2-Ni1 = 98.70(10), C20-P2-Ni1 = 113.38(10), C23-P2-Ni1 = 124.06(10)

|                                                                | 3 <sub>Ph</sub>       | 3 <sub>p-Me-Ph</sub> | 3 <sub>p-OMe-Ph</sub>                                                                                                  | 3 <sub>PhMe2</sub> |
|----------------------------------------------------------------|-----------------------|----------------------|------------------------------------------------------------------------------------------------------------------------|--------------------|
| formula                                                        | $C_{43}H_{52}NiP_2Si$ | C46H58NiP2Si         | C <sub>46</sub> H <sub>58</sub> NiP <sub>2</sub> Si C <sub>46</sub> H <sub>57</sub> NiO <sub>3</sub> P <sub>2</sub> Si |                    |
| fw                                                             | 717.58                | 759.66               | 807.66                                                                                                                 | 593.45             |
| crystal system                                                 | monoclinic            | monoclinic           | monoclinic                                                                                                             | monoclinic         |
| space group                                                    | P21/c                 | P21/c                | P21/c                                                                                                                  | P21/c              |
| <i>a</i> (Å)                                                   | 20.474(4)             | 15.1784(2)           | 15.5140(4)                                                                                                             | 18.2625(12)        |
| <b>b</b> (Å)                                                   | 22.468(4)             | 13.3439(2)           | 13.3974(3)                                                                                                             | 8.1482(5)          |
| c (Å)                                                          | 17.673(3)             | 21.4058(3)           | 21.7230(5)                                                                                                             | 21.5259(18)        |
| a (deg)                                                        | 90                    | 90                   | 90                                                                                                                     | 90                 |
| β (deg)                                                        | 110.92(3)             | 110.7300(10)         | 112.905(2)                                                                                                             | 93.717(4)          |
| γ (deg)                                                        | 90                    | 90                   | 90                                                                                                                     | 90                 |
| $V(\text{\AA}^3)$                                              | 7594(3)               | 4054.82(10)          | 4159.06(18)                                                                                                            | 3196.5(4)          |
| Z                                                              | 8                     | 4                    | 4                                                                                                                      | 4                  |
| <i>T</i> (K)                                                   | 173(2)                | 173(2)               | 173(2)                                                                                                                 | 173(2)             |
| Wavelength (Å)                                                 | 0.71073               | 1.54178              | 1.54178                                                                                                                | 1.54178            |
| ρ <sub>calcd</sub> (g·cm <sup>-3</sup> )                       | 1.255                 | 1.244                | 1.290                                                                                                                  | 1.233              |
| F(000)                                                         | 3056                  | 1624                 | 1720                                                                                                                   | 1272               |
| μ (mm <sup>-1</sup> )                                          | 0.656                 | 1.940                | 1.979                                                                                                                  | 2.314              |
| crystal size, mm <sup>3</sup>                                  | 0.28×0.2×0.2          | 0.25×0.23×0.20       | 0.20×0.20×0.18                                                                                                         | 0.20×0.20×0.15     |
| transmission factors                                           | 0.821 - 0.863         | 0.697 - 0.715        | 0.6860 - 0.7536                                                                                                        | 0.5473 - 0.7528    |
| $\theta$ range (deg)                                           | 1.593 - 24.999        | 3.113 - 66.495       | 3.092 - 72.511                                                                                                         | 2.424 - 67.007     |
| data/restraints/param                                          | 12903/0/871           | 7111/0/466           | 7978/66/527                                                                                                            | 5623/324/348       |
| GOF                                                            | 1.109                 | 1.043                | 1.064                                                                                                                  | 1.029              |
| $\mathbf{R}_1 \left[ \mathbf{I} > 2\sigma(\mathbf{I}) \right]$ | 0.0564                | 0.0340               | 0.0347                                                                                                                 | 0.0316             |
| wR <sub>2</sub> [all data]                                     | 0.1492                | 0.0925               | 0.0950                                                                                                                 | 0.0863             |
| residual density, e/Å <sup>3</sup>                             | 0.448 and -0.418      | 0.391 and -0.271     | 0.385 and -0.288                                                                                                       | 0.375 and -0.263   |

Table S1. Crystal Data Collection and Refinement Parameters for compounds 3<sub>Si</sub>.

