Electronic Supplementary Information

A dual-stimuli responsive small molecule organic material with tunable multi-state response showing turn-on luminescence and photocoloration**

Ya-Jun Zhang,ac Cheng Chen,a Bin Tan,a Li-Xuan Cai,a Xiao-Dong Yang,a and Jie Zhang*ab

[a] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China, E-mail: zhangjie@fjirsm.ac.cn
[b] Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P. R. China, E-mail: zhangjie68@bit.edu.cn
[c] University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China.

Section 1. Materials and General Procedures

1.1 Materials and instruments

All chemicals were purchased from commercial sources and were used without further purification. Elemental analyses of C, H, and N were taken on a Vario EL III CHNOS elemental analyzer. 1H NMR spectra were performed on a Bruker AV-400 NMR spectrometer. Power X-ray diffraction (PXRD) were recorded on a Rigaku MiniFlex 600 diffractometer using Cu Kα radiation with a scan speed of 2°min⁻¹ in the angular rage of 2θ = 5°-55°. UV-Vis diffuse reflectance spectra were taken on a Pekin-Elmer Model Lambda 950 spectrometer with BaSO₄ as a reference. Electron spin resonance (ESR) signals were determined by a Bruker A300 EPR spectrometer. The infrared spectra were carried out on a Bomem MB-102 IR spectrometer with samples as KBr pellets in the range of 4000-400 cm⁻¹.

1.2 Synthesis

Synthesis of crystal 1 (DBCAbpe-Br-H₂O): 5-(bromomethyl)-1,3-benzenedicarboxylate (2.871 g, 10 mmol) was dissolved in 15 mL acetonitrile and then dropwise added into a stirred solution of 4,4′-vinylenedipyridine (2.733 g, 15 mmol) in 10 mL acetonitrile, and the temperature remained 90°C for 6 h. Light yellow precipitate was obtained by filtration and washed with acetonitrile for three times. The precipitate was dried in a vacuum, giving the product as light brown powder, then recrystallized in water to obtain a bright yellow crystal 1 (yield 50%). 1H NMR (400 MHz, DMSO-D₆): δ 3.92 (s, 2H), 5.96 (s, 2H), 7.66-7.68 (m, 2H), 7.66-7.68 (d, J = 16.41 Hz, 1H), 7.77-7.81 (d, J = 16.42 Hz, 1H), 8.34-8.35 (d, 2H), 8.48 (d, 2H), 8.51 (m, 1H), 8.69-8.71 (m, 2H), 9.21-9.23 (d, 2H). Elemental analysis: calc. for C₂₃H₂₃N₂O₅Br: C, 56.67; H, 4.72; N, 5.74. Found: C, 56.76; H, 4.63; N, 5.80%. Powdered crystalline 1 (10 mg) was continuously irradiated by 365nm UV light for 48 h, then dissolved in a distilled water. The colorless crystals 1’ suitable for X-ray diffraction analysis were obtained after a few days.

Synthesis of crystal 2 (DBCAbpe-PF₆): KPF₆(0.552g, 3 mmol) in 25mL acetonitrile was added into 25 mL aqueous solution containing crystals 1 (0.469g, 1 mmol) to yield a lot of precipitation at once. After being continuously stirred for 10 min under 70°C, the precipitation dissolved gradually. The solution was allowed to stand at room temperature in the dark for slow evaporation. Colorless block crystals of 2 were obtained after a few days (yield: 50%). Elemental analysis: calc. for C₂₃H₂₁N₂O₄PF₆: C, 51.69; H, 3.93; N, 5.23. Found: C, 51.63; H, 4.12; N, 5.33%.
1.3 X-ray crystallography

The X-ray diffraction data for crystal 1 and crystal 2 were collected on an Agilent Diffraction SuperNova dual diffractometer with Cu Kα radiation ($\lambda = 1.54178$ Å). A multi-scan method was used for absorption corrections. 1′ was collected on Rigaku Saturn 724+ MicroMax 007 with graphite-monochromated Mo Kα radiation ($\lambda = 0.71073$ Å). The CrystalClear program was used for the absorption correction. The structure was solved using direct methods with SHELXS-97 and refined by full-matrix least-squares fitting on F^2 by SHELXL-97. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms on carbon atoms were placed in a calculated position with isotropic displacement parameters. The hydrogen atoms of lattice water molecule had not been included in final refinement.

