Supporting Information

Intramolecular Interactions in the Polar Headgroup of Sphingosine: Serinol

D. Loru, I. Peña, J. L. Alonso, M. E. Sanz*

MP2	ga1	ga2	ga3	ga4	ga5	gG1	gG2	gG3	gG4	aa1
A ^b (MHz)	6084.2	5996.5	6042.6	6033.1	5916.3	4242.0	4094.0	4099.4	4088.4	7738.4
B (MHz)	2278.9	2272.6	2258.1	2235.3	2287.0	3134.0	3237.3	3242.7	3198.2	1977.6
C (MHz)	1997.3	1977.5	1983.2	1951.3	1972.8	2550.2	2479.7	2474.2	2469.0	1699.4
μ_a (D)	-1.67	4.19	1.24	-1.96	0.88	-0.24	2.06	-4.15	-2.37	3.35
$\mu_{\rm b}$ (D)	0.31	-0.83	1.37	0.03	-2.15	-2.62	-0.28	-0.23	1.17	-0.99
μ_{c} (D)	0.81	-1.37	3.02	0.89	-0.24	-1.51	1.84	1.62	0.55	1.74
μ_{total} (D)	1.88	4.48	3.54	2.15	2.33	3.03	2.77	4.46	2.70	3.90
γ_{aa} (MHz)	-0.34	-4.17	-0.68	-3.99	1.77	-2.60	-2.54	-1.92	-1.57	-3.53
$\gamma_{\rm bb}$ (MHz)	2.44	2.54	2.47	2.57	-0.24	1.45	0.01	-0.51	-0.84	1.72
χ_{cc} (MHz)	-2.10	1.64	-1.79	1.43	-1.53	1.15	2.53	2.43	2.41	1.80
ΔE_{MP2} (cm ⁻¹)	0.0	270.8	213.3	472.2	866.5	73.4	525.2	726.7	778.2	368.2
$\Delta E_{MP2} + ZPC(cm^{-1})$	0.0	214.9	247.6	443.3	705.6	145.7	503.3	731.9	825.0	298.3
$\Delta G^{298} (\text{cm}^{-1})$	0.0	158.7	276.5	420.5	610.6	114.6	498.7	773.4	911.5	231.5
		Ĩ		÷ } }	-	F			Let	- - }- <u></u> }-

Table S1. Ab initio^a spectroscopic parameters for the predicted conformers of serinol with energies within 1000 cm⁻¹.

^a Optimised structures at the MP2/6-311++G(d,p) level, labelled according to the values of the $\angle O_1CCC$ angle (first label) and the $\angle CCCO_2$ angle (second label) as **G** (+60°), **g** (-60°) and **a** (180°). ^b A, B, C are the rotational constants; χ_{aa} , χ_{bb} , and χ_{cc} are ¹⁴N nuclear quadrupole coupling constants; μ_a , μ_b , μ_c are the electric dipole moment components; ΔE_{MP2} are the electronic energies, $\Delta E_{MP2+ZPC}$ are the electronic energies including zero-point corrections, and ΔG^{298} are the Gibbs free energies at 298 K.

MP2	aa2	aa3	aa4	aa5	ag1	ag2	ag3	gg1	gg2	gg3	Gg1	Gg2
A ^b (MHz)	7642.0	7593.2	7833 3	7874 7	5361.2	5320.1	5438 7	4172.4	4541 3	4101.2	3972.9	3924 7
B (MHz)	1951.8	1957.1	1969.0	1954.9	2387.1	2340.9	2311.3	3166.5	2744.2	3164.6	3283.6	3240.4
C (MHz)	1686.4	1675.5	1702.7	1677.9	1775.3	1759.0	1744.3	2195.6	2069.1	2169.4	1942.5	1942.7
$\mu_{a}(D)$	-1.95	1.72	0.00	-0.91	3.29	1.64	-1.02	1.87	-0.36	-1.18	-1.32	-1.69
μ_b (D)	-0.43	1.31	-2.01	-0.20	3.22	3.02	2.00	2.18	4.02	1.15	1.89	2.87
μ_{c} (D)	-0.09	1.74	1.24	-1.14	1.25	-0.56	1.52	0.52	2.21	-0.29	1.57	0.05
μ_{total} (D)	2.00	2.77	2.36	1.47	4.77	3.48	2.71	2.92	4.61	1.68	2.79	3.33
χ_{aa} (MHz)	-3.42	-4.12	1.76	0.52	-4.22	-4.20	-4.21	1.86	0.69	-1.82	1.34	2.78
χ_{bb} (MHz)	1.74	2.05	2.76	2.75	2.32	2.36	2.32	-0.20	1.14	2.17	-2.62	1.97
χ_{cc} (MHz)	1.68	2.07	-4.51	-3.27	1.91	1.84	1.89	-1.66	-1.83	-0.35	1.28	-4.74
ΔE_{MP2} (cm ⁻¹)	537.5	752.4	912.8	919.1	700.7	717.6	920.7	418.6	913.6	940.4	878.9	965.0
$\Delta E_{MP2+ZPC}(cm^{-1})$	494.5	667.0	718.1	880.1	583.6	674.9	831.8	478.0	883.6	889.7	827.6	935.5
$\Delta G^{298} (cm^{-1})$	457.4	609.3	600.7	831.2	495.1	637.6	741.2	449.7	873.1	825.0	811.6	917.0
	• •	ه او او او او	~ ● ∲∲●	÷÷÷÷ę		ĕ ∮∳∳			-	44		