|                                                                         | 4                                                   | 5 <sub>Ph</sub>                                     |
|-------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| formula                                                                 | C <sub>31</sub> H <sub>42</sub> O1P <sub>2</sub> Ni | C <sub>43</sub> H <sub>52</sub> NiP <sub>2</sub> Si |
| fw                                                                      | 551.29                                              | 717.58                                              |
| crystal system                                                          | monoclinic                                          | orthorhombic                                        |
| space group                                                             | C2/c                                                | P212121                                             |
| <i>a</i> (Å)                                                            | 30.7146(4)                                          | 12.9100(5)                                          |
| <b>b</b> (Å)                                                            | 10.08350(10)                                        | 15.4920(4)                                          |
| c (Å)                                                                   | 20.2840(3)                                          | 19.2540(6)                                          |
| α (deg)                                                                 | 90                                                  | 90                                                  |
| β (deg)                                                                 | 114.2950(10)                                        | 90                                                  |
| γ (deg)                                                                 | 90                                                  | 90                                                  |
| $V(\text{\AA}^3)$                                                       | 5725.82(13)                                         | 3850.8(2)                                           |
| Ζ                                                                       | 8                                                   | 4                                                   |
| <i>T</i> (K)                                                            | 173(2)                                              | 173(2)                                              |
| Wavelength (Å)                                                          | 1.54178                                             | 0.71073                                             |
| $\rho_{calcd}$ (g·cm <sup>-3</sup> )                                    | 1.279                                               | 1.238                                               |
| <i>F</i> (000)                                                          | 2352                                                | 1528                                                |
| μ (mm <sup>-1</sup> )                                                   | 2.185                                               | 0.647                                               |
| crystal size, mm <sup>3</sup>                                           | 0.20×0.10×0.10                                      | 0.280×0.260×0.200                                   |
| transmission factors                                                    | 0.531 - 0.673                                       | 0.826 - 0.886                                       |
| $\theta$ range (deg)                                                    | 3.157 - 66.499                                      | 1.687 - 25.427                                      |
| data/restraints/param                                                   | 5024/0/324                                          | 6881/0/425                                          |
| GOF                                                                     | 1.061                                               | 1.045                                               |
| $\overline{\mathbf{R}_1 \left[\mathbf{I} > 2\sigma(\mathbf{I})\right]}$ | 0.0777                                              | 0.0601                                              |
| wR <sub>2</sub> [all data]                                              | 0.1996                                              | 0.1314                                              |
| residual density, e/Å <sup>3</sup>                                      | 0.924 and -0.738                                    | 0.376 and -0.257                                    |

Table S2. Crystal Data Collection and Refinement Parameters for Complexes 4 and  $5_{\rm Ph}$ 

#### Kinetic and Mechanistic Data

#### Procedure for the collection of kinetic data

#### **Sample Preparation:**

A 5 mL stock solution of PhOH (1.39 mol/L) in 95:5 THF/C<sub>6</sub>D<sub>6</sub> and a separate stock solution of 0.139 mol/L  $3_{Ph}$  was prepared. For each experiment, appropriate amounts of each stock solution was added to J-Young NMR tube, and diluted to a total volume of 0.7 mL using 95:5 THF/C<sub>6</sub>D<sub>6</sub>.

#### **Experiment Details:**

Using a 600 MHz NMR spectrometer, a control spectrum of the sample was obtained at room temperature, after which the sample was removed and the instrument was heated to the desired temperature. The sample was then introduced (time t=0) into the spectrometer and spectra were obtained every 3 minutes. The reactions were monitored by  ${}^{31}P{}^{1}H$  NMR spectroscopy with a d1 delay time of 10 seconds and 12 scans per spectrum. The disappearance of  $3_{Ph}$  was followed by integration of the starting material signal, normalized against the total integral peak area in the spectrum.