Crystal data for 1: C$_{23}$H$_{23}$N$_2$O$_5$Br; $Mr = 487.34$; monoclinic P2(1)/n; $a = 14.4012(6)$, $b = 10.1201(5)$, $c = 15.5792(7)$ Å, $\alpha = 90.0$, $\beta = 97.623(4)$, $\gamma = 90.0^\circ$, $V = 2250.47(18)$ Å3; $T = 173(2)$ K; $Z = 4$; $D_c = 1.438$ g cm$^{-1}$; μ(Cu Kα) = 2.799 mm$^{-1}$; $F(000) = 1000$; 9010 reflections collected, of which 4483 unique ($R_{int} = 0.0211$); GOF = 1.050; $R_1 = 0.0450$ and $wR_2 = 0.1247$ [$I > 2\sigma(I)$]. CCDC 1429578.

Crystal data for 1′: C$_{46}$H$_{58}$Br$_2$N$_4$O$_6$; $Mr = 1082.78$; triclinic C2/c; $a = 27.25(5)$, $b = 13.662(16)$, $c = 17.30(2)$ Å, $\alpha = 90.0$, $\beta = 110.040(18)$, $\gamma = 90.0^\circ$, $V = 6051(15)$ Å3; $T = 173(2)$ K; $Z = 4$; $D_c = 1.189$ g cm$^{-1}$; μ(Mo Kα) = 1.399 mm$^{-1}$; $F(000) = 2240$; 21961 reflections collected, of which 6872 unique($R_{int} = 0.1044$); GOF = 0.926; $R_1 = 0.1069$ and $wR_2 = 0.3012$ [$I > 2\sigma(I)$]. CCDC 1429579.

Crystal data for 2: C$_{23}$H$_{21}$N$_2$O$_4$PF$_6$; $Mr = 534.39$; monoclinic P2(1)/c; $a = 6.8210(6)$, $b = 17.801(2)$, $c = 19.7701(18)$ Å, $\alpha = 90.0$, $\beta = 98.215(8)$, $\gamma = 90.0^\circ$, $V = 2375.8(4)$ Å3; $T = 296(2)$ K; $Z = 4$; $D_c = 1.494$ g cm$^{-1}$; μ(Cu Kα) = 1.770 mm$^{-1}$; $F(000) = 1096$; 8711 reflections collected, of which 4704 unique ($R_{int} = 0.0289$); GOF = 1.092; $R_1 = 0.0822$ and $wR_2 = 0.1623$ [$I > 2\sigma(I)$]. CCDC 1429580.

Section 2. Additional Data

Fig. S1 1H NMR (400 MHz, DMSO-d$_6$) spectra showing the photocycloaddition of crystal 1 under 365 nm UV light irradiation.
Fig. S2 In-situ IR spectra of crystal 1 under 365 nm UV light irradiation.

Fig. S3 The PXRD patterns of compounds 1 under 365 UV light irradiation.

Fig. S4 The molecular conformation of rett-type dimer 1’ obtained by recrystallization of the photoirradiated sample 1 from the distilled water (C, grey; N, blue; O, red). Hydrogen atoms are omitted for clarity.
Fig. S5 Top panel: Fluorescence image of powdered crystal 1 upon UV irradiation (λ = 365 nm); Bottom panel: The emission spectra of the irradiated sample 1, λ_{ex} = 395 nm.

Fig. S6 Definition of the parameters usually considered to be geometric criteria for [2+2] photodimerization of double bonds (According to Ref: V. Ramamurthy, and K. Venkatesan, *Chem. Rev.*, 1987, 87, 433–481; θ₃ is the angle between the >C=C< and C=C-C=C Planes). The corresponding geometrical parameters θ₁, θ₂, θ₃, D1 and D2 in crystal 1 are 0°, 89.960°, 76.255°, 0.003 Å and 3.866 Å.

Fig. S7 ¹H NMR (400 MHz, DMSO-d₆) spectra of crystal 1 under visible light irradiation showing no photocycloaddition product.
Fig. S8 1H NMR (400 MHz, DMSO-d$_6$) spectra of crystal 1-Vis under 365 nm UV light irradiation showing that photocycloaddition reaction can be restarted in 1-Vis by re-exposing to the UV light.

Fig. S9 The corresponding angles between the pyridinium and pyridine rings in crystal 1 (left) and crystal 2 (right). Hydrogen atoms are omitted for clarity.

Fig. S10 The diffuse reflectance spectra of crystal 2 under Xenon lamp. Insert: the ESR spectra of crystal 2 before (black) and after (red) Xenon lamp irradiation for 1 h.