Table S1 (cont.). Ab initio^a spectroscopic parameters for the predicted conformers of serinol with energies within 1000 cm⁻¹.

^a Optimised structures at the MP2/6-311++G(d,p) level, labelled according to the values of the $\angle O_1CCC$ angle (first label) and the $\angle CCCO_2$ angle (second label) as **G** (+60°), **g** (-60°) and **a** (180°). ^b A, B, C are the rotational constants; χ_{aa} , χ_{bb} , and χ_{cc} are ¹⁴N nuclear quadrupole coupling constants; μ_a , μ_b , μ_c are the electric dipole moment components; ΔE_{MP2} are the electronic energies, $\Delta E_{MP2+ZPC}$ are the electronic energies including zero-point corrections, and ΔG^{298} are the Gibbs free energies at 298 K.

 $J'' K''_{-1} K''_{+1}$ F'F'' $J' K'_{-1} K'_{+1}$ v_{obs} v_{obs} - v_{cal} 8031.002 0.003 -0.011 8031.689 8029.963 0.016 8315.049 0.005 8314.442 0.009 0.001 8315.963 8477.019 -0.015 8208.556 0.002 8209.239 -0.003 8207.487 -0.003 8776.339 0.036 8776.132 -0.031 8775.819 0.017 8775.547 -0.004 8777.329 -0.002 11353.960 -0.002 11993.317 -0.010 -0.005 11994.068 11992.823 -0.006 -0.007 12845.114 -0.020 12844.439 12845.427 0.023 0.013 11354.447 11355.283 0.002 11353.960 -0.002 -0.002 12677.380 12303.497 0.025 12303.497 0.025 12304.136 0.002 12302.581 0.007 13154.436 -0.007 13154.436 -0.022 13153.682 -0.022 13155.499 -0.004 12738.552 -0.008 -0.008 12738.552 12799.848 -0.003 12799.848 -0.003 9161.090 0.001 9160.468 0.003 9161.453 0.011 15820.464 -0.009 17522.574 0.007 17521.827 0.012 10938.556 -0.010 0.009 10939.361 10938.286 -0.004 0.018 16833.653 16387.840 0.023 16388.516 -0.013 16386.954 -0.001 17520.041 0.005 16972.767 -0.005 5 17123.824 -0.029 13691.236 -0.023

Table S2. Measured frequencies and residuals (in MHz) for the rotational transitions of conformerga1 of serinol.

						4	3	13690.746	0.022	
4	2	3	4	1	3	5	5	10391.284	-0.017	
						4	4	10392.061	0.001	
5	2	4	5	1	4	6	6	9720.480	0.021	
						5	5	9720.205	0.009	
						4	4	9720.287	-0.023	