| Е  | Complex               | [3 <sub>Si</sub> ] <sub>init</sub> | [PhOH] <sub>init</sub> | [HSiPh <sub>3</sub> ] <sub>init</sub> | <b>k</b> <sub>1</sub>   | Т   |
|----|-----------------------|------------------------------------|------------------------|---------------------------------------|-------------------------|-----|
|    |                       | (M)                                | (M)                    | (M)                                   | $(s^{-1})$              | (K) |
| 1  | 3 <sub>Ph</sub>       | 0.0199                             | 0.199                  | 0                                     | 5.7(2)x10 <sup>-4</sup> | 338 |
| 2  | 3 <sub>Ph</sub>       | 0.0299                             | 0.299                  | 0                                     | 5.7(2)x10 <sup>-4</sup> | 338 |
| 3  | 3 <sub>Ph</sub>       | 0.0399                             | 0.399                  | 0                                     | 5.7(1)x10 <sup>-4</sup> | 338 |
| 4  | 3 <sub>Ph</sub>       | 0.0499                             | 0.499                  | 0                                     | 5.4(1)x10 <sup>-4</sup> | 338 |
| 5  | 3 <sub>Ph</sub>       | 0.0199                             | 0.040                  | 0                                     | $5.7(1) \times 10^{-4}$ | 338 |
| 6  | 3 <sub>Ph</sub>       | 0.0199                             | 0.060                  | 0                                     | $5.6(1) \times 10^{-4}$ | 338 |
| 7  | 3 <sub>Ph</sub>       | 0.0199                             | 0.080                  | 0                                     | $5.6(1) \times 10^{-4}$ | 338 |
| 8  | 3 <sub>Ph</sub>       | 0.0199                             | 0.10                   | 0                                     | $5.8(1) \times 10^{-4}$ | 338 |
| 9  | 3 <sub>Ph</sub>       | 0.0199                             | 0.199                  | 0.040                                 | 5.6(1)x10 <sup>-4</sup> | 338 |
| 10 | 3 <sub>Ph</sub>       | 0.0199                             | 0.199                  | .080                                  | 5.9(1)x10 <sup>-4</sup> | 338 |
| 11 | 3 <sub>Ph</sub>       | 0.0199                             | 0.199                  | .12                                   | 5.7(1)x10 <sup>-4</sup> | 338 |
| 12 | 3 <sub>Ph-D</sub>     | 0.0299                             | 0.299                  | 0                                     | $6.3(1) \times 10^{-4}$ | 338 |
| 13 | 3 <sub>p-Me-Ph</sub>  | 0.0282                             | 0.0299                 | 0                                     | $5.8(1) \times 10^{-4}$ | 338 |
| 14 | 3 <sub>p-OMe-Ph</sub> | .0265                              | 0.0299                 | 0                                     | $4.9(1) \times 10^{-4}$ | 338 |
| 15 | 3 <sub>PhMe2</sub>    | 0.0241                             | 0.199                  | 0                                     | $4.0(2) \times 10^{-4}$ | 338 |
| 16 | 3 <sub>Ph</sub>       | 0.0199                             | 0.199                  | 0                                     | $3.1(1) \times 10^{-4}$ | 333 |
| 17 | 3 <sub>Ph</sub>       | 0.0199                             | 0.199                  | 0                                     | $1.6(1) \times 10^{-4}$ | 328 |
| 18 | 3 <sub>Ph</sub>       | 0.0199                             | 0.199                  | 0                                     | 8.6(3)x10 <sup>-5</sup> | 323 |
| 19 | 3 <sub>Ph</sub>       | 0.0199                             | 0.199                  | 0                                     | $1.7(1) \times 10^{-3}$ | 353 |

Table S3: Experimental parameters and rate constants for all kinetic experiments







Figure S3: First order kinetics plots showing disappearance of  $\mathbf{3}_{Ph}$  over time, at various concentrations of  $\mathbf{3}_{Ph}$  (top two plots). Same experiments in the presence of excess Ph<sub>3</sub>SiH and PhOH (bottom two plots).



| Isotopologue                    | Rate                    |
|---------------------------------|-------------------------|
| Ni-H                            | 5.7(2)x10 <sup>-4</sup> |
| Ni-D                            | $6.3(1) \times 10^{-4}$ |
| $k_{\rm H}/k_{\rm D} = 0.90(3)$ |                         |

Figure S4: First order kinetics plot showing disappearance of  $3_{Ph}$  and  $3_{Ph}$ - $d_{I}$ .





Figure S5 (top): <sup>1</sup>H NMR spectra of elimination of silane over time from  $\mathbf{3}_{Ph}$ - $d_1$  at 65°C in THF- $d^8$  (bottom) <sup>31</sup>P{<sup>1</sup>H} NMR spectra of elimination of silane over time from  $\mathbf{3}_{Ph}$ - $d_1$  at 65°C in THF- $d^8$ .





Figure S6 (top): <sup>1</sup>H NMR spectra of elimination of silane over time from  $\mathbf{3}_{Ph}$ , with phenol- $d_6$  as the trapping agent at 65°C in THF- $d^8$ ; (bottom): <sup>31</sup>P{<sup>1</sup>H} spectra of elimination of silane over time from  $\mathbf{3}_{Ph}$ , with phenol- $d_6$  as the trapping agent at 65°C in THF- $d^8$ .



Figure S7. Eyring analysis of silane elimination from  $3_{Ph}$ . All runs done in 95:5 THF/C<sub>6</sub>D<sub>6</sub> except T = 80 °C, which was done in 2-MeTHF.  $\Delta H^{\ddagger} = 33 \pm 2.0$  Kcal/mol,  $\Delta S^{\ddagger} = 24 \pm 2.0$  e.u.



Figure S8: Thermal isomerization of  $3_{Ph}$  to  $5_{Ph}$ .

Reaction performed on a 10 mg scale of  $\mathbf{3}_{Ph}$  in refluxing THF- $d^8$  in a J-Young NMR Tube and followed by  ${}^{31}P{}^{1}H$  NMR spectroscopy.



Figure S9: Attempted thermal isomerization of  $5_{Ph}$  to  $3_{Ph}$ . Reaction performed on a 10 mg scale in J-Young NMR Tube and followed by  ${}^{31}P{}^{1}H$  NMR spectroscopy.





Left: 3<sub>Ph</sub> Right: 5<sub>Ph</sub>

| Bond, Angle,     | Experimental value (Å,°) (Solid State | Calculated Value (Å, <sup>o</sup> ) |
|------------------|---------------------------------------|-------------------------------------|
| Contact          | Structure)                            |                                     |
| Ni(1)-C(1)       | 2.043(4)                              | 2.0369                              |
| Ni(1)-P(1)       | 2.1344(14)                            | 2.1386                              |
| Ni(1)-P(2)       | 2.1079(14)                            | 2.1580                              |
| Ni(1)-H(1)       | 1.32(5)                               | 1.4968                              |
| C(1)-Si(1)       | 1.916(4)                              | 1.9570                              |
| C(39)-Ni(1)      | 3.051                                 | 2.902                               |
| P(1)-Ni(1)-P(2)  | 163.42(5)                             | 152.70                              |
| C(1)-Ni(1)-P(1   | 89.99(12)                             | 89.48                               |
| C(1)-Ni(1)-P(2)  | 89.94(12)                             | 89.86                               |
| Si(1)-C(1)-Ni(1) | 109.8(2)                              | 104.56                              |
| C(1)-Si(1)-C(38) | 116.49(19)                            | 114.40                              |

 $\mathbf{5}_{Ph}$ 

| Bond, Angle, Contact | Experimental value (Solid | Calculated Value |
|----------------------|---------------------------|------------------|
|                      | State Structure)          |                  |
| Ni(1)-C(13),         | 2.030(8)                  | 2.0051           |
| Ni(1)-P(1)           | 2.194(2)                  | 2.2323           |
| Ni(1)-P(2)           | 2.168(2)                  | 2.2009           |
| Ni(1)-Si(1)          | 2.338(2)                  | 2.3661           |
| P(1)-Ni(1)-P(2)      | 153.26(9)                 | 152.07           |
| C(13)-Ni(1)-Si(1)    | 161.7(2)                  | 160.56           |
| C(13)-Ni(1)-P(1),    | 84.1(2)                   | 84.82            |
| C(13)-Ni(1)-P(2)     | 83.6(2)                   | 83.85            |
| Si(1)-Ni(1)-P(1)     | 105.06(9)                 | 103.62           |
| Si(1)-Ni(1)-P(2)     | 93.75(7)                  | 95.34            |