J'	K'_{-1}	K'_{+1}	J''	K''_{-1}	K''_{+1}	F'	F''	ν_{obs}	v_{obs} - v_{cal}
1	1	1	0			2	1	70.47.200	0.000
1	1	I	0	0	0	2	1	7947.389	0.002
						1	1	7948.106	0.002
1	1	0	0	0	0	0	1	/946.312	-0.002
1	1	0	0	0	0	2	1	8238.074	0.000
						1	1	8239.137	0.003
2	0	2	1	0	1	0	1	8237.984	-0.001
2	0	2	1	0	1	3	2	8429.507	0.008
						1	0	8428.451	0.023
2	1	2	1	1	1	1	1	8431.3/1	0.003
Z	1	2	1	1	1	2	1	0154.020	0.004
						2 1	1	0155.010 0156 171	0.005
2	1	1	1	1	Δ	1	2	8130.171	-0.001
Z	1	1	1	1	0	2	2 1	0/3/.320 9726 102	-0.001
						2 1	1	8/30.103	0.000
						1	2	8/38.443	-0.001
2	1	2	1	0	1	2	2	6/30.302	0.000
Z	1	2	1	0	1	2	2 1	11879.097	0.000
						2 1	1	118/9./04	-0.011
2	2	0	n	1	1	1	2	110/7.003	0.002
2	2	0	2	1	1	2	3 2	11109.020	-0.017
2	1	1	1	Ο	1	2	2	12752 881	0.000
2	1	1	1	0	1	2	1	12/32.001	-0.003
						1	1	12755.200	-0.004
						2	2	12751.342	-0.004
						1	1	12754 487	-0.004
2	2	1	2	1	1	3	3	11173 217	0.001
2	4	1	2	1	1	2	2	11175 239	-0.005
						1	1	11173.237	-0.010
3	0	3	2	0	2	1 4	3	12603 427	-0.012
5	0	5	2	0	2	3	3	12602.166	0.012
						2	2	12605.132	0.001
3	1	3	2	1	2	4	3	12221 987	-0.001
5		0	-	1	-	3	2	12221.647	0.010
						2	1	12221.987	-0.001
						3	3	12221.149	0.005
						2	2	12222.773	0.010
3	1	2	2	1	1	4	3	13095.133	-0.006
-						3	2	13094.780	-0.009
						3	3	13094.021	-0.001
						2	2	13096.283	-0.015
3	2	2	2	2	1	4	3	12669.009	-0.004
						3	2	12667.748	-0.006
						2	1	12669.709	-0.005
3	2	1	2	2	0	4	3	12734.358	0.002
						3	2	12733.069	-0.006
						2	1	12735.057	-0.003
3	1	3	2	0	2	4	3	15671.594	0.023
						3	2	15671.992	0.008
						2	1	15671.152	-0.017
3	2	2	3	1	2	4	4	10747.090	-0.005
						3	3	10748.228	0.014
						2	2	10746.704	0.000
3	2	1	3	1	2	4	4	10828.896	0.035
						3	3	10829.950	0.004

Table S3. Measured frequencies and residuals (in MHz) for the rotational transitions of conformer**ga2** of serinol.

						2	2	10828.490	0.008
4	0	4	3	0	3	5	4	16730.459	-0.014
						4	4	16729.205	0.008
						3	3	16732.063	-0.011
4	1	4	3	1	3	5	4	16277.963	-0.032
						4	4	16277.004	-0.010
						3	3	16279.071	-0.009
4	2	3	3	2	2	5	4	16878.980	0.021
						4	3	16878.407	-0.020
4	2	2	3	2	1	5	4	17040.172	0.075
						4	3	17039.540	0.001

Table S4. Measured frequencies and residuals (in MHz) for the rotational transitions of conformer

 gG1 of serinol.