# Table S4. Coordinates for the calculated structure of $\mathbf{3}_{Ph}$ .

Ground State Energy: -4150.37486268 Hartrees, -2604400.10326035 kcal/mol

| Center | Atomic | <br>Atomic | Coor      | dinates (Ang | <br>stroms) |
|--------|--------|------------|-----------|--------------|-------------|
| Number | Number | Туре       | X         | Y            | Z           |
| 1      | 28     | 0          | -1.253181 | -0.793739    | 0.562065    |
| 2      | 15     | 0          | -2.864262 | 0.581026     | 0.265780    |
| 3      | 15     | 0          | -0.188875 | -2.622406    | 0.134217    |
| 4      | 14     | 0          | 1.418332  | 0.851325     | 0.184695    |
| 5      | 6      | 0          | -0.150489 | 0.232311     | -0.809336   |
| 6      | 6      | 0          | 1.125545  | 1.086491     | 2.064174    |
| 7      | 6      | 0          | 2.949739  | -0.286135    | 0.033258    |
| 8      | 6      | 0          | -1.265739 | -4.142276    | -0.134705   |
| 9      | 1      | 0          | -0.620986 | -4.893065    | -0.607837   |
| 10     | 6      | 0          | 2.996781  | 5.123243     | -1.178362   |
| 11     | 1      | 0          | 3.352704  | 6.102561     | -1.486639   |
| 12     | 6      | 0          | 3.643517  | 3.968759     | -1.618581   |
| 13     | 1      | 0          | 4.510232  | 4.044522     | -2.270030   |
| 14     | 6      | 0          | 4.921264  | -1.314651    | 1.065271    |
| 15     | 1      | 0          | 5.503285  | -1.521690    | 1.959455    |
| 16     | 6      | 0          | 2.070969  | 2.567879     | -0.370839   |
| 17     | 6      | 0          | 0.207760  | -0.791350    | -1.892494   |
| 18     | 6      | 0          | 1.964932  | 1.957768     | 2.789177    |
| 19     | 1      | 0          | 2.713690  | 2.542771     | 2.264155    |
| 20     | 6      | 0          | 0.172712  | 0.367897     | 2.806739    |
| 21     | 1      | 0          | -0.521896 | -0.317102    | 2.309419    |
| 22     | 6      | 0          | 3.187393  | 2.711224     | -1.214475   |
| 23     | 1      | 0          | 3.720215  | 1.829422     | -1.557071   |
| 24     | 6      | 0          | -3.687226 | 1.548575     | 1.641659    |
| 25     | 1      | 0          | -4.509670 | 2.112501     | 1.184191    |
| 26     | 6      | 0          | 3.414716  | -0.765189    | -1.208294   |
| 27     | 1      | 0          | 2.847555  | -0.571011    | -2.112453   |

| 28 | 6 | 0 | -4.296509 | -0.220076 | -0.673064 |
|----|---|---|-----------|-----------|-----------|
| 29 | 1 | 0 | -4.475812 | -1.147995 | -0.116275 |
| 30 | 6 | 0 | 1.317503  | -3.261413 | 1.072135  |
| 31 | 1 | 0 | 2.071505  | -2.510534 | 0.826788  |
| 32 | 6 | 0 | 1.439329  | 3.751239  | 0.061128  |
| 33 | 1 | 0 | 0.578521  | 3.691008  | 0.721798  |
| 34 | 6 | 0 | 1.863214  | 2.096691  | 4.174680  |
| 35 | 1 | 0 | 2.528081  | 2.778776  | 4.697742  |
| 36 | 6 | 0 | -1.790449 | -4.716429 | 1.190211  |
| 37 | 1 | 0 | -2.331579 | -3.953616 | 1.759202  |
| 38 | 1 | 0 | -0.991915 | -5.111641 | 1.822258  |
| 39 | 1 | 0 | -2.483050 | -5.541175 | 0.986105  |
| 40 | 6 | 0 | -2.268379 | 3.806804  | -2.261971 |
| 41 | 1 | 0 | -2.794824 | 4.693717  | -2.602321 |
| 42 | 6 | 0 | 4.595882  | -1.502326 | -1.313495 |
| 43 | 1 | 0 | 4.921383  | -1.859213 | -2.286883 |
| 44 | 6 | 0 | 1.892432  | 5.010098  | -0.331250 |
| 45 | 1 | 0 | 1.383154  | 5.902709  | 0.022319  |
| 46 | 6 | 0 | -3.845205 | -0.584647 | -2.097675 |
| 47 | 1 | 0 | -4.588339 | -1.237890 | -2.568529 |
| 48 | 1 | 0 | -2.882318 | -1.099506 | -2.112893 |
| 49 | 1 | 0 | -3.747480 | 0.313238  | -2.715170 |
| 50 | 6 | 0 | 5.353149  | -1.782926 | -0.175665 |
| 51 | 1 | 0 | 6.271477  | -2.358113 | -0.256181 |
| 52 | 6 | 0 | -2.723488 | 2.556761  | 2.283074  |
| 53 | 1 | 0 | -3.247404 | 3.122478  | 3.062296  |
| 54 | 1 | 0 | -2.338746 | 3.271832  | 1.551175  |
| 55 | 1 | 0 | -1.871040 | 2.058104  | 2.749336  |
| 56 | 6 | 0 | 0.063563  | 0.499096  | 4.193416  |
| 57 | 1 | 0 | -0.687579 | -0.074596 | 4.729616  |
| 58 | 6 | 0 | 0.769020  | -3.111581 | -2.508291 |
| 59 | 1 | 0 | 0.874020  | -4.153751 | -2.222284 |
| 60 | 6 | 0 | 0.981391  | -2.752844 | -3.837175 |
| 61 | 1 | 0 | 1.280590  | -3.495756 | -4.570349 |
| 62 | 6 | 0 | 0.750859  | -1.429610 | -4.207768 |
| 63 | 1 | 0 | 0.864820  | -1.125358 | -5.245080 |
| 64 | 6 | 0 | -4.274894 | 0.586462  | 2.685707  |
| 65 | 1 | 0 | -3.485673 | -0.012090 | 3.149213  |
| 66 | 1 | 0 | -5.000016 | -0.108868 | 2.251348  |
| 67 | 1 | 0 | -4.785439 | 1.152397  | 3.473034  |
| 68 | 6 | 0 | 3.739197  | -0.577479 | 1.163703  |
| 69 | 1 | 0 | 3.425345  | -0.227613 | 2.141814  |
| 70 | 6 | 0 | -2.432942 | -3.846973 | -1.084604 |
| 71 | 1 | 0 | -2.997394 | -4.767700 | -1.272677 |
| 72 | 1 | 0 | -2.094185 | -3.456387 | -2.046923 |
| 73 | 1 | 0 | -3.117359 | -3.119654 | -0.638382 |
| 74 | 6 | 0 | 0.372138  | -0.479892 | -3.259651 |
| 75 | 1 | 0 | 0.195720  | 0.528543  | -3.605530 |
| 76 | 6 | 0 | 0.364236  | -2.168886 | -1.554610 |
| 77 | 6 | 0 | 0.910612  | 1.365033  | 4.884437  |
| 78 | 1 | 0 | 0.827983  | 1.470121  | 5.962717  |
| 79 | 6 | 0 | 1.862712  | -4.621813 | 0.611125  |
| 80 | 1 | 0 | 2.792513  | -4.838310 | 1.149749  |
| 81 | 1 | 0 | 2.100424  | -4.632061 | -0.455576 |

| 82   | 1 | 0 | 1.169351  | -5.442948 | 0.819853  |
|------|---|---|-----------|-----------|-----------|
| 83   | 6 | 0 | -2.169765 | 1.808883  | -0.886728 |
| 84   | 6 | 0 | -0.876045 | 1.481754  | -1.353278 |
| 85   | 6 | 0 | -0.312928 | 2.379925  | -2.286048 |
| 86   | 1 | 0 | 0.699350  | 2.223729  | -2.635919 |
| 87   | 6 | 0 | -2.847462 | 2.957134  | -1.324764 |
| 88   | 1 | 0 | -3.831840 | 3.189971  | -0.927965 |
| 89   | 6 | 0 | -0.994569 | 3.505373  | -2.743938 |
| 90   | 1 | 0 | -0.511888 | 4.164480  | -3.459969 |
| 91   | 6 | 0 | -5.608165 | 0.577494  | -0.722986 |
| 92   | 1 | 0 | -5.475412 | 1.538513  | -1.230232 |
| 93   | 1 | 0 | -6.031129 | 0.766229  | 0.266988  |
| 94   | 1 | 0 | -6.354691 | 0.012820  | -1.293755 |
| 95   | 6 | 0 | 1.120025  | -3.226159 | 2.597016  |
| 96   | 1 | 0 | 0.378311  | -3.952673 | 2.939453  |
| 97   | 1 | 0 | 0.808926  | -2.239447 | 2.944822  |
| 98   | 1 | 0 | 2.068464  | -3.469196 | 3.090064  |
| 99   | 1 | 0 | -2.118491 | -1.530087 | 1.537308  |
| <br> |   |   |           |           |           |