J' I	K'_{-1}	K'_{+1}	J'' 1	K''_{-1}	K''_{+1}	F'	F''	ν_{obs}	ν_{obs} - ν_{cal}
1	1	1	0	0	0	2	1	6735.891	0.000
						1	1	6736.263	0.004
						0	1	6735.336	-0.002
1	1	0	0	0	0	2	1	7339.254	0.013
						1	1	7339.597	0.014
						0	1	7338.740	0.011
2	0	2	1	0	1	3	2	11124.882	0.011
						2	1	11124.882	0.011
						1	1	11125 978	0.008
2	1	2	1	1	1	3	2	10712.913	0.013
-	-	-	-	-	•	2	1	10712 178	0.012
2	1	1	1	1	0	3	2	11919 592	-0.004
-	1	1		1	Ŭ	2	1	11918 845	-0.014
						1	0	11920 279	-0.047
2	Ο	2	1	1	1	3	2	10047 166	0.047
2	0	2	1	1	1	2	1	10047.100	0.000
						1	0	10040.090	0.004
						1 2	2	10046.110	0.000
\mathbf{r}	1	r	1	0	1	2	2	11700 607	0.000
2	1	2	1	0	1	2 2	1	11790.007	-0.002
						2 1	1	11790.932	-0.001
						1	2	11700.224	0.001
						2 1	2	11790.234	-0.009
2	2	1	1	1	0	1	1	11/91.522	-0.000
2	2	1	1	I	0	3	2	15152.992	-0.012
						2	1	15153.421	-0.003
						2	2	15153.761	-0.004
•	•	0				1	l	15152.227	-0.014
2	2	0	1	I	I	3	2	15947.639	-0.003
						2	1	15947.976	-0.003
						2	2	15948.340	-0.007
_	_	_				1	1	15946.879	-0.003
2	0	2	1	1	0	3	2	9443.793	-0.016
						2	1	9442.747	-0.015
						1	0	9444.710	-0.002
						2	2	9443.106	0.003
2	1	1	1	0	1	3	2	13600.670	0.015
						2	1	13600.994	0.023
						1	0	13599.826	0.015
						2	2	13600.282	0.022
						1	1	13601.604	0.020
2	2	1	1	1	1	3	2	15756.376	0.020
						2	1	15756.733	-0.015
						2	2	15757.117	0.000
						1	1	15755.562	-0.003
2	2	0	1	1	0	3	2	15344.290	-0.001
						2	1	15344.640	-0.015
						2	2	15344.987	-0.009
						1	1	15343.544	-0.014
3	0	3	2	0	2	4	3	16308.833	0.004
3	0	3	2	1	2	4	3	15643.080	-0.008
						3	2	15642.765	-0.006
						3	3	15642.400	-0.005
						2	2	15643.682	-0.010
3	0	3	2	1	1	4	3	13833.042	0.000
-	-	-	-	-	-	3	2	13832.737	-0.017
						-	-		

3 1 2	2	2	-	3 2 4	3 2 3	16628.932 16630.403	0.011 0.019 0.005
3 1 2	2	2	1	2	2	16630.403	0.019
3 1 2	2	2	1	1	3	14500 108	0.005
		-	1	+	5	14500.108	-0.005
				3	2	14498.766	-0.007
				2	1	14500.736	-0.002
				3	3	14499.537	0.004

F' F''v' v'' $J' K'_{-1} K'_{+1}$ $J'' K''_{-1} K''_{+1}$ ν_{obs} v_{obs} - v_{cal} 9648.302 0.000 9648.302 0.000 9648.781 -0.003 9648.781 -0.003 9647.584 0.006 9647.584 0.006 9368.394 -0.003 9368.394 -0.003 9368.886 -0.005 9368.886 -0.005 9367.656 -0.009 9367.656 -0.009 7305.578 0.001 7306.183 0.017 7307.112 -0.013 -0.008 7307.705 7035.831 0.001 7036.426 0.008 7034.821 -0.003 7035.391 -0.022 7036.865 0.013 7037.443 0.002 7595.631 -0.010 7596.241 0.011 7594.632 -0.003 7595.203 -0.022 7596.637 -0.016 7597.239 -0.002 12746.432 -0.004 12746.432 -0.00412746.890 -0.005 12746.890 -0.005 12745.261 0.00012745.261 0.000 12745.924 0.005 12745.924 0.005 12747.688 -0.013 12747.688 -0.013 13586.152 0.009 13586.152 0.009 13586.595 0.005 13586.595 0.005 13584.989 0.013 13584.989 0.013 13585.001 0.005 13585.001 0.005 13587.415 0.003 0.003 13587.415 10933.392 -0.02410933.987 -0.018 10932.345 0.004 10932.931 0.002 10934.828 -0.004

10935.424

0.004

Table S5. Measured frequencies and residuals (in MHz) for the rotational transitions of conformer aa1 of serinol.