# Table S5. Coordinates for the calculated structure of $5_{\rm Ph}$

Ground State Energy: -4150.38649362 Hartrees, -2604407.40178695kcal/mol

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Z         |
| 1      | 28     | 0      | -0.516301               | 0.055531  | -0.141677 |
| 2      | 15     | 0      | -1.453990               | -1.850579 | 0.540809  |
| 3      | 15     | 0      | -0.287618               | 2.244326  | -0.075419 |
| 4      | 14     | 0      | 1.802913                | -0.408694 | -0.075680 |
| 5      | 6      | 0      | -0.659473               | -4.049337 | -1.069940 |
| 6      | 1      | 0      | -1.567938               | -3.915988 | -1.662632 |
| 7      | 1      | 0      | 0.143292                | -3.485106 | -1.543385 |
| 8      | 1      | 0      | -0.388110               | -5.110621 | -1.108043 |
| 9      | 6      | 0      | 0.383692                | -3.901315 | 1.244577  |
| 10     | 1      | 0      | 0.229495                | -3.676201 | 2.303734  |
| 11     | 1      | 0      | 0.657122                | -4.959829 | 1.167068  |
| 12     | 1      | 0      | 1.236992                | -3.314042 | 0.904012  |
| 13     | 6      | 0      | -0.863911               | -3.630113 | 0.392821  |
| 14     | 1      | 0      | -1.684353               | -4.234373 | 0.798407  |
| 15     | 6      | 0      | -2.680554               | -2.975169 | 2.920062  |
| 16     | 1      | 0      | -2.049723               | -3.866683 | 2.906097  |
| 17     | 1      | 0      | -2.963041               | -2.792754 | 3.963374  |
| 18     | 1      | 0      | -3.601696               | -3.193132 | 2.369501  |
| 19     | 6      | 0      | -1.976904               | -1.728071 | 2.362615  |
| 20     | 1      | 0      | -1.034188               | -1.591799 | 2.904370  |
| 21     | 6      | 0      | -2.857952               | -0.491347 | 2.595234  |
| 22     | 1      | 0      | -2.402514               | 0.427357  | 2.224060  |
| 23     | 1      | 0      | -3.825736               | -0.600878 | 2.096688  |
| 24     | 1      | 0      | -3.047274               | -0.368974 | 3.667695  |
| 25     | 6      | 0      | -3.041516               | -1.880414 | -0.382285 |

| 26 | 6 | 0 | -3.906883 | -2.975653 | -0.525580 |
|----|---|---|-----------|-----------|-----------|
| 27 | 1 | 0 | -3.699613 | -3.912332 | -0.017372 |
| 28 | 6 | 0 | -5.027125 | -2.882520 | -1.348916 |
| 29 | 1 | 0 | -5.690677 | -3.734595 | -1.464014 |
| 30 | 6 | 0 | -5.273185 | -1.697142 | -2.046176 |
| 31 | 1 | 0 | -6.127635 | -1.626553 | -2.713719 |
| 32 | 6 | 0 | -4.418269 | -0.606786 | -1.895535 |
| 33 | 1 | 0 | -4.612092 | 0.307862  | -2.449692 |
| 34 | 6 | 0 | -3.302432 | -0.670194 | -1.042973 |
| 35 | 6 | 0 | -2.339184 | 0.484156  | -0.859007 |
| 36 | 1 | 0 | -2.020084 | 0.770326  | -1.877131 |
| 37 | 6 | 0 | -2.939452 | 1.734586  | -0.252360 |
| 38 | 6 | 0 | -4.303509 | 1.954397  | -0.002356 |
| 39 | 1 | 0 | -5.022036 | 1.169957  | -0.211057 |
| 40 | 6 | 0 | -4.757847 | 3.171616  | 0.507924  |
| 41 | 1 | 0 | -5.819881 | 3.309040  | 0.693698  |
| 42 | 6 | 0 | -3.865570 | 4.209738  | 0.772814  |
| 43 | 1 | 0 | -4.220389 | 5.158485  | 1.164089  |
| 44 | 6 | 0 | -2.501954 | 4.003565  | 0.556151  |
| 45 | 1 | 0 | -1.801447 | 4.798070  | 0.792185  |
| 46 | 6 | 0 | -2.038053 | 2.771502  | 0.082412  |
| 47 | 6 | 0 | -0.221397 | 2.480572  | 2.736544  |
| 48 | 1 | 0 | -0.507196 | 1.426285  | 2.755349  |
| 49 | 1 | 0 | 0.378498  | 2.675283  | 3.632337  |
| 50 | 1 | 0 | -1.133789 | 3.079335  | 2.802351  |
| 51 | 6 | 0 | 1.109337  | 4.271315  | 1.537076  |
| 52 | 1 | 0 | 1.784210  | 4.501405  | 0.709678  |
| 53 | 1 | 0 | 0.295239  | 5.002646  | 1.540787  |
| 54 | 1 | 0 | 1.674245  | 4.415520  | 2.465680  |
| 55 | 6 | 0 | 0.601573  | 2.823363  | 1.486286  |
| 56 | 1 | 0 | 1.482074  | 2.174861  | 1.490278  |
| 57 | 6 | 0 | -0.016604 | 4.668904  | -1.647194 |
| 58 | 1 | 0 | 0.237123  | 5.263221  | -0.768405 |
| 59 | 1 | 0 | 0.480145  | 5.128386  | -2.509617 |
| 60 | 1 | 0 | -1.096054 | 4.744704  | -1.807035 |
| 61 | 6 | 0 | 0.093752  | 2.465972  | -2.844305 |
| 62 | 1 | 0 | 0.439194  | 1.430106  | -2.829832 |
| 63 | 1 | 0 | -0.984916 | 2.466041  | -3.035904 |
| 64 | 1 | 0 | 0.579364  | 2.970983  | -3.686488 |
| 65 | 6 | 0 | 0.425224  | 3.201101  | -1.535436 |
| 66 | 1 | 0 | 1.508892  | 3.156994  | -1.386775 |
| 67 | 6 | 0 | 3.046201  | 0.967248  | -0.655800 |
| 68 | 6 | 0 | 3.732937  | 1.779424  | 0.269778  |
| 69 | 1 | 0 | 3.602790  | 1.605522  | 1.334343  |
| 70 | 6 | 0 | 4.611184  | 2.788886  | -0.132639 |
| 71 | 1 | 0 | 5.122829  | 3.388993  | 0.615765  |
| 72 | 6 | 0 | 4.844860  | 3.014574  | -1.489550 |
| 73 | 1 | 0 | 5.530405  | 3.794993  | -1.808210 |
| 74 | 6 | 0 | 4.201448  | 2.209747  | -2.431036 |
| 75 | 1 | 0 | 4.390365  | 2.356384  | -3.491606 |
| 76 | 6 | 0 | 3.322965  | 1.206280  | -2.016732 |
| 77 | 1 | 0 | 2.859756  | 0.584508  | -2.776475 |
| /8 | 6 | 0 | 2.173530  | -1.765398 | -1.394696 |
| 19 | 6 | 0 | 1.576545  | -1.653834 | -2.667805 |

| 80 | 1 | 0 | 0.872315 | -0.846812 | -2.862485 |
|----|---|---|----------|-----------|-----------|
| 81 | 6 | 0 | 1.839614 | -2.563626 | -3.693923 |
| 82 | 1 | 0 | 1.361242 | -2.441533 | -4.662230 |
| 83 | 6 | 0 | 2.704877 | -3.635353 | -3.469550 |
| 84 | 1 | 0 | 2.909985 | -4.350651 | -4.261145 |
| 85 | 6 | 0 | 3.298324 | -3.781393 | -2.215420 |
| 86 | 1 | 0 | 3.968852 | -4.615832 | -2.025932 |
| 87 | 6 | 0 | 3.037553 | -2.858394 | -1.199422 |
| 88 | 1 | 0 | 3.516222 | -3.000917 | -0.235424 |
| 89 | 6 | 0 | 2.594680 | -0.910728 | 1.603929  |
| 90 | 6 | 0 | 3.951221 | -1.277268 | 1.725894  |
| 91 | 1 | 0 | 4.585507 | -1.287500 | 0.843600  |
| 92 | 6 | 0 | 4.516751 | -1.607703 | 2.958405  |
| 93 | 1 | 0 | 5.564053 | -1.893318 | 3.013984  |
| 94 | 6 | 0 | 3.743206 | -1.560443 | 4.120359  |
| 95 | 1 | 0 | 4.182434 | -1.812854 | 5.081619  |
| 96 | 6 | 0 | 2.406352 | -1.173243 | 4.036807  |
| 97 | 1 | 0 | 1.798234 | -1.115305 | 4.936073  |
| 98 | 6 | 0 | 1.849335 | -0.856579 | 2.794672  |
| 99 | 1 | 0 | 0.808947 | -0.547573 | 2.749059  |
|    |   |   |          |           |           |



Figure S11: Protonolysis of  $5_{Ph}$  with phenol- $d^6$ .

#### References

- (S1) Gutsulyak, D. V; Piers, W. E.; Borau-Garcia, J.; Parvez, M. J. Am. Chem. Soc. 2013, 135 (32), 11776–11779.
- (S2) Akhani, R. K.; Moore, M. I.; Pribyl, J. G.; Wiskur, S. L. J. Org. Chem. 2014, 79 (6), 2384–2396.
- (S3) Savela, R.; Zawartka, W.; Leino, R. Organometallics 2012, 31 (8), 3199-3206.
- (S4) Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
- A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji,
- M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.

Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.

Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,

A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.

E. Knox, J. B. Cross, V. S38 Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.

Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.

Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J.

B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.