3	1	3	2	1	2	4	3	0	1	10547.489	-0.011
						4	3	1	0	10548.091	0.002
						3	2	0	1	10547.214	0.002
						3	2	1	0	10547.792	-0.008
3	1	2	2	1	1	4	3	0	1	11386.982	-0.010
						4	3	1	0	11387.584	0.003
						3	2	0	1	11386.709	0.006
						3	2	1	0	11387.309	0.017
3	2	2	2	2	1	4	3	0	1	10973.630	-0.003
						4	3	1	0	10974.215	0.007
						3	2	0	1	10972.594	0.002
						3	2	1	0	10973.193	0.012
						2	1	0	1	10974.215	0.007
						2	1	1	0	10974.810	0.011
3	2	1	2	2	0	4	3	0	1	11013.706	0.001
						3	2	0	1	11012.667	0.004
						3	2	1	0	11013.266	0.015
3	1	3	2	0	2	4	3	0	0	15988.355	-0.006
						4	3	1	1	15988.355	-0.006
						3	2	0	0	15988.593	0.001
						3	2	1	1	15988.593	0.001
						2	1	0	0	15988.058	-0.002
						2	1	1	1	15988.058	-0.002
4	0	4	3	0	3	5	4	0	1	14531.746	0.014
						5	4	1	0	14532.343	0.023
						4	4	0	1	14530.662	0.027
						4	4	1	0	14531.235	0.012
						3	3	0	1	14533.109	0.019
						3	3	1	0	14533.694	0.015
4	1	4	3	1	3	5	4	0	1	14052.108	-0.024
						5	4	1	0	14052.694	-0.027
						3	3	0	1	14053.190	0.017
						3	3	1	0	14053.794	0.033
4	1	3	3	1	2	5	4	0	1	15170.407	0.002
						5	4	1	0	15170.932	-0.061
5	1	5	4	1	4	6	5	0	1	17547.806	-0.007
						6	5	1	0	17548.386	-0.015

 $J'' K''_{-1} K''_{+1}$ F'F'' $J' K'_{-1} K'_{+1}$ ν_{obs} v_{obs} - v_{cal} 7090.148 -0.001 7090.830 0.006 7089.126 -0.009 7694.276 -0.007 7694.782 0.007 0.022 7693.563 8176.740 0.020 8175.680 0.036 8178.567 0.000 7656.134 -0.008 7654.926 -0.012 7657.429 -0.020 7655.790 0.029 8864.350 -0.011 8863.139 -0.005 8865.513 0.009 8863.623 -0.015 10616.074 -0.009 -0.004 10616.719 0.002 10617.548 12428.444 0.009 0.024 12428.905 12427.083 -0.00112427.707 -0.004 12066.566 -0.010 -0.010 12066.566 12065.360 0.012 -0.000 12068.210 11434.986 0.001 11434.986 0.001 11434.647 -0.000 11434.134 0.015 11435.825 0.012 13240.013 -0.011 13239.668 -0.016 -0.025 13238.936 13241.118 -0.001 12390.290 0.010 12389.020 -0.007 12390.979 0.003 12713.747 0.007 12712.441 0.003 12714.455 0.009 9627.185 -0.0179626.507 -0.007

4 3

3 3

2 2

3 1 3

4 1

4 1 3

0 4

2 0 2

9625.981

9628.159

13874.333

13874.694

13873.960

13873.481

13875.860

15767.059

15164.627

17537.926

-0.004

0.002

-0.011

-0.006

-0.009

-0.000

-0.007

0.011

-0.003

-0.033

Table S6. Measured frequencies and residuals (in MHz) for the rotational transitions of conformerag1 of serinol.

4	2	3	3	2	2	5	4	16454.991	-0.015
						4	3	16454.411	0.010
						3	2	16454.991	-0.015
						5	4	17207.300	0.019
4	0	4	3	1	3	5	4	13959.270	0.018
						4	3	13958.950	0.013
						3	2	13959.270	0.018

Fig S1. The $2_{1,2} \leftarrow 1_{1,1}$ rotational transition of conformer **aa1** of serinol. Each of the three quadrupole components (labelled with the quantum numbers $F' \leftarrow F''$, F = I + J) show small tunneling splittings of about 600 kHz.

Fig S2. Interconversion barriers between conformers of the **ga** family of serinol calculated at the MP2/6-311++G(d,p) level of theory.

Fig S3. Interconversion barrier between conformers of the **aa** family of serinol calculated at the MP2/6-311++G(d,p) level of theory.

Fig S4. Interconversion barriers between conformers of the **ag** family of serinol calculated at the MP2/6-311++G(d,p) level of theory.

Fig S5. Interconversion barriers between conformers of the **gG** family of serinol calculated at the MP2/6-311++G(d,p) level of theory.

Fig S6. Possible tunneling pathways for the intervconversion of the **aa1** enantiomers of serinol. The transition states have been calculated using the Synchronous Transit and Quasi-Newton method (C. Peng, H. B. Schlegel, *Israel J. Chem.*, **33** (1993) 449; C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, *J. Comp. Chem.*, **17** (1996) 49) implemented in Gaussian09 at the MP2/6-311++G(d,p) level of theory. Energies are relative to conformer **aa1**. Numbers in parentheses are the zero-point corrected energies.

b)

